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For many decades remotely sensed data have been used as a source of auxiliary information when conducting
regional or national surveys of forest resources. In the past decade, airborne scanning LiDAR (Light Detection
and Ranging) has emerged as a promising tool for sample surveys aimed at improving estimation of above-
ground forest biomass. This technology is now employed routinely in forest management inventories of some
Nordic countries, and there is eager anticipation for its application to assess changes in standing biomass in
vast tropical regions of the globe in concert with the UN REDD program to limit C emissions. In the rapidly
expanding literature on LiDAR-assisted biomass estimation the assessment of the uncertainty of estimation
varies widely, ranging from statistically rigorous to ad hoc. In many instances, too, there appears to be no recog-
nition of different bases of statistical inference which bear importantly on uncertainty estimation. Statistically
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rigorous assessment of uncertainty for four large LiDAR-assisted surveys is expounded.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Inventories of forest resources on regional or national scales have
evolved considerably over the past century, especially in developed na-
tions of western Europe, North America, Australia and New Zealand.
These inventories are applications of sampling methodology, a branch
of statistical science wherein the precepts of probabilistic selection,
and the consequent inference to population features based on the
sample, were beginning to coalesce and become formalized in the
early years of the twentieth century.

Advances in forest inventory methods have reflected both the
changing paradigms in statistical sampling as well advances in technol-
ogy. For many decades remotely sensed data have featured prominently
as a source of auxiliary information to increase the efficiency of sam-
pling as well as to increase the precision of estimates of aggregate forest
resources. Comparatively recently, airborne Light Detection and Rang-
ing (LiDAR) has emerged as a prominent remote sensing technology
to enable a three-dimensional image of forest canopy height. Using
tools of statistics, this point cloud of laser height measurements can be
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linked by statistical regression to measurements of forest biomass
from a ground sample of forested plots. The resulting model then can
be applied to forest areas where field observations of biomass are
lacking. LiDAR-assisted forest aboveground biomass (AGB) estimation
is thus a prominent example of model-assisted survey sampling, sensu
lato, whose precepts in a design-based framework are formalized in
Sdrndal, Swensson, and Wretman (1992).

2. Statistical inference, sampling, and sampling error

One goal of survey sampling is to infer something about the popula-
tion that has been sampled. Often it is to estimate the aggregate quanti-
ty of some characteristic of the population, such as the AGB or C of a
forested region. The assessment of sampling error and its expression
in the form of a standard error of estimation depends on whether the
chosen paradigm of statistical inference is based on an underlying
statistical model, or, instead, is based on the sampling design which
was employed to acquire the sample data. The differences between
these two paradigms of statistical inference have been explicated,
inter alia, by Sarndal (1978); Gregoire (1998), and McRoberts, Naesset,
and Gobakken (2013b). One mode of inference is not necessarily better
or worse than the other — their respective advantages and disadvan-
tages simply are different. For either mode of inference, the variance
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of an estimator may be derived using universally accepted tools of
mathematical statistics. The estimation of this variance, likewise, may
proceed according to precepts of model-based or design-based infer-
ence. The mode of inference affects the statistical properties of estima-
tors. For example, an estimator of total AGB may be model-unbiased
but design-biased, and vice versa. Therefore it is important that the
mode of inference be stated explicitly, as in Gregoire et al. (2011),
Stdhl et al. (2011) and McRoberts et al. (2013b). Regrettably, much of
the literature which reports on LiDAR-assisted sampling and estimation
lacks an explicit accounting of the mode of inference, thereby leaving
the reader to guess at it, and consequently to speculate on the validity
of the derived sampling error.

A probability-based sample is essential for design-based inference,
but not for model-based inference. To the extent that a probability-
based sample may be approximately balanced in the sense of Royall
and Herson (1973), it may be a robust safeguard against a poorly
specified model in a model-based framework. An exactly balanced
sample is one in which the sample moments of a target or auxiliary
variable match the population moments. Model-assisted sampling is a
frequently encountered term in the present-day literature on survey
sampling generally and forest inventory in particular, and more recent-
ly, LiDAR-assisted sampling in the remote sensing literature. The term
implies the use of a model to increase the precision of estimation, how-
ever variance estimation remains design-based. Following a probability
sample from the population of interest (POI), the generalized regression
estimator, cf. Sdrndal et al. (1992), is an asymptotically design-unbiased,
model-assisted estimator of the population total.

The variance of an estimator in a design-based framework for infer-
ence is the probability-weighted squared deviation of the estimate from
its expected value, summed over all samples that may be extracted for a
given design for the population of interest. In contrast, the variance of an
estimator in the model-based framework is based on the single sample
obtained, regardless of the design used to select the sample. Because of
this essential difference, spatial correlation among units in the selected
sample is an irrelevant concern in a design-based framework (Gregoire,
1998), but may be a relevant concern in a model-based framework
(McRoberts et al., 2013b). With model-assisted, generalized regression
estimation, the residual variance around the regression line or surface
will impact the variance of the estimate of AGB, yet these are two
distinct variances. Ultimately we are interested essentially in the latter
only, for it is this variance that informs us of how reliable our overall
estimate of AGB is. A confusion on this point is evident in the literature
on LiDAR-assisted sampling for AGB estimation (Mascaro, Detto, Asner,
and Muller-Landau (2011); Saatchi et al. (2011); Asner et al. (2013)),
where only the former is assessed. While it is beyond the intended
scope of this article to do so, the precepts underlying design-based
inference are presented in Sarndal et al. (1992), whereas those of
model-based inference may be found in Chambers and Clark (2012).
Both Chambers (2011) and Magnussen (2015) provide useful over-
views and comparisons among inferential paradigms.

Many natural resource inventories, whether LiDAR-assisted or not,
rely on a systematic placement of field plots. A design-unbiased estima-
tor of sampling variance following a systematic sampling design does
not exist. In its absence, approximations to the variance are commonly
used, in the hope that estimators derived from these approximations,
while biased, will be sufficiently accurate because the magnitude of
bias will be small. Sdrndal et al. (1992, p. 83) note that these variance
estimators are typically conservative (in the parlance of the sampling
literature, estimators of the variance of an estimator that exceed the ac-
tual variance in expectation are termed conservative (Sarndal et al.,
1992, p. 83)). Simulation has provided some insight into this matter,
cf. Ene et al. (2012) and Ene et al. (2013). Specifically, when using the
usual estimator of sampling variance that is design-unbiased following
simple random sampling without replacement Ene et al. found this
estimator to overestimate the variance following systematic sampling
by a substantial amount.

In our applications of LiDAR, to be described, we sometimes post-
stratify the cells that are used to tessellate the airborne laser scanning
(ALS) flightlines into smaller areal units based on thematic information
provided by Landsat imagery. Post-stratification is necessary when sep-
arate estimates of AGB for a) different land cover classes, or b) different
political or ownership classes, are desired. In the statistical literature,
estimation for a subset of the population is alternately referred to as
“domain estimation”. The estimation of post-strata totals has a direct
and deducible impact on the variance and reliability of estimates of
post-strata totals, as we show in the Appendix A as Supplementary
material for Hedmark County. Inasmuch as variance is inversely related
to the size of the sample, estimates for a post-stratum total may be quite
imprecise when there are few sampled elements in the post-stratum. In
this situation, the accuracy of the estimate of standard error may be
quite poor, also.

Because biomass comprises nearly 50% C, the imperative of
climate change to restrain the emission of C into the atmosphere
has focused considerable attention on the stock of C in the world's
forests in the form of tree biomass. Indeed, the United Nations
REDD program (UN REDD) (http://www.un-redd.org) was initiated
to offer financial incentives for sustainable management of forest re-
sources and its C reserves (McRoberts, Tomppo, Vibrans, & de Freitas,
2013a). In this article we report on the design and implementation of
four large surveys which used LiDAR to aid in forest biomass estima-
tion: two in southeastern Norway, one in interior Alaska, and one in
Tanzania. All but one are two-tiered surveys but differing with
regard to stratification: either pre-sampling stratification of the
landbase comprising the POI (Tanzania), post-stratification of the
sample a posteriori (Hedmark County), or no stratification. In com-
mon with many contemporary, comprehensive inventories of forest
resources, the LiDAR-assisted surveys are necessarily complex,
thereby complicating their statistical analyses in ways that we
make clear. Because of the important role that LiDAR may have in
the estimation of tropical forest biomass, the results of such studies
must withstand considerable statistical scrutiny. Inappropriately de-
vised and overly optimistic estimates of precision may give rise to
unrealistic hopes for the REDD Monitoring, Reporting and Verifica-
tion (MRV) process by LiDAR surveys.

We pay particular attention to statistical issues that arise in estima-
tion, because credible scientific evidence to support REDD mechanisms
must rely crucially on credible statistical procedures. The relevance of
this work more broadly is that applications of LiDAR-assisted sampling
for REDD + MRV in the tropics is likely to involve complicated sampling
designs, as well.

3. Variance estimation for a single-tier design

To set the stage for variance estimation following more complicated
LiDAR-assisted sampling designs, we first present a simpler design in
order to provide a framework for variance estimation in the two-tier
designs.

As reported by McRoberts et al. (2013b), airborne LiDAR data were
acquired in the municipalities of Amot and Stor-Elvdal, Norway, during
the summer months of 2006. Field-based estimates of AGB were derived
from a network of 250 m? field plots that spanned the 1259 km? region
on a 3 km square grid. These were part of the Norwegian National Forest
Inventory (NFI). Biomass estimates only from the n = 145 NFI plots that
were measured in the years proximate to the LiDAR campaign were
used in this study. For subsequent reference, these n plots represent
the field sample which we denote by S. The entire study region was tes-
sellated by square 250 m? cells. A nonlinear regression model — namely,
Y=f(X;B) + & — was fitted to correlate metrics, X, of the distribution of
LiDAR measurements on each grid cell to its AGB, y. The model was
fitted to the field-based AGB estimates and LiDAR metrics from the
145 NFI plots.
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3.1. Model-assisted estimator of AGB and design-based inference

Using N to denote the number of tessellating grid cells in the study
region, the fitted regression was then used to generate a prediction of
AGB, say y,.k = 1,...,N, for each 250 m? square cell in the study area.
Denoting the total AGB in the study region by B, the generalized regres-
sion estimator of B, following a simple random sample without replace-
ment (SRSwoR) resulting in the sample S, is

B=Y ?ﬁﬁz e (1)

as presented in Sdrndal etal. (1992), Eq. (6.5.3).InEq. (1),e, =y —
Yx. where ¥, = f(x,B) is the estimate of y, provided by the fitted

model. A design-unbiased estimator of the variance of B is

o(F) (L by x i @
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as seen in Sarndal et al. (1992, p. 236). W clarify that there is a no-
tational difference in our use of B to denote an estimate of AGB and

that of Sirndal et al. (1992) who use Bto denote an estimator of the
coefficient vector of the model. Also, the generalized regression es-
timator (GREG) is associated with a linear model in Sdrndal et al.
(1992), yet this hardly is a necessary condition to use the general-
ized regression estimator. As Sarndal (2011, p. 360), wrote: “Much
recent research has been devoted to the GREG form (2.5) for non-
linear relationships between y and x, ... Among these contributions
one can mention logistic regression, nonparametric regression,
local polynomial regression, splines and other techniques.”

3.2. Model-based estimator of AGB and inference

In many applications of statistics outside the realm of sampling,
inference is based on the stochastic behavior of the response variable
as stipulated by an assumed model for that behavior. Model-based in-
ference in a sampling context for AGB likewise regards the observed
AGB on a field plot to be a realization of a random variable whose
mean and variance are stipulated by the model, and the model itself
provides the basis for determining an estimator of B as well as the var-
iance of this estimator. Slightly paraphrasing McRoberts et al. (2013b):
“The assumptions underlying model-based inference differ consider-
ably from the assumptions underlying design-based inference. First,
the observation for a population unit is a random variable whose
value is considered a realization from a distribution of possible values,
rather than a fixed value as is the case for design-based inference.
Second, the basis for a model-based inference is the model, not the
probabilistic nature of the sample as is the case for design-based infer-
ence. Randomization for model-based inference enters through the ran-
dom realizations from the distributions for population units, whereas
randomization for design-based inference enters through the random
selection of population units into the sample.”

Two features of model-based inference permit it to be applied in in-
stances for which design-based inference is limited or even impossible.
First, because model-based inference does not rely on a probability
sample, it can be used with data acquired using a much greater variety
of sampling schemes. Second, model-based inference can also use data
external to the area of interest, meaning it can be used for small areas
for which samples sizes may be insufficient for design-based inference
and for remote and inaccessible areas for which any kind of sampling
is impossible.

This is in distinct contrast to regarding the AGB of a field plot as a
fixed, but possibly unknown value, and then relying on the probabilistic
selection of the sample to determine the variance of an estimator over
all possible samples that might have been selected.

A model-based approach to estimation, as in McRoberts and Westfall
(2014), takes

B=

M=

Vi 3)
i

Il
—_

as the estimator of B. Based solely on the model and conditioning on the

sample that was obtained, the model-based estimator of the variance of

Bis

R N

V(B) =
()%

. Z}cV(B)Zj, (4)

N
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where V(3) is the estimated covariance matrix of the 3 estimates, and Z

is the vector of partial derivatives, df(x3)/03, evaluated at . This esti-
mator of variance is based on a series expansion, and should be regarded
as an approximation.

4. Study design in Hedmark County, Norway
4.1. Hedmark County

This study was also conducted in Norway, but was considerably
more complex, which vastly complicates the estimation of sampling
error and the precision of the results that were obtained. Hedmark
County (HC) encompasses approximately 27,390 km? in southeastern
Norway bordering Sweden. Much of the County is heavily forested
and mountainous: elevations range from 119 to 2178 m a.s.l. As eleva-
tion rises from south to north, forest productivity generally decreases.
Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris
L.) are the dominant conifers, and Downy birch (Betula pubescens
Ehrh.) is the dominant broadleaf species.

By using official land use maps coupled with Landsat TM data, we
were able to assign each area cell within HC to one of eight non-
overlapping land cover classes. There were four forest productivity
cover classes (1) high (8%), (2) medium (13%), (3) low (16%), and
(4) young forest (17%), which collectively cover 51% of the land area
of HC. The remaining four classes are (5) non-productive forest (11%),
(6) mountain (28%), (7) open water (5%), and (8) developed areas
(5%). An objective of this LiDAR-assisted survey was to estimate
biomass per hectare for each of these cover classes but the last, and to
provide a credible estimate of uncertainty for each.

4.2. Norwegian National Forest Inventory plots

The Norwegian NFI plots are located on a 3 km square grid in the for-
ested, non-mountainous portion of the county. Above the coniferous
tree line in the mountain areas only plots on a 3 x 9 km grid are
inventoried by the NFI. In the parlance of statistical sampling, these
plots are a systematic sample of HC land area. Each plot is circular and
covers a ground area of 250 m?. The diameters of all trees on the plot
greater than 5 cm were measured. The total aboveground biomass
(AGB) of the plot was estimated as the sum of the AGB of the measured
trees. Tree AGB was predicted from species-specific allometric models
that had previously been fitted by Marklund (1988).

4.3. LiDAR sampling in HC

Airborne scanning LiDAR data were acquired from July to September
2006. For scanning LiDAR data acquisition, 53 parallel E-W flight lines,
spaced at 6 km intervals, were established. Each was centered over a
series of NFI plots. In total, the flight lines overflew 705 NFI plots that
had been measured in 2005-2007 (see Fig. 1). Collectively the scanning
LiDAR flight lines spanned 4570 km and covered an area of 2297 km?, or
8.4% of HC.
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Fig. 1. NFI plot locations in Hedmark County. Gray-shaded background indicates above-ground biomass density (dark is high biomass; light is low biomass). The 53 horizontal lines are the
airborne laser scanning flight lines (spacing of 6 km). Only those plots measured in 2005-2007 were used in this study, hence the appearance of gaps in plot coverage.

Average flight altitude was approximately 800 m a.g.l. at a flight
speed of 75 ms™'. A maximum half scan-angle of 17° resulted in a
swath width of approximately 500 m, therefore, laser height measure-
ments were collected for 250 m on both sides of the flight line.

The laser scanning data along each 500 m swath were partitioned
into 250m? square cells which matched the ground area of each NFI
forest plot. Typically, each cell gives rise to hundreds of laser height
measurements, thereby constituting a distribution of height measure-
ments. Summary measures of each distribution were computed, such
as the height quantiles, coefficient of variation, mean height. The density
decadal quantiles were also computed as the proportion of echoes with
heights greater than 0%, 10% ... 90% between 1.3 m above ground and
the 95th percentile.

A regression model was fitted to link the biomass of each NFI plot to
the summary measures of the height distribution that was computed for
the plot, that is, one or more of the summary measures of the height
distribution were used as predictors of biomass. Generally speaking,
the predictor variables that were selected varied among different
cover classes, because the optimal set of predictors for, say, the low
productivity forest class might be different from those that are optimal
to predict biomass for the high productivity forest class. No regression
was fitted for the water cover class. When biomass was found on an
NFI plot in the water class, the regression that had been fitted for the
medium site productivity class was used.

4.4. Sampling design

With this arrangement of NFI ground plot measurements and laser
measurements, a two-level systematic sampling design is presented.

Each 500 m E-W swath is a primary sampling unit (PSU) whereas
each 250 m? cell is a secondary sampling unit (SSU). The flight lines ac-
tually flown constitute the sample of PSUs, and the NFI plots that were
overflown constitute the sample of SSUs.

Whereas HC was stratified by cover class for purposes of computing
the land area within HC in each land cover class, it was not feasible to
conduct the LiDAR sampling separately in each of these population
strata. It was feasible, however, to group cells of the flight lines that
were in the same cover class into their appropriate cover class. Post-
stratification is a widely used tool in survey sampling, cf. Smith (1991)
and McRoberts, Gobakken, and Nasset (2012). A distinguishing, and
complicating, feature of the HC design is that post-strata estimates of
biomass are correlated owing to the occurrence of multiple cover
classes on the same flight line.

Gregoire et al. (2011) considered the HC survey as an application of a
two-stage sampling design, and proceeded to use a model-assisted,
sensu lato Sdrndal et al. (1992), two-stage regression estimator with
the sample design as the basis for inference.

Aside from the inferential basis, another salient difference is the
estimation of the standard errors of estimates for HC as a whole and
for each of the post-strata cover classes. As aptly observed by
McRoberts et al. (2013b), for complex sampling designs such as this
one the estimation of variance can be a challenging task. Despite the
challenge, we firmly advocate that variance ought not be estimated in
an ad hoc fashion, but rather must be firmly legitimized on the basis
of statistical principles.

In the sequel, we report methods of estimation and inference based
on consideration of the HC LiDAR survey as a two-stage sampling
design.
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4.5. LiDAR-assisted estimation of biomass in HC

Indexing sampled PSU's by “i”, the cells comprising PSU; by “k”, and
denoting biomass on PSU; by B;, a generalized regression estimator of
B; is

= ~ N; &
Bi=2_ yu+ szl eik (5)
1

as given by Sdrndal et al. (1992, Eq. (8.9.6)). In Eq. (5), n; denotes the
number of NFI plots in PSU;. In Eq. (5), ¥y is the predicted biomass of
the kth SSU from the LiDAR-based regression and e;; is the regression re-
sidual. The first term in Eq. (5) is commonly referred to as a synthetic
estimator; as indicated, it is based on the sum over all the N; SSUs within
PSU;. The second term is a Horvitz-Thompson-like adjustment to the

synthetic estimator, an adjustment that makes B; aysmptotically
design-unbiased. The adjustment term is based on only those SSUs
that coincide with the n; NFI plots in the second-stage sample from PSU;.

The analogous estimator of biomass per hectare for PSU; for the cth
cover class is based only on the SSUs that are in that cover class:

- N
Bi=2" Vi+—-2 e (6)
Nic ni

Using m to indicate the number of PSUs in the sample, biomass for
HC overall is the probability weighted combination of all the m =
53 PSU estimates, namely

B=1Y B, (7)

m

where [ = 12 is the first-stage systematic sampling interval between
successive PSU flight lines. For the county-level estimate of biomass
for cover class c:

EC =1 Z gic- (8)
m

The variance of B, denoted by V(B), arises from the variability in
biomass among the SSUs within each flight line, as well as variability
among the M PSUs in HC. It may be very generally expressed as

V(B) = vi(B) + Vu(B), 9)

where the first term on the right accounts for the variance in B that
is attributable to variation of AGB among all PSUs in HC, and the second
term accounts for variance in the estimated biomass that is imparted

due to variation in biomass among SSUs within each PSU. Whereas V (B)
is reckoned over all PSUs and all SSUs within PSUs in HC, the estimator
of that variance is necessarily based only on the data collected in the
realized sample. In their result 8.9.2, Sdrndal et al. (1992) derived an

expression for the approximate variance of B for a general probability,
nonsystematic sampling design.

An expression analogous to Eq. (9) holds for Bc. Details on these
variance approximations appear in the Appendix A.

Sdrndal et al. (1992) also derived a design-unbiased estimator of this
approximate variance, which was used in Egs. (18)-(27) of Gregoire
et al. (2011). It is standard practice to use an estimator of variance
that is unbiased under a simple random sampling design, with the
expectation that it will very likely yield an overestimate of the actual
sampling variance from a systematically selected sample.

We emphasize that the variance of an estimator is necessarily
nonnegative, however a sample-based estimator of the variance need
not be. In particular, for the estimator of variance derived in Sarndal
et al. (1992) the very conditions imposed to achieve design-unbiased
estimation of the variance somewhat perversely also allow the

estimator to be negative, especially when dealing with small samples.
Here the overall size of the HC sample is large, however the subset of
the overall sample in some of the less extensive cover classes resulted
in small samples for those classes.

4.6. Results for Hedmark County

The results for two-stage model-assisted estimation of biomass,
expressed on a per hectare basis by cover class, are shown in Table 1.
Comparison of uncertainty estimates under simple random sampling
and sophisticated two-stage designs is complicated by large differences
in the designs and assumptions. To have comparable designs, we
compared AGB estimates based on the field survey only assuming
two-stage sampling (the NFI plots being grouped in clusters) against
corresponding estimates assuming two-stage sampling with the
LiDAR. These results appear in Gobakken et al. (2012) and Nasset
et al. (2013), and differ slightly from those presented in Gregoire et al.
(2011).

For all cover classes where the estimated standard error was
positive, the SE for the LiDAR-assisted estimate was less than the corre-
sponding SE for the estimate based on the field plots alone. In percent-
age terms, sometimes the LiDAR-assisted SE was less than half the SE for
the field plot estimate. For Young Forest class, the percentage SE of the
LiDAR-assisted estimate was greater. The reduction in SE is one measure
of the gain from using LiDAR data as a source of auxiliary information.
For all cover classes combined, the LiDAR-assisted SE was about 2/3 of
the SE from field plots alone.

Simulations by Ene et al. (2012) and Ene et al. (2013) subsequently
verified that variance estimators that are design-unbiased under a
simple random sampling design tend to be very conservative in a sys-
tematic framework, that is, they may overestimate the actual sampling
variance considerably. Ene et al. (2012) found that an alternative
variance estimator based on successive differences was far less biased.

No explicit account has been made for variation in B that is imparted
by the possible lack of fit of the allometric model for individual tree bio-
mass that was used to derive an estimate of AGB for each NFI field plot.
From a statistical viewpoint, the estimate of AGB is made conditionally
on the predictions of biomass given by the fitted allometric models of
Marklund (1988). The asymptotic design-unbiasedness of the general-
ized regression estimator therefore holds with reference to the predict-
ed biomass of HC from these fitted models, and not to the actual AGB of

Table 1
Model-assisted biomass estimates (Mg ha ') by cover class for Hedmark County.

Area (%) n®  NFlalone

Mean SE (%)

LiDAR assisted
Mean SE (%)°

Productive forest:

High 5 48 985 17.6(17.9) 1200 11.1(9.3)
Medium 13 105 906 11.8(13.0) 90.6 4.8(5.3)
Low 16 141 49.0 57(11.6) 398 5.6 (14.1)
Young 17 151 33.0 47 (142) 404 NA®

All productive forests 51 445 644 5.6 (8.7) 60.7 45 (74)

Nonproductive forest & nonforest:

Nonproductive forests 11 83 19.6 35(179) 269 NA
Mountain areas 28 95 185 5.2(28.1) 51 0.9 (17.6)
Water 5 36 0.0 0.0 (0.0)¢ 2.5 0.0(0.0)
All nonproductive 44 214 153 27(176) 102 NA

& nonforest
All 95 659 46.1 3.0(6.5) 38.1 1.9(5.0)

¢ Number of NFI field plots.

b SE is the estimated standard error, in units of biomass and as a percentage of the es-
timated mean.

€ NA denotes the occurrence of an estimate of SE < 0.

4 For the Water cover class, SE = 0.0 because aboveground biomass was uniformly
absent.
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HC. For those who are versed in forest inventory, this is a quite familiar
situation when estimating wood volume of a stand or forest or region.
We lack statistical tools to account for model-based error in the allome-
tric models. Indeed it is not at all clear whether lack of fit of the allome-
tric models adds bias to the LiDAR-assisted generalized regression
estimator presented here, or whether allometric-model lack of fit affects

only the variance of B. It seems virtually certain, however, that simply
adding a term to the design-based or model-based variance of B in an

attempt to account for the effect of uncertain allometry is arbitrary
and not easily justified from a statistical standpoint.

4.7. Model-based inference for HC

In contrast to the design-based inferential approach of Gregoire et al.
(2011); Stahl et al. (2011) adopted a model-based inferential approach.
“The objective of this study was to develop and apply a general frame-
work for model-based estimation and error assessment, accounting
for both sampling and model errors, in cases where regression models
are applied to predict the target variables.” For sake of comparison, we
present this model-based approach to estimate the AGB of HC from
the LiDAR-assisted sample of HC. The authors presumed a statistical
model, possibly nonlinear in the parameters o, Bn(x) =g(x,a, €), to
relate AGB to one or more LiDAR metrics, x, in the hth post-stratum. In
expectation, E[B,(x)] =g(x,ay,). Letting M denote the total number of
flight lines spanning HC and E[B},] to be the total expected (under the
model) AGB of HC in the hth post-stratum, the authors assumed that

M
E[Bp] = Z E[Bin] (10)
where

Tin
E[Bjp] = Zl &(Xine, ), (11)

t—
where Ty, are the number of cells in stratum h in the ith flight line.
Therefore, the total expected AGB of HC is presumed to be

M H
E[B] = )_ E[Bjp]. (12)
i=1 h=1

It is this model-based total that is the population attribute to be
predicted.

The LiDAR data from the NFI plots that were overflown on m flight
lines, coupled with the biomass from those plots were used to estimate
ay, for each stratum. Using &;, to denote the estimated parameter vector
for stratum h, an estimator of E[B;;] is provided by

Tin
E[By] = t:Z] &(Xing, Q). (13)

To estimate the stratum total AGB, a ratio estimator was used, namely

Elfy = (ZZ,,:—EI{?:% 14
i=1 Vi

where Ny, is the number of cells in stratum h within the ith PSU, and Ay, is
the total land area in stratum h in HC. Using the strata estimates from
Eq. (14) leads to

M=

EB] =Y E[By (15)

h

I
—_

as the estimated expected AGB in HC. The variance of E[B] was
decomposed as

—

V(EB]) = Vs + Vq, (16)

—

where V; is the variance in E[B] due to sampling, and V,, is variance
introduced by statistical uncertainty of the & estimates.

Details about an estimator of V(E/[B\ ]) may be found in Stahl et al.
(2011).

4.8. Model-based results for HC

The county-level estimate of AGB provided was 40.3 Mg ha™ !,
broken down across the post-strata as shown in Table 2. This estimate
exceeds the model-assisted estimate of 38.1 Mg ha~! shown in
Table 1 and has an estimated standard error that is approximately
two-thirds the magnitude of the model-assisted estimated standard
error.

5. Study design in Upper Tanana Valley, Alaska

The region of this study encompassed 2012 km? surrounding the
towns of Tok and Tanacross of interior Alaska, near the state's eastern
border with the Canadian province of Yukon Territory. The forested
area of this region encompassed 1639.13 km?. Its lowland forests host
predominantly white spruce (Picea glauca) and black spruce (Picea
mariana), and its upland forests host paper birch (Betula papyrifera)
and quaking aspen (Populus tremuloides).

In contrast to the HC study, the Upper Tanana Valley (UTV) study can
be described as a “single-stage cluster sample with a model-based esti-
mate of biomass within each cluster” (Andersen, Strunk, & Temesgen,
2011). Similar to HC, however, in UTV the regression linking the field
ascertainment of AGB to LiDAR metrics was based on a subsample of
plots within clusters. Owing to concern about the non-probabalistic se-
lection of the field plots used in this study, Andersen et al. (2011)
adopted a model-based approach to inference.

5.1. LiDAR sampling in UTV

LiDAR data were acquired during June 2009. The m = 27 flight lines
varied in orientation, as seen in Fig. 2, because of the mountainous ter-
rain. Flight lines were spaced approximately 2.5 km apart, were 240 m
wide, therefore covering 9.6% of the study region shown in Fig. 2. In
contrast to the HC study, the UTV field plots were established after the
flight lines had been established.

Average flight altitude was approximately 750 m a.g.l. at a flight
speed of 82 ms™".

Similar to the HC study, in UTV the LiDAR data along each 240 m
swath were partitioned into 324 (18 x 18) m? cells, for which summary
measures of each distribution of laser heights, similar to those used in
the HC study, were computed. Unlike HC, the cells were not post-
stratified into distinct cover classes.

Table 2
Model-based LiDAR-assisted biomass estimates (Mg ha ~') by cover class for Hedmark
County.

LiDAR assisted

Mean SE (%)
Productive forest:
High 133.8 6.1 (4.5)
Medium 97.8 3.4 (3.5)
Low 474 2.2 (4.6)
Young 44.6 3.6 (8.0)
All productive forests 67.7 22 (3.2)
Nonproductive forest & nonforest:
Nonproductive forests 274 24 (8.7)
Mountain areas 6.0 0.7 (11.5)
Water 32 0.3 (9.5)
All 403 1.2 (2.9)
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Fig. 2. Upper Tanana Valley study region in Alaska. The solid lines are the airborne laser scanning flight lines (spacing of 2.5 km).

5.2. Field plots for biomass

A total of 79 forested field plots within the LiDAR swaths were
established. Each of these circular plots covered an area of 1/30 ha. In
view of the difficulty of field data collection, plots were established in
pairs, 600 m apart, within 1 km of a road, trail, or river which permitted
helicopter access. Within these accessible areas, plots were randomly
located to encompass a variety of forest compositions.

Tree diameters and other measures of size were recorded
(Andersen et al., 2011). Biomass was predicted for each tree on the
plot using the allometric models of Yarie, Kane, and Mack (2007),
and then accumulated to derive the predicted aboveground tree
biomass on the plot.

Aregression model was fitted to link the biomass of each field plot to
the summary measures of the height distribution that was co-located
with the plot, as in HC.

With a regression fitted to link predicted biomass at the plot-level to
LiDAR metrics based on the 79 field plots, this regression was then used
to predict biomass on all of the remaining 324 m? cells in the LiDAR
strips.

5.3. LiDAR-assisted estimation of biomass in UTV

As with the HC study, here too each flight line can be regarded as a
PSU and each cell within it as a secondary sampling unit. Because
biomass had been predicted for all cells in each flight line, Andersen
et al. (2011) used the synthetic estimator of Eq. (5) as the estimator of
biomass on the flight line PSU. That is, for the ith LiDAR strip,

B = > Ti (17)

where, as above, J;, is the biomass predicted from the LiDAR-based re-
gression. The necessary nuance of difference between this setup and
that of HC is that in the UTV study there were some PSUs with no field
plots, and therefore field plots could not be regarded as a second stage
of sampling within each PSU. In the parlance of the survey sampling lit-
erature, the sampling design was a single-stage cluster sample: the AGB
of all N; elements of PSU; were predicted by using the LiDAR-assisted
prediction of aboveground biomass as a proxy.

The single-stage cluster ratio estimator cf. Sdrndal et al. (1992,
Eq. (8.5.2)) and Cochran (1977, p. 250) was then used to estimate
total biomass of the study region:

> B
m
2 N;
m

B=N

(18)

where N is the total number of forested cells in the study region.
Bootstrapping was used to estimate the standard error of Eq. (18).
Bootstrapping is a resampling technique introduced by Efron (1979)
which has seen widespread application as a nonparametric way to
estimate sampling variance following a complex sampling design. In
the context of survey-sampling, inferences can be based on a bootstrap
population that is generated by resampling in such a way as to mimic
the original sampling design. This general approach can be applied in ei-
ther the model-based or design-based paradigms, and can be used as an
alternative to analytical variance formulations in the context of complex
multi-level sampling designs (e.g. for exploratory analyses, etc.)
Andersen et al. (2011) modified the conventional bootstrap resampling
procedure to account for finite population sampling using the without-
replacement bootstrap developed by McCarthy and Snowden (1985)
and extended by Booth, Butler, and Hall (1994). In addition, Andersen
etal. (2011) also examined a modification suggested by Sitter (1997),
which entails refitting the model with each bootstrap sample in an
effort to account for the additional variability that accompanies the se-
lection of the LiDAR-assisting model (Buckland, Burnham, & Hall, 1997).

5.4. Results for UTV

The estimate of AGB provided by this LiDAR study was 40.4 Mg ha™".
The conventional bootstrap SE was 4.6%. After accounting for model
selection, the modified bootstrap SE is increased to 8%.

6. Study design in Liwale District, Tanzania

The study area encompassed a large fraction (15,867 km?) of the
Liwale District (LD) located in southeastern Tanzania (Fig. 3). The
dominant vegetation type in LD is the miombo woodlands hosting
mainly tree species of the Caesalpinioideae family (especially of genera
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Fig. 3. Liwale administrative district and study area. The solid lines are the airborne laser scanning flight lines (spacing of 5 km) and NAFORMA field plots.

of Brachystegia and Julbernadia), with some high value commercial tim-
ber species such as Pterocarpus angolensis (see Mugasha et al. (2013)
and references therein).

Similar to the HC study, the LiDAR study reported here utilized
ground measurements from the NFI. Unlike HC, LD was stratified prior
to field sampling. In LD, clusters of plots served as PSUs, whereas the
plots served as the basis for the regression linking AGB to LiDAR metrics.

6.1. Tanzania National Forest Inventory

Tanzania's National Forestry Resources Monitoring and Assessment
(NAFORMA) employs a double sampling for stratification design of clus-
ters of field plots, cf. Cochran (1977, pp. 327-335); clusters were located
on a5 km grid and each comprises 10 circular plots spaced 250 m apart
in an L-shaped pattern. Each cluster was assigned into one of 18 pre-
defined strata (Tomppo et al., 2014). We note that double sampling
for stratification does not form spatially contiguous strata. Instead it al-
lows strata proportions, Wy,h=1, ... ,H, based on area representation,
to be estimated.

Using SRSwoR, a smaller, second-phase sample of clusters was then
selected from among the first-phase sample clusters in each stratum.
The plots in these second-phase sampling clusters were subsequently
measured by the field crews. Details of the field measurements are
provided in the Appendix A.

The field plots for this LiDAR-assisted study were established
and measured in 2011 under the NAFORMA program, and revisited
in February-June 2012 for re-measurement of trees and precise
georeferencing. The biomass of stem and branches of sampled trees
was predicted using the allometric models of Mugasha et al. (2013).
The estimated plot-level AGB ranged from zero (24 ground plots) to
555 Mg ha~! (Ene et al., 2015).

6.2. LiDAR sampling in LD

Scanning LiDAR data were acquired under leaf-on conditions during
February-March 2012. The average flight altitude was approximately
1320 m a.g.l, at a ground speed of 77.2 ms™ . Thirty-two parallel flight
lines were flown in an east-west direction, spaced 5 km apart, as shown
in Fig. 3, covering nearly 26% of the study area. The average strip width
was approximately 1350 m, which is shorter than the distance spanned
by each leg of the L-shaped clusters (1500 m). Consequently, at most
eight plots per cluster in LD were covered by scanning LiDAR data;
generally speaking, a variable number of plots in each first-phase cluster
were overflown for LiDAR data collection, a factor which further
complicates the statistical analysis. From the height distribution of
the LiDAR echoes co-located with the 15 m radius plots, LiDAR
metrics were derived following the approach described above for HC
(Ene et al., 2015).

Over the seven forested strata present in LD there were m; = 626
first-phase clusters of 10 plots, of which m, = 65 had been selected
for the second phase of field sampling in LD. See Table 3 for sample
sizes by stratum in both phases of sampling in LD. When needed in
the sequel, Sy, shall indicate the first-phase sample of my, clusters
in the hth stratum, and Sy, shall indicate the second-phase sample of
my, clusters in the hth stratum.

6.3. LiDAR-assisted estimation of biomass in LD

A regression model was fitted to link the plot-level AGB estimates to
the LiDAR metrics. The fitted regression was used to predict biomass on
all of the remaining first-phase cluster plots within the scanning LiDAR
strips. Assuming SRSwoR at both sampling occasions, an appropriate
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Table 3
Distribution of clusters and field plots by NAFORMA strata.
NAFORMA stratum®
5 6 7 8 9 11 12
First stage Total
mys Mg My7  Myg Mg My Mz My
Number of clusters 160 121 118 67 46 93 21 626
nis Nie ny7 Nnig Nig N1 M2 M
Number of plots 1268 954 936 533 350 744 166 4951
Second phase Total
ms meg my mg mg myy myp m
Number of clusters 15 11 12 16 3 3 5 65
ns ng n; ng ng n ni2 n

Number of plots 120 88 94 125 24 24 38 513

2 According to Tomppo et al. (2014), Table 3.

model-assisted estimator for the mean AGB per hectare for stratum h
under double sampling is (Mandallaz, 2008, Eq. (5.1))

> b X em
= KESy, +kesz,,

reg
Bi” = Nyp Ny (19)

where Bkh is the AGB per hectare predicted by the LiDAR-based regres-

sion model for the kth cluster in hth stratum, and ey, = by, — Ekh is the
plot-level regression residual. In Eq. (19), fi;, denotes the average num-
ber of plots per first-phase cluster in stratum h that were overflown for
LiDAR, and 71;, denotes the average number of plots per second-phase
cluster in stratum h that were overflown.

The mean AGB per hectare for LD was estimated as a weighted sum
of the stratum estimates:

B =Y W,B[, (20)
heH

where W, is the estimated weight for the hth stratum.
The approximated variance estimator for the stratum-level esti-

mates B is (Mandallaz, 2008, p. 81):

~2 ~2
~(3 s m s
V(B;eg) :%Jr (1 ,7’1) % (21)
n,myy Min/ " my

where the terms in Eq. (21) are detailed in Table 3 and in the Appendix
A).
re

The variance of EDSg was estimated based largely on Cochran (1977,
Eq. (12.32)):

hen \IMi —

S(5) - 3, () W)

=~ = 2

(B -BEY)
+ W 22
% — (22)

6.4. Results for LD

The LiDAR-assisted AGB estimate was 58.94 Mg ha™ ! with an esti-
mated standard error of 1.48 Mg ha~"' (2.5%). Compared to the estimat-
ed standard error of the direct AGB estimator, which were derived
solely from the field observations (Ene et al., 2015), the LiDAR-
assisted estimation was approximately three times more precise. Due
to the systematic arrangement of plots within a cluster, we suspect
that even this comparative precision was understated.

7. Discussion

We have summarized four LiDAR-assisted studies principally to em-
phasize the straightforward but non-trivial task of properly estimating
the variance of estimators of AGB based on a complex sampling strategy,
that is, one that may be based on two or more tiers of sampling, strati-
fication and post-stratification, and utilize one or more models in the es-
timation of AGB. While the purposes served by LiDAR-assisted surveys
vary greatly, thereby preventing development of a standard sampling
design, there are standard statistical tools that can be brought to bear
on assessing the variance of proposed estimators, which have not
been universally recognized or employed.

When basing inference on the sampling design, the variance of esti-
mators, and therefore the estimation of sampling error, depends crucial-
ly on the design. Analogously, when basing inference on a presumed
model, the variance of estimators will depend both on the model and
how well the model portrays the stochastic behavior of AGB. The vari-
ance of an estimator under both the design-based and the model-
based framework is well-defined as the statistical expectation of the
squared deviation of the estimator from its expected value. It is more
nuanced and complicated than merely identifying various sources of
statistical error, and then scaling and adding together the perceived
variance of these errors.

With this in mind we exhort researchers who report results from
LiDAR-assisted AGB studies to explicitly declare the framework of infer-
ence and to demonstrate how an estimator's precision was itself
estimated within the adopted framework according to the statistical
definition of variance. This approach is absent in many articles on
LiDAR sampling that have appeared in this journal and many others.
For example Asner et al. (2013, p. 12) assert that “Our analysis may
also be improved through analytical modeling of errors (i.e., model-
based inference) produced by both the LiDAR-to-carbon and national-
scale models...” perhaps. Nonetheless, we are left wondering what
basis for inference was used in this article if not model-based? Expres-
sions such as

_ /2 2
€National(otherpixel) = \/ €[ipaR T €DecisionTree (23)

provide little clarity as to how this relates to the variance of an estimator
of overall AGB, as universally understood in the sampling literature.

We assert that a most urgent problem facing LiDAR-assisted estima-
tion based on systematic sampling is the very large overestimation of
estimator variance by assuming a simple random sampling design.
The successive differences estimator may be an alternative, less biased,
estimator of variance, cf. Ene et al. (2013).

We have noticed oft-expressed concern over the potential bias of
individual-tree biomass predictions provided by inappropriate allome-
tric prediction models. This is very similar to the concern that foresters
have had for generations with the use of models to predict bole volume
of standing timber trees. For that reason, forestry concerns in many
regions of the world have made enormous investments in the develop-
ment of trustworthy volume prediction models. Even with that invest-
ment, foresters and forest surveys are able to design-unbiasedly
estimate the aggregate predicted bole volume of a POI, yet not the actual
aggregate bole volume. At least not with methods that currently are
used. Even if a concerted and widespread effort is made to acquire
data needed to develop regionally appropriate individual-tree allome-
tric biomass models, we still will not be in a position to unbiasedly esti-
mate the actual aggregate AGB of forest trees. If modern forest inventory
provides a useful guide, the hope for those who estimate aggregate AGB
is that the estimate of aggregate predicted AGB will be sufficiently close
to actual AGB so the difference between the two will be inconsequential.
In the ongoing discussions of MRV for REDD +, there has been no recog-
nition of this matter.
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As far as the magnitude of the effect on precision that is caused by
using predictions rather than measurements of individual tree
biomass, two recent studies - McRoberts and Westfall (2014) and
Stahl, Hekkinen, Petersson, Repola, and Holm (2014) - concluded
that the variance from this source is dwarfed by the sampling
variance of the survey. However, McRoberts and Westfall (2015)
observed that the disparity diminished when the sample was
post-stratified.

Studies are currently underway to estimate the change in AGB,
namely AAGB, between two LiDAR-assisted surveys, again with at
least a glance towards meeting the needs of MRV for REDD +. For
change estimation the bias in biomass change predictions may be
reduced, so long as the same model(s) are used on both occasions.

For AAGB estimation, new sampling design considerations
will arise. As one example, sampling with partial replacement
(Ware & Cunia, 1962) configures sample sizes to allow for optimal
estimation of current AGB as well as AAGB. Yet it further compli-
cates sampling designs that many would regard as already suffi-
ciently complex.

We have noticed a recent emphasis on mapping rather than estima-
tion, with the implication that mapping is necessary for accurate
estimation. For example, Chen, Laurin, and Valenti (2015) asserts
“However, substantial uncertainty remains in estimating tropical forest
C emissions... accurately mapping the spatial distribution of tropical C
stock and its dynamics is vital to reduce such uncertainty.” We would
counter that accurate mapping is not a necessary condition for accurate
estimation of regional total stocks of biomass and C, nor does accurate
mapping even guarantee precise estimation.

There are three major elements of any sample survey. One is the
sampling design, which concerns the selection of relevant data to en-
able estimation of the population parameters of interest, for example
total C or AC. Next is the manner in which these parameters indeed
will be estimated. As is evident from the four surveys presented
in this article, the design surely will inform, but not mandate, the
choice of estimator. Finally, there is the mode of statistical inference
which will enable a credible assessment of sampling error. This arti-
cle is intended as a call for researchers to pay much increased atten-
tion to these elements.

Appendix A

A.1. Further details for HC

The term V/(B) in Eq. (9) is the variance in estimated AGB among
PSUs in HC. With the sampling strategy employed in HC, there are two

impediments to estimating V,(E) in a design-unbiased manner. The
first is the systematic selection of the PSU flight lines to accord with
the systematic spacing of the NFI plots in the E-W direction. The second
is the use of the generalized regression estimator, Eq. (5). The design-
bias due to generalized regression estimation is usually small if sample
sizes are not too small. The design-bias due to approximating the
variance following systematic selection with a SRSwoR alternative can
be severe, as evidenced in the simulation results of Ene et al. (2012)
and Ene et al. (2013).

The following results are based largely on derivations for Case C in
Sdrndal et al. (1992, sec 8.9), which have been evaluated under the
presumption of two-stage SRSwoR design.

Under a presumption of SRSwoR selection of m PSUs from M PSUs
spanning HC,

v (E) ~M? <% - %) o?, (A1)

where 0f = (M-1)"13_M, (B;-B/M)? is the variance in AGB among the
M PSUs.

In similar fashion, V;;(B) in Eq. (9) is the variance in estimated AGB
due to variation in AGB among SSUs within a PSU. Under a presumed
SRSwoR selection of SSUs within each PSU,

SAoMM o1 1,
v,,(B)NEE N; (ﬁi_ﬁi>01li7 (A2)
where
ofi=m-1)7" Y, (A3)
kEPSU;

and ¢ is the difference between B; and the statistical expected value of
B; under the assisting regression model.
Under the presumed two-stage SRSwoR sampling design, an unbi-

ased estimator of V,(E) is

0 WG ) .

where

F=m-1"T (B-B) (AS5)
and

L O PoRU TR IR (16)

where y is the average AGB on the NFI plots in the second-stage sample
from PSU,.

An unbiased estimator of V,,(E) is

P M\2mo o1 1\,

)~ (2) £ (L) w
where s}, = (n; — 1)7' 2}, (ex—e)*ande; = 13}, ey.

A.2. Further details for LD

Field measurements in NAFORMA: Tree diameters greater than
1,5, 10 and 20 cm were recorded using concentric circular plots
with radii of 2, 5, 10 and 15 m, respectively. The height of every
5th tree in the sample was measured and diameter-height models
were developed for predicting the heights of the remaining trees.
According to Vesa et al. (2011), a tree was defined as a perennial
wooded plant at least 1.35 m tall and with a distinct stem capable
of reaching 5 m height in situ. Tree species were also recorded.
Cacti, palms, bamboos, and shrubs were not recorded as trees.

Definition of terms in Eq. (21):

Sm=m-1)"" %

o~ 2
(bkh - Bhnkh) ; (B1)
keESy,

where ny, denotes the number of plots overflown on the k second-
phase cluster, and

By=n;' X b (B2)
KESo
Also,
2 -1 = 2
Sep = (Mp—1)"" 2 (€xn — €nln)", (B3)

KES
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where

2 ew

KESy,

B = (B4)
> M
KES,
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