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A B S T R A C T

We examined the relationship between urban trees and the sales price of single-family homes in Tampa, Florida.
We chose Tampa, because the city is facing major redevelopment pressure that may impact the association
between trees and house price. In particular, a frequently voiced view in Tampa’s development community is
that trees adversely affect the value of houses that are being sold for redevelopment. We estimated hedonic
models of sales price controlling for house and neighborhood characteristics and correcting for spatial auto-
correlation (n= 1,924). We found that trees within 152m (500 feet) of a house’s lot were significantly associated
with higher sales prices. Specifically, a 1-percentage point increase in tree-canopy cover was associated with a
total increase in sales price of $9,271 to $9,836 (results were largely insensitive to correction for spatial auto-
correlation). Our results demonstrate that, even in a city facing major redevelopment pressure, trees are asso-
ciated with higher sales prices.

1. Introduction

Multiple studies have found that proximity to trees can increase the
sales price of houses (Anderson and Cordell, 1988; Donovan and Butry,
2010; Pandit et al., 2014; Payton et al., 2008). However, the positive
association between trees and house price is not universal. For example,
several studies have found that trees on a house’s lot are either un-
correlated with sales price or are associated with lower sales prices
(Donovan and Butry, 2010; Pandit et al., 2014; Saphores and Li, 2012).
Similarly, in a study in Quebec, Des Rosiers et al. (2002) found that
trees on a house’s lot were positively associated with sales price but
only up to a threshold: on properties with high tree cover, additional
trees were associated with lower sales prices. In summary, while trees
are often associated with higher sales prices, context matters. One
component of this context, that has received little attention in the lit-
erature, is redevelopment pressure. In cities where a greater proportion
of houses are bought for redevelopment, the presence of trees on a lot,
especially if a city has strong tree-protection ordinances, may increase
redevelopment costs (Landry et al., 2014). These increased costs may,
in turn, result in reduced sales prices. We assess this hypothesis in
Tampa, a city in southwest Florida that has experienced rapid growth
and continues to face considerable redevelopment pressure (City of
Tampa, 2018a). Note that we define redevelopment as a new building
on a lot with an existing structure (the existing structure can be

removed or retained), whereas we define development as building on
an empty lot.

1.1. Literature review

Early studies of trees and house price used simple statistical models
and coarse tree metrics that did not account for tree-canopy cover or
tree height. For example, Morales (1980) classified the tree cover
around 60 houses in Manchester, Connecticut as either good or not.
They defined good tree cover as a “substantial amount of mature tree
cover” and bad cover as no mature trees. Houses with good tree cover
sold for 6% more than comparable houses without good tree cover.
Anderson and Cordell (1988) assessed the impact of front-yard trees on
the sales price of 844 single-family homes in Athens Georgia. They
found that houses landscaped with trees sold for 3.5%–4.5% more than
comparable houses without trees. Tyrvainen (1997) examined the effect
of proximity to forested parks on the sales price of 1006 apartments
sold in North Carelia, Finland. She found apartments close to forested
parks (of at least 0.3 ha), and those in neighborhoods with more forest
cover, sold at a price premium. In the UK, Willis and Garrod (1993)
examined the impact of proximity to Forest Commission land on the
sales price of homes. They found that a greater area of broadleaf forest
in the 1 km2 surrounding a home was associated with higher sales
prices, whereas a greater area of Sitka spruce was associated with lower

https://doi.org/10.1016/j.ufug.2019.01.014
Received 22 October 2018; Received in revised form 14 January 2019; Accepted 17 January 2019

⁎ Corresponding author.
E-mail addresses: gdonovan@fs.fed.us (G.H. Donovan), landry@usf.edu (S. Landry), winterc@epchc.org (C. Winter).

Urban Forestry & Urban Greening 38 (2019) 330–336

Available online 25 January 2019
1618-8667/ Published by Elsevier GmbH.

T

http://www.sciencedirect.com/science/journal/16188667
https://www.elsevier.com/locate/ufug
https://doi.org/10.1016/j.ufug.2019.01.014
https://doi.org/10.1016/j.ufug.2019.01.014
mailto:gdonovan@fs.fed.us
mailto:landry@usf.edu
mailto:winterc@epchc.org
https://doi.org/10.1016/j.ufug.2019.01.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ufug.2019.01.014&domain=pdf


sales prices.
More recent studies have used finer-scale tree metrics and more

sophisticated regression techniques. In particular, most hedonic studies
now test and correct for spatially-autoregressive processes. Sander et al.
(2010) quantified the relationship between tree cover and the sales
price of 9990 single-family homes that sold in Minnesota in 2005. They
found that trees in 100m and 250m buffers around homes were asso-
ciated with higher sales prices. The magnitude of this relationship was
greater for trees in the 250m buffer, suggesting that neighborhood
trees—that are not on, or immediately adjacent to, a house’s lot—are
the most desirable. Donovan and Butry (2010) used a combination of
satellite and by-hand measures of tree-canopy cover to assess the im-
pact of street trees on the sales price of homes in Portland, Oregon.
They found that a street tree is associated with an increase in sales
prices of $19,958. However, only about one third of that benefit is
experienced by the house a tree fronts; the rest spills over to houses
within 30m. Using satellite imagery, Saphores and Li (2012) estimated
the impact of lot and neighborhood trees on the sales price of 20,660
single-family homes that sold in Los Angeles, California in 2003 and
2004. On average, they found that lot and neighborhood trees were
associated with higher sales prices. However, in 40% of sales, lot trees
were negatively associated with sales price. In contrast, in only 3% of
sales were neighborhood trees negatively associated with sales price.
Payton et al. (2008) measured greenness in 2- and 11-acre (0.8- and
4.5-ha) buffers around 9716 single-family homes that sold in In-
dianapolis, Indiana in 2004. They found that greenness in both buffers
was associated with higher sales prices, but, consistent with other
studies, greenness in the 11-acre buffer had a larger impact on sales
price. Finally, Pandit et al. (2014) examined the relationship between
trees and the sales price of 5606 single-family homes that sold in Perth
in 2009. They found that lot trees were associated with lower sales
prices, whereas neighborhood trees, on public land, were associated
with higher prices. Specifically, a 10% increase in tree cover on ad-
jacent pubic land was associated with an increase in sales price of AU
$14,500.

It is not surprising that houses with trees sell at a price premium, as
studies have shown that trees are associated with a wide range of
benefits to homeowners including improved health outcomes (Donovan
et al., 2013; Mitchell and Popham, 2008), lower crime (Kuo and
Sullivan, 2001; Troy et al., 2016), better air quality (Nowak et al.,
2006), and reduced energy use (Akbari et al., 1997; Donovan and Butry,
2009).

2. Methods

2.1. Data and study area

Tampa is a rapidly growing city in southwest Florida: its population
has increased from 303,333 in 2000 to 385,430 in 2017 (U.S. Census,
2017). Population projections from the Florida Housing Data Clear-
inghouse suggest sustained growth rates through at least 2040 (2018).
In addition, there is a limited amount of undeveloped land in desirable
neighborhoods and close to water. In consequence, Tampa faces sig-
nificant redevelopment pressure. A commonly voiced belief amongst
developers in Tampa is that trees are an impediment to this re-
development. Landry et al. (2014) interviewed multiple developers,
contractors, and landscape architects in Tampa. The prevailing view
was that trees can significantly increase redevelopment costs, and that
these additional costs mean that houses with trees suffer a sales-price
penalty. For example, one developer said that this price penalty could
be “…$200,000–300,000 based on whether a lot is buildable or not
depending on the trees.” If developers are right, and trees do reduce the
sales price of homes, then this could fundamentally change how urban
trees are managed in cities that have major redevelopment pressure.

Our sample consisted of all single-family homes that sold in Tampa
from May 2015 to May 2016 (n=4848). We only considered the sales

of lots with existing homes not empty lots sold for new development.
We chose this sample frame, because the urban tree-canopy cover
(UTC) dataset used for the study (Landry et al., 2018) was based on
aerial imagery taken between December 1, 2015 and January, 18 2016.
Data on sales prices and house characteristics were obtained from the
Hillsborough County Property Appraisers Office (HCPA; https://www.
hcpafl.org). In our regression models, we used a randomly-selected
subsample (n=1924), because we did not have time to do manual
measures (described below) of tree-canopy cover for all 4848 houses.
Table 1 provides summary statistics for select variables from the ana-
lytical sample, and Fig. 1 shows the location of houses in the analytical
sample, neighborhood boundaries, and tree-canopy cover.

We created a list of candidate variables describing house char-
acteristics based on the hedonic literature and conversations with the
(then) HPCA, Director of Valuation (Wilmath, 2016). We accounted for
differences in neighborhood characteristics (school district, for ex-
ample) by using the neighborhood code assigned to each parcel by the
HCPA. The neighborhood code was created by the HCPA, following the
guidelines of the International Association of Assessing Officers which
defines a neighborhood based on “…natural, man-made or political
boundaries and is established by a commonality based on land use,
types and age buildings or population, the desire for homogeneity, or
similar factors” (Eckert et al., 1990). There were 98 neighborhoods in
our analytical sample.

Tree-canopy cover data were provided by Landry et al. (2018) as
part of a UTC dataset for the entire City of Tampa. Tree-canopy cover
was mapped as part of a land-cover classification that used object-based
image analysis (O’Neil-Dunne et al., 2014). The tree-canopy cover map
(defined as tree canopy from trees that were greater than 2.5m tall) was
based on six-inch resolution, multi-spectral (blue, green, red, near-in-
frared) aerial imagery from early spring 2016 (collected December 1,
2015 and January 18, 2016), as well as ancillary spatial data (road
centerlines, water or wetland boundaries, and building footprints, for
example). Extensive manual corrections were then made, and a visual
accuracy assessment of 4199 randomly distributed points indicated an
overall accuracy of 92.2%. Tree-canopy cover, and all spatial data, were
converted to a State Plane (NAD83, Florida West) projected coordinate
system, and planar distances were used for all measurements.

Several previous studies have found that trees on a house’s lot may
be less valuable than trees in a house’s immediate neighborhood.
Unfortunately, distinguishing between lot and neighborhood trees with
remotely-sensed data is difficult, as it’s often not possible to locate a
tree’s stem on aerial imagery using an automated process. In addition,
using canopy cover that falls on a house’s lot as a metric of tree cover is
problematic, because the ownership of the tree—along with main-
tenance costs and legal responsibilities—depend on the location of the

Table 1
Descriptive statistics for house sales price and independent variables.

Variable Mean Median SD Minimum Maximum

Sales Price ($) 282,524 198,000 306,429 8,500 4,249,998
Bedrooms 3.14 3 0.989 0 7
Bathrooms 2.12 2 0.976 1 7
Number of stories 1.22 1 0.454 1 4
Lot size (m2) 779 689 462 202 5,666
Finished area (m2) 183 182 3 37 949
Water front (%) 2.3 – – – –
Flood zone (%) 16.8 – – – –
Garage (%) 49.2 – – – –
Carport (%) 21.7 – – – –
Porch (%) 62.5 – – – –
Pool (%) 15.1 – – – –
Percent tree cover on lot 45.8 45.5 25.2 0 100
Percent tree cover within

100 ft (30.5 m)
43.2 43.8 17.5 0 100

Percent tree cover within
500 ft (152m)

41.5 41.8 19.2 0 100
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tree’s stem not the location of the canopy. This may be particularly
relevant in this study, as we are investigating whether the presence of a
tree on a house’s lot may negatively impact sales price. Therefore, we
augmented remotely-sensed data with by-hand measurements to more
accurately determine how much tree-canopy cover a homeowner was
legally responsible for, even if this canopy overhung neighboring
properties. This allowed us to distinguish between lot trees, that a
homeowner is legally responsible for, and neighborhood trees that a
homeowner is not legally responsible for.

Referencing parcel boundaries and the same aerial imagery used for
tree-canopy cover mapping, we used a geographic information system
(ArcGIS 10.3; ESRI Corporation) to trace a polygon around all tree-
canopy cover that originated within each of the 1924 parcels sampled
from the original 4848 houses (see Fig. 2). In other words, each polygon
delineated the extent of tree-canopy cover (from the UTC dataset) for
trees originating on a single parcel. A zonal tabulation then used these
polygons to quantify the percentage of tree-canopy cover associated
with each parcel. In addition, based on previous research which found
an influence on property value from surrounding trees (Donovan and
Butry, 2010), we calculated the percentage of tree-canopy cover within
a 30.5 m (100 feet) buffer (0.29 ha/0.72 acre area) surrounding each
parcel; and the percentage of tree-canopy cover within a 152m (500
feet) buffer (7.2 ha / 18 acre area) surrounding each parcel. Buffer sizes
were chosen to represent the influence of adjacent parcels (30.5 m) and
a larger neighborhood area (152m).

2.2. Statistical analysis

We estimated the relationship between the sales price of homes and
tree-canopy cover using the hedonic method, which is a statistical
model that has been used for decades to estimate the impact of en-
vironmental amenities and disamenities on the sales prices of houses
(Rosen, 1974). Sales price is regressed against house and neighborhood
characteristics as well as the environmental amenity under study. The
environmental-economics literature does not provide any definitive
guidance on the appropriate functional form for hedonic models
(Taylor, 2003), so we estimated several models with different loga-
rithmic, semi-logarithmic, and Box-Cox specifications. We chose be-
tween them using residual plots and goodness-of-fit statistics.

Spatial autocorrelation is a common statistical issue that arises
when estimating hedonic models. The spatial autocorrelation can take
several forms. In a spatial-lag process, the sales price of homes are
spatially correlated; in a spatial-error process, the residuals of the he-
donic model are spatially correlated; in a joint lag-and-error process,
both sales prices and model residuals are spatially correlated. Failing to
correct for these spatially autoregressive processes can results in esti-
mates of regression coefficients that are inefficient or biased (Anselin
and Bera, 1998).

We investigated the presence of spatial autocorrelation using a
semivariogram of residuals from an ordinary least squares (OLS) he-
donic model. A semivariogram graphically displays the results of pair-
wise comparisons made between observations (residuals in our case)
over space. When spatial autocorrelation is present, the difference

Fig. 1. Location of house sales in the analytical sample, neighborhood boundaries, and tree-canopy cover.
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between observations is smaller for pairs that are closer together. We
chose to evaluate spatial autocorrelation with a semivariogram, be-
cause doing so didn’t require any assumptions about the form of any
spatial relationships. In contrast, statistical tests of spatial auto-
correlation—the Lagrangian Multiplier test, for example—require the
analyst to specify the form of the hypothesized spatial relationship
(Anselin and Hudak, 1992). A semivariogram also provides in-
formation—the spatial range of the autocorrelation, for example—that
helps correctly specify the form and extent of any spatial relationship in
subsequent regression models (Donovan et al., 2007). However, a
semivariogram cannot distinguish between spatial lag and error pro-
cesses. Therefore, we estimated a spatial lag (Eq. (1)), a spatial error
(Eq. (2)), and a joint lag-and-error hedonic model:

= + +W βXP ρ P μ (1)

= + +βX WP λ ε μ (2)

Where P denotes the sales price of homes; X is a vector of independent
variables; β is a vector of coefficients that is estimated in the regression
step; W is an n by n spatial-weights matrix that specifies the spatial
relationship between either sales prices or residuals; ρ (rho) and λ
(lambda) are spatial coefficients that are estimated in the regression
step; μ and ε are independent and identically distributed error terms. In
the joint lag-and-error model, both sales price and the error term are
spatially autoregressive (equation not shown). Theoretically, the two
spatial-weights matrices in the joint model could be different. However,
in practice there is seldom empirical justification for using different
matrices (Anselin, 2003). The elements of a spatial-weights matrix de-
fine the spatial relationship between pairs of observations. Two of the
most commonly used spatial patterns are inverse distance and inverse
distance squared (Elhorst, 2003). In both cases, the strength of the
spatially autoregressive process declines as the distance between two
observations increases. This decline is steeper when using an inverse-

distance squared matrix. We estimated lag, error, and lag-and-error
models using both inverse-distance and inverse-distance squared ma-
trices, and we chose between the two using the Akaike Information
Criterion (AIC).

In addition to these three spatial models, we estimated a non-spatial
mixed regression model that included neighborhood-level random ef-
fects (in the spatial models, indicator variables for neighborhood were
included as part of the fixed component of the models).

We employed a two-stage model-selection process. First, we used
backwards selection with progressively lower p-value thresholds (final
threshold p < 0.05) to estimate a hedonic model without variables
describing trees. Second, we added tree variables to this base model
again using backwards selection. To avoid including highly collinear
combinations of variables in our models, we estimated OLS versions of
each model (without neighborhood-level random effects or any cor-
rection for spatial autocorrelation), which allowed us to calculate var-
iance-inflation factors for each independent variable (we dropped any
variable with a VIF > 10). To investigate the presence of hetero-
scedasticity, we used residual plots.

3. Results

We found that a semi-log functional form had the best fit in all four
models: the dependent variable is the natural log of sales price and all
variables enter linearly. Our semivariogram analysis revealed a clear
spatial pattern in the residuals from an OLS model (Fig. 3). We found
that correcting for this spatial autocorrelation using an inverse-dis-
tance, rather than inverse-distance squared, spatial-weights matrix gave
lower AIC values for all spatial models (Table 2). Finally, none of the
independent variables included in our models had a variance-inflation
factor over ten, and residual plots did not show any evidence of het-
eroscedasticity.

Fig. 2. Example polygon delineating tree-canopy cover originating on a single lot (left) and area of 500 foot distance from the same lot (right). Trees within the
yellow boundary are lot trees (for which the homeowner is legally responsible), whereas trees outside the yellow boundary are neighborhood trees (for which the
homeowner is not legally responsible) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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The sign of the coefficients on housing and neighborhood char-
acteristics conformed to a priori expectations (Table 2). In addition,
coefficients varied only modestly across the four different models,
which suggests that results are not sensitive to correction for spatial
autocorrelation nor the form this correction takes. Note that we in-
cluded 90 indicator variables for neighborhood in the three spatial
models, but for clarity we have not included the results in Table 2 (full
results available from the authors). Although there are 98 neighbor-
hoods in Tampa, only 91 contained a sale from our sample.

Neither tree cover on a house’s lot, nor tree cover within 30.5m
(100 feet) of a house, were significantly associated with sales price.
However, tree cover within 152m (500 feet) of a house was significant.
In addition, the coefficient for tree cover within 152m of house was
consistent across the four models: 0.0936 (mixed model) to 0.0993 (lag-
and-error model). Interpreting the magnitude of this coefficient is
complicated by the model’s semi-log form. Therefore, we back trans-
formed the tree coefficient at the median of sales price (back trans-
formation at sales prices other than the median is problematic). Based
on the median house price of $165,000, a 1-percentage point increase
in tree-canopy cover within 152m of a house was associated with a
$155 to $164 increase in sales price (depending on the model for-
mulation). In our sample, there were 60 homes on average within
152m of a house. Therefore, a 1-percentage point increase in tree-ca-
nopy cover is associated with a total increase in sales price of $9271 to
$9836.

We can also express these results in terms of an average tree. Using
tree crowns measurements from 69 field plots (0.04 ha size) on re-
sidential land in Tampa (Landry et al., 2013), we found that the average
canopy size for a tree on the lot of a single-family home was 108 square
meters (1167 square feet). This corresponds to an increase in sales price
to homes in the neighborhood of $1378–$1461 attributable to the
average tree on a single-family property.

4. Discussion

Tampa is a rapidly growing city in Southern Florida that is facing
strong redevelopment pressure. A widely held view in the Tampa de-
velopment community is that trees are an impediment to this re-
development, and that properties with more trees sell at a discount
compared to equivalent properties without trees. We found no evidence
to support this view: trees on a house’s lot were not significantly

associated with sales price. This result is consistent with other studies
that found either no relationship between lot trees and sales price or
found that lot trees were negatively associated with sales price
(Donovan and Butry, 2010; Pandit et al., 2014; Saphores and Li, 2012).
We did, however, find that trees within 152m (500 feet) of a house
were significantly and positively associated with sales price. Again, this
result is consistent with previous studies that found that houses with
trees close to, but not on, the lot sold at a price premium (Donovan and
Butry, 2010; Pandit et al., 2014; Payton et al., 2008; Sander et al., 2010;
Saphores and Li, 2012). Our results do not provide any support for the
assertion that trees can reduce the sales price of homes in Tampa, nor
do results support changing urban-tree polices and regulations in areas
facing redevelopment pressure.

Our failure to find a sales-price penalty associated with lot trees may
be, in part, an artifact of our sample. Results may have been different, if
we had been able to restrict the sample to solely houses sold for re-
development, but we were unable to do so; therefore, we included all
sales in our analysis. However, if trees do impose a redevelopment price
penalty, then one would expect this price penalty to also impact houses
that aren’t sold for redevelopment. For example, trees may dissuade a
developer from making an offer on a house, and economic theory
suggests that reducing the number of parties interested in a sale would
negatively affect the sales price of a home, even if that home is bought
by someone who isn’t interested in redevelopment.

The magnitude and spatial extent of the observed tree price pre-
mium has policy implications. In particular, we found that the sales
price of a home may be affected by trees on neighboring properties.
This is a classic example of a positive externality in which a person
bears all the costs of a transaction (buying and maintaining a tree, in
this case) but does not receive all the benefits. Absent corrective action,
the positive externality we identified will result in an underinvestment
in trees from a societal perspective. A number of policy remedies are
available. A city can place restrictions on the removal of trees on pri-
vate land; a subsidy for tree planting could be offered; a city could
assume responsibility for the planting and maintenance of street trees.
In many cities, the provision and maintenance of street trees is the
responsibility of the adjacent property owner despite the trees being on
public land. In Tampa, the city has had strict tree-protection regulations
for over four decades (Landry et al., 2010, 2014) and provide a free
tree-planting program for home owners (CIty of Tampa, 2018b).

Our results were largely insensitive to correction for spatial

Fig. 3. Semivariogram of residuals from an ordinary least squares regression model of house sales price against house and neighborhood characteristics in Tampa,
Florida (n= 1924). Circles denote the semivariance from the model residuals (empirical), while the solid line is an exponential trend line.
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autocorrelation. In particular, it is encouraging that results weren’t
sensitive to assumptions about the form of the autocorrelation (lag
versus error process, for example).

Our study has a number of limitations. It is an observational, so we
weren’t able to show a causative relationship between trees and sales
price. In addition, we weren’t able to restrict the sample to houses sold
specifically for redevelopment. Results may have been different had we
been able to do so. Finally, our tree metrics were two dimensional; they
did not capture tree height or crown volume. Nonetheless, we believe
that our results support previous research demonstrating that trees can
increase the sales price of houses and we further demonstrate that this
relationship holds in a city like Tampa that faces major redevelopment
pressure.
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Non-ducted −0.267*** −0.266*** −0.267*** −0.282***
No AC −0.629*** −0.623*** −0.626*** −0.628***

Roof type (omitted: Asbestos)
Asphalt/Comp. Shingle 0.309* 0.321* 0.310* 0.312*
Built up Tar & Gravel 0.377** 0.378** 0.369** 0.370**
Metal 0.372** 0.384** 0.373** 0.371**
Minimum 0.306* 0.329* 0.311* 0.306
Rolled Composition 0.324* 0.326* 0.314* 0.327*
Rubber or Plastic 0.382* 0.398* 0.382* 0.385*
Slate 0.574 0.593 0.572 0.599
Tile 0.279 0.292* 0.284 0.283
AIC (inverse-distance) 958.5 947.7 944.3
AIC (inverse-distance squared) 959.3 954.2 953.6
lambda −1.812*** −0.730**
rho 0.448*** 0.504***

*** p< 0.01, ** p<0.05, * p< 0.1
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