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Abstract Accurate estimates of soil mineral weathering are required for regional critical load (CL) model-
ing to identify ecosystems at risk of the deleterious effects from acidification. Within a correlative modeling
framework, we used modeled catchment-level base cation weathering (BCw) as the response variable to
identify key environmental correlates and predict a continuous map of BCw within the southern Appala-
chian Mountain region. More than 50 initial candidate predictor variables were submitted to a variety of
conventional and machine learning regression models. Predictors included aspects of the underlying geol-
ogy, soils, geomorphology, climate, topographic context, and acidic deposition rates. Low BCw rates were
predicted in catchments with low precipitation, siliceous lithology, low soil clay, nitrogen and organic mat-
ter contents, and relatively high levels of canopy cover in mixed deciduous and coniferous forest types.
Machine learning approaches, particularly random forest modeling, significantly improved model prediction
of catchment-level BCw rates over traditional linear regression, with higher model accuracy and lower error
rates. Our results confirmed findings from other studies, but also identified several influential climatic pre-
dictor variables, interactions, and nonlinearities among the predictors. Results reported here will be used to
support regional sulfur critical loads modeling to identify areas impacted by industrially derived atmos-
pheric S inputs. These methods are readily adapted to other regions where accurate CL estimates are
required over broad spatial extents to inform policy and management decisions.

1. Introduction

Atmospheric sulfur (S) inputs to streams in the southeastern United States (US) have reduced native fish
and invertebrate populations, and altered aquatic community structure in favor of acid tolerant species
[United States Environmental Protection Agency (US EPA), 2009]. Deposited S is largely derived from industrial
coal and oil combustion [National Acid Precipitation Assessment Program (NAPAP), 1991] and affects soil and
surface water chemistry through base cation leaching, increased sulfate concentrations, reduced pH and
acid neutralizing capacity (ANC), and mobilization of potentially toxic inorganic aluminum (Ali) [Driscoll
et al., 2001; US EPA, 2009].

Sulfur deposition levels (wet 1 dry) have declined by 44% across the eastern US beginning in the early
1990s [Greaver et al., 2012; United States Environmental Protection Agency (US EPA), 2008]. However, current
levels of S deposition and lagged effects of past deposition continue to threaten aquatic ecosystems across
the region [Greaver et al., 2012; US EPA, 2008, 2009].

The U.S. Environmental Protection Agency (EPA) and federal land management agencies are charged with
assessing the ecological effects of S emissions and implementing restorative management to areas most
susceptible to chronic deposition. The standard approach used to identify acid-sensitive ecosystems is to
develop critical load (CL) estimates [United Nations Economic Commission for Europe (UNECE), 2004]. The CL
is defined as the level of sustained atmospheric deposition of strong acids (here, S) above which harmful
effects are expected to occur [Nilsson and Grennfelt, 1988]. Several studies have used aquatic critical load
calculations to identify potential exceedances in aquatic habitats [Henriksen et al., 2002, 1995; McDonnell
et al., 2012; Reynolds et al., 2012; Sullivan et al., 2005]. The most common approach to estimate regional
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steady state CL for surface waters is with the Steady State Water Chemistry model (SSWC; equation (1))
[Henriksen and Posch, 2001], which is calculated as:

CLðSÞ5BC dep 1BC w2Bc u2Cl dep 2ANC limit (1)

where BCdep and Cldep represent the total atmospherically deposited major base cations Ca, K, Mg, Na, and
chloride, respectively; BCw is the base cation weathering rate, Bcu represents the uptake and removal of
nutrient base cations by tree harvesting, and ANClimit is the critical ANC leaching rate.

The research presented here focuses on estimating the catchment-level BCw rate, which is considered to be
the most critical [Hodson and Langan, 1999] and often the most poorly estimated term in the CL calculation
equation (1) [Li and McNulty, 2007; McDonnell et al., 2010; Skeffington, 2006]. BCw is generally calculated as
an intermediate output in models that estimate CLs. Models currently used to estimate BCw rates fall into
two categories: (1) process-based, and (2) empirical steady state [Hall et al., 2001; Hodson and Langan,
1999].

Process-based models such as PROFILE [Sverdrup and Warfvinge, 1993; Warfvinge and Sverdrup, 1992] and
MAGIC (Model of Goundwater Acidification in Catchments) [Cosby et al., 1985] are able to generate accurate
plot or catchment-level BCw predictions. However, the unavailability of needed data precludes their applic-
ability to larger spatial extents.

Conversely, empirical steady state models such as SSWC are able to predict CL (and consequently BCw) at
regional extents using empirical relationships between broad-scale soil texture and geological data. How-
ever, these models suffer high error rates related to variability in regional biogeoclimatic conditions, low
spatial accuracy or inconsistent scaling of soils and geological data, and high dissimilarity between regions
where models are developed and applied [Li and McNulty, 2007; McDonnell et al., 2010; Skeffington, 2006].
Furthermore, error rates for these models are not often reported, bringing into question the validity of their
application [Li and McNulty, 2007].

The goals of this research were to improve estimates of BCw across the southern Appalachian Mountain
region [Sullivan et al., 2008] using a hybrid modeling approach that combined process-based and empirical
steady state modeling, and that built upon a previous modeling effort in Virginia and West Virginia [McDon-
nell et al., 2012]. Statistical and machine learning (ML) regression models were used to correlate remotely
sensed biogeochemical and climatic variables (the independent variables) to catchment-level BCw estimates
(the response variable) made using a dynamic process-based model. Variable reduction procedures were
used to identify the main environmental correlates of BCw while balancing model performance with model
parsimony. These relationships were then used to extrapolate estimates of catchment-level BCw across the
study region. We evaluated the environmental correlates and the degree of correlation to confirm known
and hypothesized relationships between catchment-level BCw levels and the biophysical setting.

Machine learning algorithms are relatively new to ecological research [Hastie et al., 2005; Olden et al., 2008].
These algorithms identify patterns in a data set while treating the data-generating mechanism as unknown
[Breiman, 2001b]. This, in turn, leads to the development of predictive models that make few assumptions
regarding the underlying structure of the data. This is particularly beneficial where patterns in a response
emerge from interactions among covariates that can exist at several scales of observation, and often gener-
ate nonlinear response functions. ML incorporates a variety of modeling approaches that correlate predictor
variables to a response variable for extracting information on the relationships between the predictors and
response, and for the purposes of creating accurate predictions outside the training data. Examples of ML
algorithms include support vector machines, neural networks, decision trees, random forest, and boosted
regression trees, among others [Berk, 2008; Hastie et al., 2005].

Building on the work of McDonnell et al. [2012], the current assessment includes: (1) an expanded study
area with additional catchment-level BCw estimates derived from the MAGIC model, (2) inclusion of new cli-
matic, productivity, edaphic, topographic, and sulfur deposition predictor variables, (3) incorporation of ML
algorithms, and (4) spatial assessment of model uncertainty. Model estimates of BCw were incorporated
along with modeled ANC [Povak et al., 2013] into a decision support application [Reynolds et al., 2012] that
can be used to generate CL and identify acid-sensitive streams across the same region.
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2. Methods

2.1. Study Area
The study was conducted across a broad geographic area (14.3 3 106 ha) encompassing much of the south-
ern Appalachian Mountain region of the eastern United States, from northern Georgia to southern Pennsyl-
vania, and from eastern Kentucky and Tennessee to central Virginia and western North Carolina (Figure 1).
The study area includes several Omernik [1987] Level III ecoregions; the three main ecoregions are the Blue
Ridge, Ridge and Valley, and Central Appalachian regions. Elevations in the study region range from 300 to
2000 m. Forests are primarily composed of oak (Quercus spp.), hickory (Carya spp.), and pine (Pinus spp.).
Mixed and pure spruce-fir and northern hardwood forests occupy the highest elevation sites with cool,
moist climates. Forests are interspersed with agricultural and urban lands, which generally occupy lowland
valleys.

2.2. MAGIC Model
MAGIC is a process model used to estimate effects of acidic deposition on soils and surface waters in catch-
ments [Cosby et al., 1985]. BCw estimates calculated by MAGIC represent the catchment average net supply
of base cations (BC; see Table 1 for a list of common acronyms) derived from soil mineral weathering drain-
ing to surface waters. Within the model, physical and chemical processes associated with the acid-base sta-
tus of soil and stream water chemistry are averaged across a catchment to predict its potential response to
acidic inputs. MAGIC predictions are calibrated using observed stream, soil, and atmospheric deposition

Figure 1. Distribution of BCw sample points within Omernik [1987] ecoregions for the southern Appalachian Mountains region.
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data. After calibration, MAGIC can be used to simulate historical and future soil, soil solution, and surface
water chemistry at monthly and annual time steps.

In the current study, MAGIC was calibrated to 140 catchments, using methods described by McDonnell et al.
[2012]. For each catchment, 10 MAGIC simulations were performed to calibrate the model across the ranges
of soil and stream chemistry, and atmospheric deposition inputs. Effects of uncertainty in MAGIC model
assumptions and in the available input data were assessed using results from all successful calibrations for a
given site. The average difference between the maximum and minimum BCw estimates within a catchment
was 21.4 meq m22 yr21 across all catchments, which is a measure of overall MAGIC model uncertainty.

The study sites were compiled from a variety of previous studies. Most of these studies targeted areas of
known acidic stream conditions and likely lower than average BCw rates (see section 3.1). Nonetheless, this
data set represented the most comprehensive analysis of catchment-level BCw rates for the study region to
date. To assess the representativeness of the environmental settings of the modeled catchments compared
to those present across the study domain, we compared the estimated kernel density function for each pre-
dictor variable from the 140 sites to those constructed from 4000 randomly selected catchments (Table 2).
The proportion of overlap among the density functions indicated the degree of correspondence among the
distributions.

2.3. Predictor Variables
An initial set of 55 environmental predictor variables was chosen to represent broad- to fine-scale climatic,
lithologic, geomorphic, topographic, edaphic, vegetative, land ownership, and atmospheric S deposition
variables that were potentially influential in explaining geographical patterns of BCw. Variables are briefly
described below, but also see supporting information Text S1 and Table S1 for a more complete
description.

Climate variables (1 km resolution) included estimates of the growing season (GS) and nongrowing season
(NGS) precipitation, temperature, and insolation regime, and measures of overall productivity [Hargrove and
Hoffman, 2004]. Vegetation data (30 m) included percentage composition of conifer, deciduous, and all for-
est types [Homer et al., 2007]. Soil variables (1 km) included percentage clay, soil pH, and soil depth [NRCS
Soil Survey Staff, 2010a, 2010b], and amount of organic matter, mean Kjeldahl N content, and mean soil
plant-available water [Hargrove and Hoffman, 2004].

A lithologic classification provided by Sullivan et al. [2007] for the southern Appalachian region was used to
capture the percentage composition of geologic parent materials across the study area. Classes included
siliceous, argillic, felsic, mafic, and carbonate substrates. A 30 m digital elevation model (DEM) [Gesch et al.,

Table 1. A Selection of Acronyms and Their Definitions

ANC Acid neutralizing capacity A measure of the acid-base status of a solution, similar to pH [Hemond, 1990]
BC Base cations e.g., Ca, K, Mg, Na, and chloride
BCw Base cation weathering rate Base cation supply through mineral weathering [Ouimet and Duchesne, 2005]
BR Blue Ridge Omernik [Omernik, 1987] ecoregion within the study area
BRT Boosted regression trees Machine learning algorithm [Friedman, 2002]
CA Central Appalachian Omernik [Omernik, 1987] ecoregion within the study area
CL Critical Loads The level of pollution below which negative ecological effects are not anticipated

to occur [Nilsson and Grennfelt, 1988]
GWR Geographically weighted regression Linear regression analysis where local model coefficients vary spatially [Fotheringham et al., 2002]
GS Growing season Used to describe time period for some predictor variables used in modeling
LM Linear model Ordinary least squares regression
MAGIC Model of groundwater acidification in catchments Process-based model used to calculate catchment-level soil and stream water chemistry [Cosby et al., 1985]
MARS Multiplicative adaptive regression splines Machine learning algorithm [Friedman, 1991]
ML Machine learning Branch of statistics that uses algorithms to model complex data [Hastie et al., 2005]
OOB Out-of-bag samples The bootstrap samples withheld from the training of individual regression trees within random forest
NGS Nongrowing season Used to describe time period for some predictor variables used in modeling
PROFILE Steady state soil chemistry computer model used to calculate the Critical Load of acidity

for soil and surface water systems [Warfvinge and Sverdrup, 1992]
RF Random Forest Machine learning algorithm (Breiman, 2001)
RMSE Root mean squared error Measure of model error for regression models
RV Ridge and Valley Omernik [Omernik, 1987] ecoregion within the study area
SSWC Steady State Water Chemistry model Model used to calculate regional critical loads estimates [Henriksen and Posch, 2001]
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2002, Gesch, 2007] was used to derive attributes related to topographic setting such as the surface area
roughness, topographic wetness index, and flow accumulation (catchment size) metrics. Levels of wet and
dry S deposition were also included [Byun and Schere, 2006; Grimm and Lynch, 2004].

The raster layer of each predictor variable was resampled to 30 m resolution and the values were averaged
across the contributing upslope area for each grid cell (see Table S1 for native raster resolutions). Upslope
averaging incorporated the catchment influence of the predictor variables on BCw as calibrated to the
stream sampling location, or pour point, at the base of each catchment [McDonnell et al., 2012]. The equa-
tion for upslope averaging is:

Pi5
Pi1
XN

j51
Pj

� �

ðN11Þ (2)

in which P i is the upslope averaged value for the candidate cell (Pi),
XN

j51
Pj is the summation of values for

all cells upslope from Pi, and N is the total number of upslope cells. Upslope averaging enabled us to incor-
porate the average of each predictor variable to each pour point.

2.4. Statistical Modeling
We applied several statistical modeling approaches, ranging from conventional linear regression to more
complex ML algorithms, to objectify the process of identifying the models with the lowest error rates. Statis-
tical models tested included: linear regression (LM) [stats package in R v 2.12.2, R Development Core Team,
2011], boosted regression trees (BRT) [gbm package in R v2.12.2, Ridgeway, 2010], random forest (RF) [ran-
domForest package in R v2.12.2, Breiman, 2001a; Liaw and Wiener, 2002], multivariate adaptive regression
splines (MARS) [mda package in R v2.12.2, Hastie and Tibshirani, 2011], and geographically weighted regres-
sion (GWR) [Bivand et al., 2010]. Each statistical model has been used in previous landscape modeling
assessments [e.g., Prasad et al., 2006]. Each model is briefly described below, but see also supporting infor-
mation Text S2 for an in-depth discussion of the models used here.

The RF [Breiman, 2001a] and BRT [Friedman, 2002] models are ensemble versions of traditional regression
tree analyses, in which hundreds to thousands of individual regression trees are assembled, and final pre-
dictions are averaged across the individual trees. In RF, individual regression trees are built using a random
subset of the data points and of the predictor variables; resulting trees are not pruned. Model error rate is

Table 2. Proportional Overlap in the Kernel Density Functions for a Selection of Environmental Covariates Used in Modeling BCw Rates (n 5 140) Compared to Those Developed Using
4000 Randomly Select Catchmentsa

Variable Shortname Description Proportion Overlap

AB90GROW Mean number of days above 32.2�C during the local growing season (days30.02) 0.72
DDAYHMAX Mean penultimate maximum degrees 3 days heating> 18�C (days3�C) 0.63
TDAYMEAN Mean daytime temperature (�C) 0.62
PRECIPNG Mean precipitation sum during the local nongrowing season (mm30.01) 0.68
PDAYMAX Mean penultimate maximum days with precipitation (>0.3 cm) while >10�C (days) 0.90
DIFF95GR Mean 95th percentile of maximum diurnal surface temperature difference during the local growing season (�C30.02) 0.61
GPPGROW Mean gross primary production (GPP) integrated over the local growing season ((kg C/m2/8 days)3days30.0001) 0.80
GPPNG Mean gross primary production (GPP) integrated over the local nongrowing season ((kg C/m2/8 days)3days30.0001) 0.70
CON42 Percentage contributing area in conifer cover (% cover) 0.65
DECID41 Percentage contributing area in conifer (1) 1 mixed (0.5) cover (weighted by number in parentheses; % cover) 0.80
FAC Flow accumulation (number of pixels) 0.79
LITH_CAR Percentage contributing area in carbonaceous lithology (% cover) 0.81
LITH_SIL Percentage contributing area in siliceous lithology (% cover) 0.64
SOIL_DEP Mean soil depth (cm) 0.89
SOIL_CLAY Mean soil clay (%) 0.65
SOIL_PH Mean soil pH 0.70
OMNEW Mean organic matter content to 50 cm depth (kg3ha21) 0.83
NITRONEW Mean soil Kjeldahl nitrogen to 50 cm depth (kg3ha21) 0.66
S_WET Mean wet sulfur deposition (meq m23yr21) 0.87
S_DRY Mean dry sulfur deposition (meq m23yr21) 0.85

aHigh overlap indicates good concordance between the two distributions. See supporting information Text S1 and Table S1 for a complete description of the predictor variables
used in the analysis.
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assessed using out-of-bag (OOB) estimates, which are model predictions to the subset of data that was ran-
domly withheld at each model iteration.

BRT uses the entire set of predictors and a portion of the data to build each individual tree, and the algo-
rithm is sequential, with higher weights given to poorly classified observations and final predictions are
weighted means of each tree [De’ath, 2007; Elith et al., 2008]. MARS is a nonparametric extension of tradi-
tional linear regression models [Friedman, 1991], which consist of a series of piecewise linear functions that
allow for response nonlinearities. GWR is another extension of linear regression developed by Fotheringham
et al. [2002], which allows the parameters in a global regression model to be estimated locally at every point
by giving higher weights to geographically proximal data points.

2.5. Model Building and Validation
Multicollinearity in the initial set of predictor variables was reduced by retaining only those with Pearson’s
correlation scores <0.7, leading to a modeling set of 33 predictors. Among correlated variables, those with
the highest Pearson’s correlation with BCw were retained. Higher and lower correlation cutoff values were
tested, but none improved the final models. Many of the variables removed following the Pearson’s analysis
were temperature and precipitation or productivity variables that were highly correlated with others
retained in the model.

RF models were then run using the reduced predictor set for each iteration of the modeling with succes-
sively fewer predictor variables. After each model iteration, the highest scoring variables from the prior run
were reentered into each of the statistical models tested. RF models were used in variable selection to (1)
avoid potential bias associated with traditional stepwise reduction procedures [Whittingham et al., 2006],
and (2) allow for direct comparison of model performance (e.g., linear, nonlinear) with the same model
predictors.

Separate statistical models were built using the reduced set of 33 predictors. Model validation statistics,
including root mean squared error (RMSE) and R-squared, were calculated using both (1) predictions made
to the training data (hereafter, training error), and (2) 10-fold cross validation (hereafter, CV10-fold), which is a
method used to reveal model instability and overfitting when the sample size is not large enough to with-
hold a separate testing set [Cutler et al., 2007; Elith et al., 2008]. These statistics were calculated for each
model using sequentially fewer predictors (25, 20, 15, 10, 5, and 3) to help balance model parsimony with
prediction accuracy.

We also built ecoregion-specific models using the same methods, for the three main Omernik ecoregions
within the study area. Ecoregion models were developed to identify differences in BCw covariates, the suffi-
ciency of sampling by ecoregion, and model error rates that were related to the physical geography. Vari-
able reduction procedures proceeded as outlined above. All ecoregion-specific models included the same
number of predictors because (1) most ecoregions converged on the same number of predictor variables,
and (2) this allowed for model comparisons across ecoregions. Excluded from the ecoregional analysis were
the Northern Piedmont, Piedmont, and Western Allegheny Plateau ecoregions, which each included <5
BCw MAGIC sampling locations, and together comprised only 12.5% of the study area. Results of ecoregional
modeling were compared to those of McDonnell et al. [2012].

3. Results and Discussion

3.1. BCw Summary
MAGIC-modeled BCw rates ranged from 3.1 to 257.1 meq m22 yr21, with a median of 66.4 meq m22 yr21.
The estimated kernel density function for the data was somewhat right-skewed, with approximately 20% of
catchment-level weathering rates >100 meq m22 yr21 (Figure 2). Median elevation for study catchments
was 753 m (interquartile range (IQR): 585, 937 m), and MAGIC-modeled catchments were located at slightly
higher elevations, in slightly cooler and moister climates, with higher percent forest cover, higher percent
siliceous lithology and lower soil clay levels, in comparison with the rest of the study area. Table 2 describes
the proportional overlap in kernel density functions for the key environmental covariates. We found reason-
ably good concordance between the sampled locations and those present across the study region (mean
overlap 5 0.74). A high degree of overlap indicated high concordance between the distributions of model-
ing sites (n 5 140) and the broader landscape (n 5 4000 randomly selected watersheds).
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3.2. Model Calibration and
Validation
Machine learning algorithms (RF,
BRT, and MARS) consistently out-
performed linear regression and
GWR models based on model
error rates (Figure 3). Most mod-
els, with the exception of RF,
showed a steep increase in
model error as the number of
predictor variables decreased
(Figure 3). Here we note that all
models tested chose a similar set
of predictor variables, and there-
fore, the comparatively low error
rate for the RF model was due to
the performance of the algorithm
itself, and not due to the fact that
the RF model was used to iden-
tify the important subset of pre-
dictor variables. The RF model
was least influenced by the num-
ber of predictor variables
included in the model (Figure 3),
and showed the best overall per-

formance among those tested (Figure 4). Training model RMSE averaged 16.5 6 1.2 meq m22 yr21 across all
models (Figure 4). BRT and MARS models both showed inconsistent behavior; performance was high when
many predictor variables were included, but model error rates increased with fewer predictors (Figure 3).

LM and GWR models recorded the poorest overall mean training error rates when averaged across all mod-
els tested (28.8 6 3.9 and 25.7 6 4.7 meq m22 yr21 for LM and GWR, respectively; Figure 4). The bandwidth
(i.e., search distance to collect neighboring data points used to train the local GWR regression models)
selected by GWR model cross validation was �250 km, a distance that incorporated a high degree of envi-
ronmental heterogeneity, and likely precluded any increase in model performance over the LM model.

Cross-validation estimates of RMSE for all models ranged from �30 to 35 meq m22 yr21, and RF models
reported the lowest RMSE rates of the models tested. CV10-fold error rates of the LM and GWR models were

Figure 2. Kernel density plot for the distribution of base cation weathering rates calcu-
lated for the 140 catchments within the southern Appalachian study region. Gray vertical
lines indicate minimum, first quartile, median, second quartile, and maximum BCw values.

Figure 3. Training model error rates for five statistical models tested (LM 5 linear regression, GWR 5 geographically weighted regression,
MARS 5 multivariate adaptive regression splines, BRT 5 boosted regression trees, RF 5 random forest). RMSE is root mean squared error.
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<8% higher than those based on estimates from the training data set. CV10-fold error rates for the ML algo-
rithms increased from 16 to 22 meq m22 yr21 to 30 to 35 meq m22 yr21 (Table 3), indicating that some
model instability remained. CV10-fold also indicated that there was more evidence of model overfitting
among the ML algorithms compared to LM and GWR models, despite their superior overall performance.

Instability observed across all models was likely due to two common factors: (1) under-sampled BCw across
the geographic range of the predictors, and (2) inconsistencies in spatial accuracy of some remotely sensed
predictor variables. The under-sampling of BCw across the geographic range of the predictors was a by-
product of our ad hoc sampling design, which incorporated a large number of MAGIC-modeled catchment-
level data sets into a single global data set (see section 2.2). Catchments showing high BCw rates were poorly
represented in this global data set, leading to higher error rates in MAGIC model predictions of high BCw.

Inconsistency in spatial accuracy of some predictor variables was related to errors in the remotely sensed
data itself; a problem common to all spatial modeling applications [Elith and Leathwick, 2009; Guisan et al.,
2007]. For example, raster data in our study were resampled to 30 m resolution to establish a common map
resolution, but native resolutions ranged from 30 m to 1 km. Accuracy of some raster layers, such as lithol-
ogy, varied from state to state due to differences in mapping protocol. Such inconsistencies will surely influ-
ence the generalizability of model predictions to areas outside the training set. Upslope averaging of the
predictor variables reduced but could not eliminate the influence of data resolution on model behavior, as
each predictor was summarized to individual pour points across upslope catchments that were much larger
than the spatial resolution of the predictor variables.

3.3. Ecoregional Models
Individual ecoregion models did not improve overall model goodness-of-fit in comparison to a single global
model. RMSE training rates were lowest for Blue Ridge (BR) and Ridge and Valley (RV) ecoregions (�15 meq
m22 yr21) and highest for the Central Appalachians (CA; 24 meq m22 yr21), based on RF model predictions
(Table 4). The poor performance of the CA model is likely due to the low sample size compared to its environ-
mental variability. Moreover, the CA model included several predictor variables not associated with the other
ecoregional models, or the full model (Tables 4 and 5). For example,>70% of the predictor variables in the BR
and RV models matched those included in the full model (see below). But, for the CA model, only one variable
(wet S deposition) was included in the full model. Other variables, unique in the CA model alone, described
aspects of the vegetation (% cover), temperature, and precipitation regimes (Table 4). At face value, these
results might suggest that environmental drivers of BCw in the CA ecoregion may differ from those of other
ecoregions. However, sampling within this ecoregion was relatively low (21 sites), suggesting that more sam-
pling is needed to confirm the main environmental drivers of BCw rates in this ecoregion.

3.4. Model Selection
Based on the model validation statistics, we selected a single global RF model with 10 predictor variables,
built with 1000, three predictor variable regression trees (Table 3). This model was chosen due to its high

Figure 4. Boxplot summary of training model error rates averaged across all combinations of number of variables entered into each statis-
tical model. Each boxplot constructed using training RMSE from models built with successively fewer predictor variables for each regres-
sion model; see Figure 3. Abbreviations are the same as Figure 3.
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prediction accuracy and relatively few predictor
variables. The model had a training error rate of
16.1 meq m22 yr21, and an R2 of 0.86. The OOB
error rate was 31.4 meq m22 yr21

(R2
OOB 50:452; data not shown), similar to the

CV10-fold results (Table 3). The final RF model
performed best when the observed BCw was
<125 meq m22 yr21 (Figure 5). Model errors
were inflated for BCw estimates above this
value, presumably due to the scarcity of data
points in relatively high BCw environments. We
note that it is more important to accurately
identify areas of low BCw because the inability
to maintain acidic deposition levels below the

natural resupply rate of base cations is of greatest ecological and regulatory consequence. Hence, higher
error rates were more acceptable for relatively high BCw rates.

3.5. Biophysical Predictors of BCw

The selected predictor variables represented key aspects of the local climatic regime, atmospheric S inputs,
underlying lithology, and the soil characteristics of the upslope catchment. Low BCw rates were predicted
for catchments that received relatively low precipitation, in areas underlain by siliceous lithology, with low
soil clay, low Kjeldahl nitrogen, low organic matter content, and relatively high levels of canopy cover of
mixed coniferous and deciduous forest (Figure 6). Response functions from the RF models were generally
nonlinear over the range of the predictors, but distinct directional patterns were obvious for most variables
(Figure 6).

Low BCw was consistently associated with the presence of siliceous bedrock, which is characteristically low
in base cations [Duan et al., 2002; Posch et al., 2003]. Siliceous lithology was identified as the most influential
predictor variable in all global models. This result is consistent with independent geological sensitivity map-
ping by Sullivan et al. [2007]. The RF modeled response curve for the percent siliceous lithology was nonlin-
ear in the left tail. These relations suggested that BCw declined precipitously in catchments with �10%
siliceous lithology, and additional increases in the proportion of siliceous bedrock did not lead to signifi-
cantly greater declines in BCw rates (Figure 6).

Table 3. Model Validation Statistics Calculated for Linear Regression
(LM), Geographically Weighted Regression (GWR), Multivariate
Adaptive Regression Splines (MARS), Boosted Regression Trees (BRT)
and Random Forest (RF) Modelsa

Model R-Squared
RMSE

(meq m22 yr21)
CV10-fold

RMSE

LM 51.2 29.6 30.6 6 9.1
GWR 56.2 28.1 30.2 6 9.7
MARS 73.8 21.7 34.9 6 12.3
BRT 81.8 18.1 31.8 6 11.2
RF 85.6 16.1 29.5610.2

aRMSE is root mean squared error. The final column is the mean
(61 SD) RMSE resulting from 10-fold cross validation (CV10-fold). All
models included 10 predictor variables.

Table 4. Training Model Root Mean Squared Error (RMSE) and Variable Importance Measures for Ecoregional Models Used in Random Forest Models to Predict BCw Rates Across the
Southern Appalachian Study Regiona

Variable Description BR CA RV ALL

S_WET Wet sulfur deposition 7 (1) 7 (1) 2 (1) 2 (1)
LITH_SIL Percent siliceous lithology 4 (2) 1 (2) 1 (2)
PRECIPNG NGS precipitation 3 (1) 4 (1) 5 (1)
PDAYMAX Maximum days with precipitation (when >10�C) 1 (1) 4 (1)
OMNEW Amount of soil organic matter 6 (1) 5 (1) 3 (1)
SOIL_CLAY Percent soil clay 7 (1)
SOIL_PH Soil pH 2 (1)
NITRONEW Soil Kjeldahl nitrogen 3 (1) 6 (1)
NEWCTI Compound topographic index 6 (1)
LITH_FEL Percent felsic lithology 5 (2)
LSTGROW Number of GS days >5.6�C 2 (1)
PSUMMAX Maximum annual precipitation amount (when >10�C) 3 (1)
AB90GROW Number of days >32.2�C 4 (1)
GPPNG NGS gross primary productivity 6 (2)
RIGROW Growing season respiration index 7 (2)
CON42 Percent conifer forest cover 1 (2)
FOREST Percent forest cover 5 (2)
Sample size 79 21 38 140
RMSE 15.7 23.8 15.2 16.8

aNumbers indicate the ranking of each variable in the model by its variable importance score within the random forest model. The (1/2) signs indicate the approximate positive/
negative effect of the predictor on BCw. Ecoregions are: Blue Ridge Mountains (BR), Central Appalachian (CA), and Ridge and Valley (RV). See supporting information Table S1 for
descriptions of each predictor variable. Models were built using the top seven predictor variables, including the ALL ecoregion model, which is shown for comparison. A ranking of
one indicates the variable with the highest variable importance score, and seven the lowest.
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Organic matter, Kjeldahl nitrogen, and soil clay
content were positively correlated with BCw rate
(Figure 6). Predicted BCw rose sharply and line-
arly in catchments where soil organic matter
ranged from �500 to 750 kg ha21, however,
there was a negligible increase associated with
higher organic matter levels. A significant inter-
action was found between organic matter and
precipitation (Figure 7), with the lowest BCw rates
occurring in areas with low to moderate levels of
precipitation and low soil organic matter.
Organic matter may accelerate weathering rates,
thereby leading to the positive correlation
between OM levels and BCw [Drever and Stillings,

1997], but this relationship is complex and influenced by pH and parent material composition [Drever, 1994;
Kump et al., 2000]. For Kjeldahl N levels, BCw increased slowly and linearly in catchments with �2500–5000
kg ha21, but it rose sharply beyond this point. Similarly, the percentage of soil clay had little influence on
predicted BCw in catchments with <15% soil clay, but BCw rose sharply in catchments with soil clay ranging
from 15% to 23%.

Besides soils and lithology, climate variables reflecting temperature and precipitation regimes are known to
influence weathering rates [Johnson et al., 1994; Kump et al., 2000; Peltier, 1950], and several climate varia-
bles were retained in the models. A positive correlation was identified between BCw, precipitation [total
consecutive days with precipitation (PDAYMAX) and nongrowing season accumulation (PRECIPNG)], and
temperature (mean 95th percentile of maximum diurnal surface temperature difference during the local
nongrowing season (DIFF95NG); Figure 6). Large increases in BCw rates were predicted for catchments with
>90 days with precipitation. BCw also increased linearly with the amount of precipitation falling in the non-
growing season. Precipitation likely influences rates of BC transport within the soil solution and alters chem-
ical concentrations in soil water over time [Drever, 1994]. Large linear increases in BCw were also predicted
for catchments with >8�C maximum diurnal surface temperature difference during the local nongrowing
season. Inclusion of the variable DIFF95NG in the model (Figure 6) likely indicated that large diurnal differ-
ences in surface temperatures may be related to enhanced physical weathering by freeze-thaw cycles [Pelt-
ier, 1950]. Temperature also influences chemical reaction and respiration rates in soils and overall

weathering rates [Lloyd and Tay-
lor, 1994; Winkler et al., 1996;
Wright et al., 2006].

RF model interactions between
precipitation (PDAYMAX), sili-
ceous lithology (LITH_SIL), and
organic matter (OMNEW) indi-
cated that high levels of precipi-
tation were consistently related
to high BCw rates, regardless of
soil or lithology (Figure 7). This
suggests that BC inputs and/or
enhanced weathering associated
with higher precipitation may
counteract low BCw rates in
inherently low-BC soil minerals.
Similarly, interactions were iden-
tified between wet S deposition,
precipitation, and siliceous lithol-
ogy, which indicated that high
wet S deposition can either exac-
erbate the influence of

Table 5. Root Mean Squared Error (RMSE) Rates (meq m22 yr21)
for Random Forest Models Built With Seven Predictor Variables for
Each Individual Ecoregion and All Ecoregions Combineda

Testing Data

Training Data

Blue
Ridge

Central
Appalachian

Ridge
and Valley All

Blue Ridge 15.7 46.5 31.5 14.9
Central Appalachian 54.1 23.8 51.5 26.4
Ridge and Valley 44.1 46.9 15.2 13.9
All 33.2 44.4 32.0 16.8

aEach of the resulting four models was then tested in turn on
each ecoregion and all ecoregions combined. RMSE scores on the
diagonal represent estimates of model error based on estimates
made on the training data for that ecoregion (Table 4).

Figure 5. Final random forest model predictions of BCw plotted against observed (MAGIC
calibrated) BCw. Black circles indicate out-of-bag predictions (similar to cross validation,
but see text) and black triangles indicate predictions made on the original training set of
data.
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precipitation or otherwise increase BCw in BC-poor catchments (Figure 7). Taken together our results indi-
cate that climate and the level of S deposition may moderate BCw rates by influencing soil process rates
and influxes of atmospherically deposited strong acids.

The importance of identifying climatic correlates of BCw with our models has implications for future moni-
toring and continued modeling of stream water acid-base status [Benčokov�a et al., 2011; Evans, 2005; Wright
et al., 2006]. Climate projections for the southern Appalachian Mountain region suggest both warmer and
drier (south) and warmer and wetter (north) futures (year 2100 projections) [Hayhoe et al., 2008; Karl et al.,
2009; Solomon et al., 2007]. BCw modeling results reported here indicate that areas with relatively low pre-
cipitation and warm temperatures display relatively low BCw rates. Drier conditions would tend to decrease
wet S deposition and leaching losses of BC from soils. Rising temperatures in general should lead to higher
weathering rates [Wright et al., 2006]. However, our model indicates that temperature alone (TDAYMEAN;
data not shown) has a negative influence on BCw rates, and large differences in diurnal surface

Figure 6. Response curves showing relations between predicted BCw and individual predictor variables included in the final RF model. Black tick marks (rug plot) on the x axis indicate
decile classes for the predictor variables. The y axis indicates the relative effect of the predictor on BCw. In general, higher y axis values indicate higher predicted BCw. Numbers in paren-
theses indicate the variable importance measure (i.e., mean decrease in squared error) scaled to sum to 100% over all variables included in the model. Variables are: LITH_SIL, percent of
catchment in siliceous lithologies (% cover); S_WET, amount of wet sulfur deposition (meq m22 yr21); OMNEW, mean soil organic matter (kg ha21); PDAYMAX, mean penultimate maxi-
mum days with precipitation (days); PRECIPNG, amount of precipitation in the nongrowing season (mm 0.01); CONMXD, percent of catchment in mixed-conifer (%); S_DRY, amount of
dry sulfur deposition (meq m22 yr21); DIFF95NG, Mean 95th percentile of maximum diurnal surface temperature difference during the local nongrowing season (�C); NITRONEW, mean
soil Kjeldahl nitrogen to 50 cm depth (kg ha21); SOIL_CLAY, mean percent clay of catchment soils (%). All variables are reported in their native units (see Table S1).
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temperatures lead to higher BCw rates. Likely further sampling is needed across heterogeneous environ-
mental conditions to better understand causal connections between climatic driving variables and corre-
sponding BCw rates.

Ecosystem responses to long-term climatic change are
largely unknown due to the complexity of interactions
among the covariates. Changes in temperature, precipita-
tion, and insolation regimes, and accompanying changes in
site productivity, vegetative communities, plant cover, car-
bon and nutrient uptake by plants, and influence of distur-
bances may all affect BCw within the study domain. Thus, it
will be important to continue to monitor and model BCw

and its relations with covariates. Likewise, new combina-
tions or changes in the importance of predictor variables
will likely necessitate continued stream water chemistry

Figure 7. Surface plots displaying interactions between two continuous predictor variables used in modeling BCw rates (meq m22 yr21).
Top interactions were calculated for final RF models using methods similar to those of Elith et al. [2008] for gradient boosted regression
trees. Areas with light shading indicate regions in data space where sample sizes were relatively high. Darker areas indicate regions in data
space associated with few data, where model estimates should be interpreted with caution. Variables are: S_WET (meq m22 yr21), amount
of wet sulfur deposition; LITH_SIL, percent of catchment in siliceous lithologies (%); PDAYMAX, mean penultimate maximum days with pre-
cipitation (days); and OMNEW, mean soil organic matter (kg ha21 0.01). All variables are reported in their native units (see Table S1).

Table 6. Comparisons Among Random Forest (RF)
and Linear Regression (LM) Model Predictions Across
the Study Regiona

BCw Classes RF LMb

<20 0.0 2.2
20–50 4.0 4.8
50–100 67.6 47.7
100–150 26.8 42.1
>150 1.6 3.2
Sum 100.0 100.0

aValues represent the percentage of 30 m grid
within predefined BCw classes.

bSee supporting information Figure S2 for predic-
tions from this mode.
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sampling that evenly samples the shifting variability of conditions represented by the predictor variables.

Vegetation influences BCw through physical processes that fracture bedrock, and chemical processes that
control the deposition of organic matter, uptake of water and nutrients, and release of carbon dioxide into
soil water [Drever, 1994; Hultberg, 1985; Miles, 1986; Wright et al., 2006]. Coniferous forests, in general,
develop humus layers high in organic acids, which can increase BC leaching, lower soil pH, and increase
chemical weathering [Augusto et al., 2002; Hornung, 1985; Johnson et al., 1994], which in turn may influence
BCw rates. Accordingly, our models identified a negative and nonlinear relationship between the amount of
mixed deciduous-coniferous forest cover and the predicted BCw rate (Figure 6). The relation indicated that
BCw rates fell sharply for catchments with >30% coverage of mixed forest. A similar relationship was found
for pure conifer cover types.

Sulfur deposition was positively correlated with BCw, and wet S deposition was included as a main predictor
variable in the global model, and in all ecoregion models. However, the influence of S deposition on BCw

remains unclear [Johnson et al., 1994]. An interaction between wet S deposition and PDAYMAX suggested
that S deposition can confound a positive correlation between precipitation and BCw, particularly at high
levels of S deposition.

Sulfur deposition levels are strongly influenced by orography [Byun and Schere, 2006]; hence, this variable
may ‘‘code’’ for several topographic and climatic variables, thereby contributing to a high variable impor-
tance score in the models. To better understand these relations, we ran additional RF models where S depo-
sition was excluded from the predictor set. RF model error rates increased <10% by eliminating S
deposition, and several additional predictor variables were substituted for S deposition. These included
average catchment soil pH (positive correlation with BCw), nongrowing season solar insolation (negative
correlation), and the fraction of photosynthetically active radiation (FPAR) absorbed by vegetation during
the nongrowing season (negative correlation). Low predicted BCw rates were associated with high solar
insolation, low catchment soil pH, and high nongrowing season FPAR. The inclusion of FPAR likely differenti-
ated coniferous from deciduous forests, and high from low elevations. The negative relationship between
solar insolation and BCw rates suggested that north facing and less exposed catchments may benefit from
cool and moist conditions, which may moderate otherwise warm and dry climatic influences. Together,
these variables represent climatic processes that occur at finer scales than S deposition.

Regardless of the amount of S deposition and its lagged effects on streams, this information may be useful
to managers when considering mitigation measures. To illustrate, we plotted RF and LM predicted BCw

maps, where S deposition was included and excluded from the models (Figures S1 and S2, respectively).
From these maps, it is apparent that there are fairly large differences in fine-scaled patterns of predicted
BCw driven by the inclusion or exclusion of deposited S. These results suggest that BCw rates may vary con-
siderably across small spatial extents due to edaphic, topographic, and orographic influences.

3.6. Summary of Model Predictions
Models predicted that BCw rates ranged between 25.2 and 174.2 meq m22 yr21, and that 72% of the south-
ern Appalachian Mountain region displayed predicted rates <100 meq m22 yr21 (Table 6). RF model predic-
tions underestimated BCw rate at the upper end of the distribution (>100 meq m22 yr21), as evidenced by
higher MAGIC model simulated values at many locations (Figure 5). Areas with high BCw were generally
concentrated in the northwest portion of the study area, where high levels of precipitation during the non-
growing season likely contribute to relatively high weathering rates (Figure 8). Strongly patterned siliceous
lithologies were apparent throughout the RV ecoregion, where some of the lowest BCw rates were also
found on NE/SW trending, parallel, sandstone ridges (Figure 8).

Model uncertainty was also highest in the northwestern portion of our study area. Locations showing the
highest uncertainty were associated with high predicted BCw rates, low MAGIC sampling density, and loca-
tion within the CA ecoregion (Figure 8). This ecoregion model also displayed the highest error rate and
included a unique set of predictors, in comparison with other ecoregion models. This observation was con-
sistent with the results of McDonnell et al. [2012]; however, model RMSE rates reported here were 50%
lower. As expected, model uncertainty was lowest for areas near the locations of MAGIC-modeled catch-
ments, and in areas dominated by siliceous lithologies (e.g., NE/SW trending sandstone ridges in the Ridge
and Valley ecoregion of Virginia).
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Our assessment builds on previous work completed by McDonnell et al. [2012], which also used MAGIC
model estimates to quantify site-specific BCw rates. McDonnell et al. [2012] used three separate ecore-
gional models to predict BCw to their study domain (�70% of our study domain). The authors concluded
that less than one-third of their study region displayed BCw rates <100 meq m22 yr21, compared to our
finding of more than three-quarters of the study region (Table 6). Furthermore, the authors reported
nearly one-quarter of the landscape with BCw rates >200 meq m22 yr21, compared to our finding of
<2%. There are several likely explanations for the observed differences. The McDonnell et al. [2012] study
used (1) ecoregion-specific models to predict to the study region, (2) linear models with stepwise variable
selection, (3) 33% fewer data points (92 versus 140) in model training, and (4) a more restricted geo-
graphic extent.

As a direct comparison, we developed a LM with the 10 variables chosen by the RF model (Figure 6). Predic-
tions from the LM were more evenly distributed among BCw classes (Table 6), but were still concentrated in
the 50–100 and 100–150 meq m22 yr21 classes. This suggests that our model predictions were fairly robust
to the choice of statistical model used.

4. Conclusions

Correlative landscape modeling was used to identify relationships between environmental predictors and
individual catchment-level BCw rates across the southern Appalachian Mountain region. Results from this
analysis suggest that several broad- to fine-scale cofactors are related to chemical weathering rates, includ-
ing precipitation and temperature regimes, lithology, soil properties and vegetation, and interactions
among these variables. ML algorithms outperformed traditional linear regression analyses. In particular, RF

Figure 8. (left) Continuous surface of predicted BCw and (right) standard deviation of predictions from the final model. Standard deviations were calculated from the predictions made
from the 1000 individual regression trees within the RF algorithm.
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was least influenced by model parameterization and number of predictor variables included in the model,
and it helped uncover several nonlinear relationships among predictors and BCw rates, as well as important
interactions among predictors. Furthermore, when model parsimony and predictive ability were considered,
the RF model outperformed all other models.

Predictions from the RF model indicate that the lowest BCw rates generally occur in dry areas underlain by
siliceous lithologies that experience high levels of S deposition, and in small catchments that contain low
levels of soil pH, N, and organic matter. Model predictions indicated that more than three-quarters of the
study region displayed BCw rates <100 meq m22 yr21 and suggested that weathering rates across the
region were inherently low. To improve model error rates and accuracy, MAGIC model estimates should be
made at additional stream water sampling locations throughout the study area, and particularly in currently
under-sampled geographic areas (areas showing high SD in Figure 8). Further model enhancements based
on sample augmentation may increase our understanding of broad and fine-scale biophysical drivers that
are not directly modeled in the process-based calculations of BCw, and enable more refined predictions of
weathering rates across the landscape.
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Benčokov�a, A., J. Hru�ska, and P. Kr�am (2011), Modeling anticipated climate change impact on biogeochemical cycles of an acidified head-

water catchment, Appl. Geochem., 26, supplement, S6–S8.
Berk, R. A. (2008), Statistical Learning From a Regression Perspective, Springer, New York.
Bivand, R., D. Yu, T. Nakaya, and M. Garcia-Lopez (2010), spgwr: Geographically weighted regression, R package version 0.6-19. [Available

at: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053629.]
Breiman, L. (2001a), Random forests, Mach. Learn., 45(1), 5–32.
Breiman, L. (2001b), Statistical modeling: The two cultures (with comments and a rejoinder by the author), Stat. Sci., 16(3), 199–231.
Byun, D., and K. L. Schere (2006), Review of the governing equations, computational algorithms, and other components of the models-3

Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59(2), 51–77.
Cosby, B., G. Hornberger, J. Galloway, and R. Wright (1985), Modeling the effects of acid deposition: Assessment of a lumped parameter

model of soil water and streamwater chemistry, Water Resour. Res., 21(1), 51–63.
Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson, and J. J. Lawler (2007), Random forests for classification in ecology,

Ecology, 88(11), 2783–2792.
De’ath, G. (2007), Boosted trees for ecological modeling and prediction, Ecology, 88(1), 243–251.
Drever, J. I. (1994), The effect of land plants on weathering rates of silicate minerals, Geochim. Cosmochim. Acta, 58(10), 2325–2332.
Drever, J. I., and L. L. Stillings (1997), The role of organic acids in mineral weathering, Colloids Surf. A, 120(1–3), 167–181.
Driscoll, C. T., G. B. Lawrence, A. J. Bulger, T. J. Butler, C. S. Cronan, C. Eagar, K. F. Lambert, G. E. Likens, J. L. Stoddard, and K. C. Weathers

(2001), Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies, Bio-
Science, 51(3), 180–198.

Duan, L., J. Hao, S. Xie, Z. Zhou, and X. Ye (2002), Determining weathering rates of soils in China, Geoderma, 110(3–4), 205–225.
Elith, J., and J. R. Leathwick (2009), Species distribution models: Ecological explanation and prediction across space and time, Annu. Rev.

Ecol. Evol. Syst., 40, 677–697.
Elith, J., J. Leathwick, and T. Hastie (2008), A working guide to boosted regression trees, J. Anim. Ecol., 77(4), 802–813.
Evans, C. D. (2005), Modelling the effects of climate change on an acidic upland stream, Biogeochemistry, 74(1), 21–46.
Fotheringham, A. S., C. Brunsdon, and M. Charlton (2002), Geographically Weighted Regression: The Analysis of Spatially Varying Relationships,

John Wiley, New York.
Friedman, J. H. (1991), Multivariate adaptive regression splines, Ann. Stat., 19(1), 1–67.
Friedman, J. H. (2002), Stochastic gradient boosting, Comput. Stat. Data Anal., 38(4), 367–378.
Gesch, D., M. Oimoen, S. Greenlee, C. Nelson, M. Steuck, and D. Tyler (2002), The national elevation dataset, Photogramm. Eng. Remote

Sens., 68(1), 5–11.
Gesch, D. B. (2007), The national elevation dataset, in Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd ed.,

edited by D. Maune, pp. 99–118, Am. Soc. for Photogramm. and Remote Sens., Bethesda, Md.
Greaver, T. L., T. J. Sullivan, J. D. Herrick, M. C. Barber, J. S. Baron, B. J. Cosby, M. E. Deerhake, R. L. Dennis, J. J. B. Dubois, and C. L. Goodale

(2012), Ecological effects of nitrogen and sulfur air pollution in the US: What do we know?, Frontiers Ecol. Environ., 10(7), 365–372.
Grimm, J. W., and J. A. Lynch (2004), Enhanced wet deposition estimates using modeled precipitation inputs, Environ. Monit. Assess., 90(1),

243–268.
Guisan, A., C. H. Graham, J. Elith, and F. Huettmann (2007), Sensitivity of predictive species distribution models to change in grain size,

Diversity Distrib., 13(3), 332–340.
Hall, J., B. Reynolds, S. Langan, M. Hornung, F. Kennedy, and J. Aherne (2001), Investigating the uncertainties in the Simple Mass Balance

Equation for acidity critical loads for terrestrial ecosystems in the United Kingdom, Water Air Soil Pollut., 1(1), 43–56.
Hargrove, W., and F. Hoffman (2004), A flux atlas for representativeness and statistical extrapolation of the Ameriflux network, ONRL Tech.

Memo. ORNL-TM-2004/112, pp. 1–152, Oak Ridge Natl. Lab., Oak Ridge, Tenn.
Hastie, T., and R. Tibshirani (2011), mda: Mixture and flexible discriminant analysis, R package version 0.4-2. [Available at: http://CRAN.R-

project.org/package5mda.].
Hastie, T., R. Tibshirani, J. Friedman, and J. Franklin (2005), The elements of statistical learning: Data mining, inference and prediction,

Math. Intel., 27(2), 83–85.
Hayhoe, K., C. Wake, B. Anderson, X. Z. Liang, E. Maurer, J. Zhu, J. Bradbury, A. DeGaetano, A. M. Stoner, and D. Wuebbles (2008), Regional

climate change projections for the Northeast USA, Mitigation Adaption Strategies Global Change, 13(5), 425–436.

Acknowledgments
The authors would like to thank the
two anonymous reviewers who
contributed valuable input into the
revisions of this manuscript. We would
also like to acknowledge the U.S. EPA
for providing the funding for this
project.

Water Resources Research 10.1002/2013WR014203

POVAK ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2812

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053629
http://CRAN.R-project.org/package=mda
http://CRAN.R-project.org/package=mda
http://CRAN.R-project.org/package=mda


Hemond, H. F. (1990), Acid neutralizing capacity, alkalinity, and acid-base status of natural waters containing organic acids, Environ. Sci.
Technol., 24(10), 1486–1489.

Henriksen, A., and M. Posch (2001), Steady-state models for calculating critical loads of acidity for surface waters, Water Air Soil Pollut., 1(1),
375–398.

Henriksen, A., M. Posch, H. Hultberg, and L. Lien (1995), Critical loads of acidity for surface waters: Can the ANC limit be considered vari-
able?, Water Air Soil Pollut., 85(4), 2419–2424.

Henriksen, A., P. Dillon, and J. Aherne (2002), Critical loads of acidity for surface waters in south-central Ontario, Canada: Regional applica-
tion of the Steady-State Water Chemistry (SSWC) model, Can J. Fish. Aquat. Sci., 59(8), 1287–1295.

Hodson, M., and S. Langan (1999), Considerations of uncertainty in setting critical loads of acidity of soils: The role of weathering rate
determination, Environ. Pollut., 106(1), 73–81.

Homer, C., J. Dewitz, J. Fry, M. Coan, N. Hossain, C. Larson, N. Herold, A. McKerrow, J. N. VanDriel, and J. Wickham (2007), Completion of the
2001 National Land Cover Database for the conterminous United States, Photogramm. Eng. Remote Sens., 73(4), 337–341.

Hornung, M. (1985), Acidification of soils by trees and forests, Soil Use Manage., 1(1), 24–27.
Hultberg, H. (1985), Budgets of base cations, chloride, nitrogen and sulphur in the acid Lake Gårdsj€on catchment, SW Sweden, Ecol. Bull.,

37, 133–157.
Johnson, C. E., M. I. Litaor, M. F. Billett, and O. P. Bricker (1994), Chemical weathering in small catchments: Climatic and anthropogenic influ-

ences, in Biogeochemistry of Small Catchments: A Tool for Environmental Research, edited by B. Moldan and J. Cerny, chap. 14, pp. 323–
341, John Wiley, Hoboken, N. J.

Karl, T. R., J. M. Melillo, and T. C. Peterson (2009), Global Climate Change Impacts in the United States, Cambridge Univ. Press, Cambridge, U. K.
Kump, L. R., S. L. Brantley, and M. A. Arthur (2000), Chemical weathering, atmospheric CO2, and climate, Annu. Rev. Earth Planet. Sci., 28(1),

611–667.
Li, H., and S. G. McNulty (2007), Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity, Environ. Pollut.,

149(3), 315–326.
Liaw, A., and M. Wiener (2002), Classification and regression by randomForest, R News, 2(3), 18–22.
Lloyd, J., and J. A. Taylor (1994), On the temperature dependence of soil respiration, Funct. Ecol., 8(3), 315–323.
McDonnell, T., B. Cosby, T. Sullivan, S. McNulty, and E. Cohen (2010), Comparison among model estimates of critical loads of acidic deposi-

tion using different sources and scales of input data, Environ. Pollut., 158, 2934–2939.
McDonnell, T. C., B. J. Cosby, and T. J. Sullivan (2012), Regionalization of soil base cation weathering for evaluating stream water acidifica-

tion in the Appalachian Mountains, USA, Environ. Pollut., 162, 338–344.
Miles, J. (1986), What are the effects of trees on soils?, in Trees and Wildlife in the Scottish Uplands, edited by D. Jenkins, ITE Symposium No. 17,

pp. 55–62. Huntingdon, U. K.
National Acid Precipitation Assessment Program (NAPAP) (1991), 1990 Integrated Assessment Report, Off. of the Dir., Gov. Print. Off., Wash-

ington, D. C.
Nilsson, J., and P. Grennfelt (1988), Critical Loads for Sulfur and Nitrogen, p. 31, Nordic Counc. of Minist., Copenhagen.
NRCS Soil Survey Staff (2010a), U.S. General Soil Map State Soil Geographic (STATSGO2) database. [Available at: http://soildatamart.nrcs.

usda.gov, last accessed 6 Oct 2011.].
NRCS Soil Survey Staff (2010b), Soil Survey Geographic (SSURGO) database for southern Appalachian Region. [Available at: http://soildata-

mart.nrcs.usda.gov, last accessed 6 Oct 2011.].
Olden, J. D., J. J. Lawler, and N. Poff (2008), Machine learning methods without tears: A primer for ecologists, Q. Rev. Biol., 83(2), 171–194.
Omernik, J. M. (1987), Ecoregions of the conterminous United States, Ann. Assoc. Am. Geogr., 77(1), 118–125.
Ouimet, R., and L. Duchesne (2005), Base cation mineral weathering and total release rates from soils in three calibrated forest watersheds

on the Canadian Boreal Shield, Can. J. Soil Sci., 85(2), 245–260.
Peltier, L. C. (1950), The geographic cycle in periglacial regions as it is related to climatic geomorphology, Ann. Assoc. Am. Geogr., 40(3),

214–236.
Posch, M., J. Hettelingh, and J. Slootweg (2003), Manual for Dynamic Modelling of Soil Response to Atmospheric Deposition Report, 71 pp.,

Coord. Cent. for Eff., Bilthoven, Netherlands.
Povak, N. A., P. F. Hessburg, K. M. Reynolds, T. J. Sullivan, T. C. McDonnell, and R. B. Salter (2013), Machine learning and hurdle models

for improving regional predictions of stream water acid neutralizing capacity, Water Resour. Res., 49, 3531–3546, doi:10.1002/
wrcr.20308.

Prasad, A. M., L. R. Iverson, and A. Liaw (2006), Newer classification and regression tree techniques: Bagging and random forests for ecolog-
ical prediction, Ecosystems, 9(2), 181–199.

R Development Core Team (2011), R: A Language and Environment for Statistical Computing, R Found. for Stat. Comput., Vienna, ISBN: 3-
900051-07-0. [Available at: http://www.R-project.org/.].

Reynolds, K. M., P. F. Hessburg, T. J. Sullivan, N. A. Povak, T. C. McDonnell, B. J. Cosby, and W. Jackson (2012), Spatial decision support for
assessing impacts of atmospheric sulfur deposition on aquatic ecosystems in the southern Appalachian Region, paper presented at the
45th annual Hawaii International Conference on System Sciences, IEEE, Wailea, Maui, Hawaii, 4–7 Jan.

Ridgeway, G. (2010), gbm: Generalized Boosted Regression Models, R package version 2.0-8. [Available at: http://CRAN.R-project.org/
package5gbm.].

Skeffington, R. (2006), Quantifying uncertainty in critical loads: Aliterature review, Water Air Soil Pollut., 169(1), 3–24.
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. Miller (2007), Climate Change 2007: The Physical Science

Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
Univ. Press, Cambridge, U. K.

Sullivan, T., B. Cosby, K. Tonnessen, and D. Clow (2005), Surface water acidification responses and critical loads of sulfur and nitrogen depo-
sition in Loch Vale watershed, Colorado, Water Resour. Res, 41, W01021, doi:10.1029/2004WR003414.

Sullivan, T., J. Webb, K. Snyder, A. Herlihy, and B. Cosby (2007), Spatial distribution of acid-sensitive and acid-impacted streams in relation
to watershed features in the southern Appalachian Mountains, Water Air Soil Pollut., 182(1), 57–71.

Sullivan, T. J., B. J. Cosby, J. R. Webb, R. L. Dennis, A. J. Bulger, and F. A. Deviney (2008), Streamwater acid-base chemistry and critical loads
of atmospheric sulfur deposition in Shenandoah National Park, Virginia, Environ. Monit. Assess., 137(1), 85–99.

Sverdrup, H., and P. Warfvinge (1993), Calculating field weathering rates using a mechanistic geochemical model PROFILE, Appl. Geochem.,
8(3), 273–283.

Water Resources Research 10.1002/2013WR014203

POVAK ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2813

http://soildatamart.nrcs.usda.gov
http://soildatamart.nrcs.usda.gov
http://soildatamart.nrcs.usda.gov
http://soildatamart.nrcs.usda.gov
http://www.R-project.org/
http://CRAN.R-project.org/package=gbm
http://CRAN.R-project.org/package=gbm
http://CRAN.R-project.org/package=gbm


United Nations Economic Commission for Europe (UNECE) (2004), Manual on Methodologies and Criteria for Modelling and Mapping Critical
Loads and Levels and Air Pollution Effects, Risks and Trends, ICP Modelling and Mapping, UNECE Convention on Long-range Transboundary
Air Pollution, p. 254, Umweltbundesamt, Dessau, Germany.

United States Environmental Protection Agency (US EPA) (2008), US EPA’s Report on the Environment (Final Report), EPA/600/R-07/045F
(NTIS PB2008-112484), U. S. Environmental Protection Agency, Washington, D. C.

United States Environmental Protection Agency (US EPA) (2009), Risk and exposure assessment for review of the secondary National Ambient
Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur, Cent. for Environ. Assess., Off. of Res. and Dev., Res. Triangle Park, N. C.

Warfvinge, P., and H. Sverdrup (1992), Calculating critical loads of acid deposition with PROFILE—A steady-state soil chemistry model,
Water Air Soil Pollut., 63(1), 119–143.

Whittingham, M. J., P. A. Stephens, R. B. Bradbury, and R. P. Freckleton (2006), Why do we still use stepwise modelling in ecology and
behaviour?, J. Anim. Ecol., 75(5), 1182–1189.

Winkler, J. P., R. S. Cherry, and W. H. Schlesinger (1996), The Q10 relationship of microbial respiration in a temperate forest soil, Soil Biol. Bio-
chem., 28(8), 1067–1072.

Wright, R. F., et al. (2006), Modelling the effect of climate change on recovery of acidified freshwaters: Relative sensitivity of individual proc-
esses in the MAGIC model, Sci. Total Environ., 365(1–3), 154–166.

Water Resources Research 10.1002/2013WR014203

POVAK ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2814


	l
	l
	l
	l
	l
	l
	l
	l
	l

