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Abstract

Context As the frequency of large, severe fires

increases, detecting the drivers of spatial fire severity

patterns is key to predicting controls provided by

weather, fuels, topography, and management.

Objectives Identify the biophysical andmanagement

drivers of severity patterns and their spatial variability

across the 2013 Rim Fire, Sierra Nevada, California,

USA.

Methods Random forest models were developed

separately for reburned and fire-excluded ([ 80 year)

areas within Yosemite National Park (NP) and Stanis-

laus National Forest (NF). Models included

biophysical, past disturbance, and spatial autocorrela-

tion (SA) predictors.Variable importancewas assessed

globally and locally. Variance partitioning was used to

assess pure and shared variance among predictors.

Results High spatial variability in the relative dom-

inance of predictors existed across burn days and

between land ownerships. Fire weather was a domi-

nant top-down control during plume-dominated fire

spread days. However, bottom-up controls from fuels

and topography created local, fine-scale heterogeneity

throughout. Reburn severity correlated with previous

severity suggesting strong landscape memory, partic-

ularly in Yosemite NP. SA analysis showed broad-

scale spatial dependencies and high shared variance

among predictors.

Conclusions Wildfires are inherently a multi-scaled

process. Spatial structure in environmental variables

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10980-019-00947-z) con-
tains supplementary material, which is available to authorized
users.

N. A. Povak

USDA Forest Service, Pacific Northwest Research

Station, Wenatchee Forestry Sciences Lab, Wenatchee,

WA 98801, USA

N. A. Povak (&)

Oak Ridge Institute for Science and Education (ORISE),

Oak Ridge, TN 37830, USA

e-mail: nicholas.povak@usda.gov

V. R. Kane � J. T. Kane
School of Environmental and Forest Sciences, University

of Washington, Box 352100, Seattle, WA 98195, USA

B. M. Collins

Center for Fire Research and Outreach, University of

California, Berkeley, CA 94720, USA

J. M. Lydersen

Department of Environmental Science, Policy and

Management, University of California, Berkeley,

CA 94720, USA

Present Address:

J. M. Lydersen

California Department of Forestry and Fire Protection,

Fire and Resource Assessment Program, Sacramento,

CA 95818, USA

123

Landscape Ecol (2020) 35:293–318

https://doi.org/10.1007/s10980-019-00947-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-1220-7095
https://doi.org/10.1007/s10980-019-00947-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-019-00947-z&amp;domain=pdf
https://doi.org/10.1007/s10980-019-00947-z


create broad-scale patterns and dependencies among

drivers leading to regions of similar fire behavior,

while local bottom-up drivers generate fine-scaled

heterogeneity. Identifying the conditions under which

top-down factors overwhelm bottom-up controls can

help managers monitor and manage wildfires to

achieve both suppression and restoration goals.

Restoration targeting both surface and ladder fuels

can mediate future fire severity even under extreme

weather conditions.

Keywords Fire severity � Machine learning �
Variable importance � Spatial autocorrelation �
Variance partitioning � Rim fire

Introduction

Changing fire regimes in some forests resulting from

ongoing climate change and past management prac-

tices have altered the role of wildfire in fire-dependent

systems (Heyerdahl et al. 2001; Hessburg and Agee

2003; Lydersen and Collins 2018; Hessburg et al.

2019). Forests in the western U.S. historically char-

acterized by frequent, mixed-severity fire regimes

experienced an extended period of fire exclusion over

the past century due to effective fire suppression

policies and mild climate conditions. This resulted in

increased stand density driven by shade tolerant trees

(Hessburg et al. 2005; Scholl and Taylor 2010; Collins

et al. 2011; Lydersen and Collins 2018). Changes in

vegetation and fuel structure, coupled with changes in

climate, have contributed to considerable increases in

annual area burned (Dennison et al. 2014; Westerling

2016) and the size and dominance of stand-replacing

fire patches (Miller and Safford 2012; Cansler and

McKenzie 2014; Stevens et al. 2017; Singleton et al.

2019).

The increasing incidence of very large wildfires

([ 10,000 ha) has led to substantive changes in the size

distribution of wildfires (Cui and Perera 2008; Den-

nison et al. 2014; Barbero et al. 2015). This trend has

spurred an interest in the underlying relationships

between burn patterns and the drivers of fire size and

severity. Large fire events often coincide with extreme

weather resulting in severe fire effects (Peterson et al.

2015; Coen et al. 2018; Lareau et al. 2018) that can

negatively impact short- and long-term ecological

processes (Stephens et al. 2014). However, in some

areas, large fires were common historically and can

currently provide important ecological benefits (Brad-

stock 2009; Hammill and Bradstock 2009; Keane et al.

2009). Large fire frequency is expected to increase

under climate change (Stavros et al. 2014), and

information gaps exist regarding their ecological

causes, consequences, and management implications.

Investigations into the drivers of large fire severity

patterns, their landscape variability, and potential

thresholds where top-down factors exceed the capacity

for finer-scale patterns to affect fire behavior are critical

research topics (Finney 2001; O’Connor et al. 2017).

Correlative modeling and spatial autocorrelation

Remotely-sensed data are commonly used to study the

drivers of fire severity patterns across large landscapes

(Prichard and Kennedy 2014; Kane et al. 2015a; Parks

et al. 2018b). Fire severity is defined as the amount of

fire-related change to ecosystem components such as

soil and vegetation (Key and Benson 2006; Parks et al.

2018b). Fire severity indices are developed from

detected changes in soil and vegetation reflectance and

statistically related to biophysical and disturbance

history variables, which influence these patterns.

Variability in fire weather, fuels, and topography

across the landscape manifests in heterogeneous burn

patterns as their influence and interdependence

change, often in complex ways, within and among

fires, which creates challenges for traditional statisti-

cal models (Bradstock et al. 2010; Parks et al. 2011).

Machine learning models have been incorporated

into ecological research to infer complex statistical

relationships and interactions between ecological

patterns and processes (Elith et al. 2006; Cutler et al.

2007; Olden et al. 2008). These models produce

accurate predictions while still exposing model

behavior and assessing model errors similar to more

traditional linear models. However, these models must

also account for the inherent spatial autocorrelation

(SA) associated with environmental patterns and the

contagious nature of fire spread (Wimberly et al. 2009;

Prichard and Kennedy 2014; Portier et al. 2018). SA

describes the similarities in observations related to

their geographic distance (Legendre 1993). In para-

metric regression, SA invalidates the assumption of

model residuals being independent and identically

distributed. Strong SA can lead to selection of weak
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predictors and makes inferences of model results to

other geographies difficult (Legendre 1993; Dormann

et al. 2007; Hawkins et al. 2007). Less is known about

the effects of SA in machine learning, however, recent

research has shown increased model accuracy and

reduced SA in model residuals when methods to

account for SA are used (e.g., Crase et al. 2012;

Václavı́k et al. 2012; Mascaro et al. 2014; Ryo et al.

2018; Portier et al. 2018).

Methods for controlling SA in fire severity model-

ing have varied. Gridded sampling uses a minimum

sampling distance to reduce the spatial dependence

among sample points (Odion et al. 2004; Parks et al.

2014; Birch et al. 2015; Kane et al. 2015a). Alterna-

tively, Wimberly et al. (2009) and Prichard and

Kennedy (2014) used sequential autoregression

(SAR) to model the effects of fuels-reduction treat-

ments on fire severity patterns. SAR incorporated SA

by including information on the severity of neighbor-

ing grid cells into a spatially explicit term in the linear

model. Models had high accuracy in predicting fire

severity patterns and confidence in identifying treat-

ment effects on mitigating fire severity. Portier et al.

(2018) used residuals autocovariate (RAC) models to

predict burn rates in coniferous boreal forests of

eastern Canada. These models derived a spatially-

explicit covariate from the residuals of an initial

environment-only model, and the authors found higher

model performance for RAC models compared to the

environment-only models.

Within fire modeling, SA modeling methods have

not yet been incorporated into a machine learning

context, and an explicit estimation of the scale and

overall influence of SA on model results is still

lacking. Furthermore, the methods outlined above do

not quantify the variability in fire severity that is

attributable to SA alone or jointly with other predictor

variables, although current methods could be extended

to achieve this goal.

Study objectives

We applied a machine learning framework to assess

the main environmental drivers, their spatial structure,

and variability for the 2013 Rim Fire located in the

Sierra Nevada Mountains of California, USA. The

Rim Fire burned more than 100,000 ha within the

Stanislaus National Forest (NF) and Yosemite

National Park (NP) in California, USA, making it

one of the five largest fires in California history to date.

The fire burned across a variety of biophysical

conditions and vegetation types, experienced several

plume-dominated fire days leading to rapid fire

growth, and spanned a variety of land ownerships that

experienced different forest management and fire

histories (Collins et al. 2017a).

The spatial drivers of Rim Fire severity have

previously been studied with a wide range of objec-

tives (Lydersen et al. 2014; Harris and Taylor 2015;

Kane et al. 2015a; Harris and Taylor 2017; Lydersen

et al. 2017). Kane et al. (2015a) focused on reburned

patches for a small portion of the Rim Fire footprint

within Yosemite NP where LiDAR data were acquired

and used machine learning models to relate a variety

of climate, weather, fire history, and forest structure

variables to severity. Harris and Taylor (2017) focused

on reburns throughout the fire and modeled the

relationships among biophysical and fire history

predictors. Lydersen et al. (2017) investigated the

drivers of Rim Fire severity within reburns and

previously managed treatment units.

Our study complements this previous work by

providing a comprehensive assessment of the drivers

of fire severity across the entire burned area. We

include an examination of the spatial trends in local

variable importance to assess changes in the relative

influence of variables across heterogeneous environ-

ments and burn days. We also incorporate an explicit

analysis on the effects of spatial autocorrelation on fire

severity patterns, which is often missing from studies

of large wildfires.

We addressed the following research questions:

1. How did the importance of top-down and bottom-

up drivers vary spatially?

2. Were differences in managed (Stanislaus NF) and

unmanaged (Yosemite NP) landscapes reflected in

the main drivers of fire severity patterns?

3. Under what conditions do past management units

influence subsequent fire effects?

4. What is the role of SA in modeling fire severity

patterns using machine learning?
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Methods

Study area

The Rim Fire was human ignited and burned

104,131 ha between August 17 and October 24,

2013 in the central Sierra Nevada (Fig. 1) during the

second year of a major four-year drought. The fire

started on the Stanislaus NF and spread east into

Yosemite NP. Approximately 35% of the fire’s area

burned over 2 days (August 21 & 22), when plume-

dominated, extreme fire behavior resulted from pyro-

cumulonimbus formations under an unstable air mass

(Fig. 2). In total, plume-dominated conditions existed

over seven burn days covering 64% of the total burned

area (Peterson et al. 2015).

The climate of the central Sierra Mountains in

California is characterized as Mediterranean with cool

winters and warm summers with most precipitation

occurring in the winter. Prior to the Rim Fire, conifer

forests were the dominant vegetation type (71%)

followed by oak woodland (12%), shrubland (11%)

and grassland (5%; LANDFIRE 2012).

The area burned in the Rim Fire had 60.1% within

the Stanislaus NF, 30.7% in Yosemite NP, 8.9% in

private land ownership, and\ 1% in other Federal

and county lands. Stanislaus NF has a long history of

mining, homesteading, ranching and timber harvest-

ing. Recently, thinning and fuels reduction treatments

have been conducted to reduce fuel loads. In Yosemite

NP, mechanical fuel management activities are rarely

used, although a small portion of the park was logged

in the early 20th century. Our analyses focused on both

NF and NP lands as they represent[ 90% of the total

area burned by the Rim Fire, and allowed for a

comparison in severity patterns across differing man-

agement objectives regarding harvesting, fire suppres-

sion and prescribed burning practices (Johnson et al.

2013). However, differences also exist in the biophys-

ical setting (Table 1) and dominant vegetation types

Fig. 1 Location map for the 2013 Rim Fire. Black lines depict

the Stanislaus National Forest (NF, west) and Yosemite

National Park (NP, east) boundaries. The color gradient

represents fire severity classes and associated RdNBR (relative

differenced normalized burn ratio, 30 m resolution) cutoff

values. The inset map in the topleft shows the location of

Stanislaus NF (dark green) and Yosemite NP (light green).

(Color figure online)
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(Table 2) between the two land designations. Namely,

the Rim Fire in Yosemite NP burned at higher

elevation, and included a larger proportion of red fir-

dominated forests, which historically had longer fire

return intervals (Beaty and Taylor 2001). Stanislaus

NF included a higher proportion of mixed oak

woodland and mixed conifer forest (Table 2).

Fire severity data

Following Lydersen et al. (2016), we used relative

differenced Normalized Burn Ratio rasters based on

1-year post-fire assessment (RdNBR, 30-m resolution)

to quantify fire severity patterns across the Rim Fire

and all previous fires that burned within its extent

(C 80-ha, 1984–2012) (Miller et al. 2009; Miller and

Fig. 2 Rim fire severity (RdNBR, 30 m resolution) for areas

that a burned between 1984 and 2012 (i.e., reburns), and b for

areas that had not burned since at least 1930 (i.e., first-entry

fires). Dark grey lines represent fires that burned between

1984–2012, and light grey dotted lines represent fires that

burned between 1908–1983. c Plume-dominated Rim fire

progression days. Dark grey polygons represent the top two

ranked burn days by area burned (August 21 & 22), while the

light grey depict the remaining days with plume-dominanted fire

behavior. Major streams and lakes are included for reference.

dManagement units (1995–2012) where mechanical thinning or

other even- and unevenaged-management activities were

conducted, and/or where mechanical surface treatments were

used to reduce fuel loads. Black lines in panels C and D

represent the boundaries of Stanislaus NF and Yosemite NP
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Quayle 2015; Lydersen et al. 2016). RdNBR is a

satellite-derived measure of the loss of photosynthetic

materials following a fire and is a surrogate for

quantifying fire effects on ecosystem change

(Table S1). Large values indicate large decreases in

photosynthetic materials and surface materials hold-

ing water and an increase in ash, carbon, and exposed

soil (Miller and Thode 2007). Miller et al. (2009)

showed positive non-linear relationships between

RdNBR and a series of forest plot-based estimates of

fire-caused vegetation loss in the Sierras. Data were

retrieved from a database maintained by the US Forest

Service, Pacific Southwest Region. An additional

dataset developed by Lutz et al. (2011) was used to

extend the lower size threshold to fires C 40 ha

(1984–2010) within Yosemite NP. The dataset

included a total of 49 fires that burned from

1984–2012 and ranged in size from 4 to 24,000 ha.

We were interested in modeling both fire-excluded

and reburned areas (Fig. 2). The former had no record

Table 1 Fifth, fiftieth, and ninety-fifth percentile values across 30 m pixels for elevation, climate normals, annual climate variability

and daily fire weather variables for the 2013 Rim Fire burned area within the Stanislaus NF and Yosemite NP

Variable Temporal

resolution

Spatial

resolution

Units Stanislaus NF Yosemite NP

5th 50th 95th 5th 50th 95th

Elevation N/A 10-m m 668.2 1270.7 1767.0 1309.6 1759.6 2176.4

Actual evapotranspiration 30-year normal 270-m mm 345.0 425.4 538.8 258.0 380.5 446.0

Water deficit 30-year normal 270-m mm 508.9 683.5 797.9 464 560.9 718.0

Precipitation 30-year normal 270-m mm 892.6 1047.0 1207.3 951.4 1088.1 1270.3

April snow pack 30-year normal 270-m mm 0.0 8.0 224.2 15.3 123.1 374.0

Maximum temperature Annual (2013) 270-m % 46.5 66.7 84.1 46.4 75.0 93.1

Precipitation Annual (2013) 270-m % 14.8 24.9 34.1 15.9 24.9 36.4

Snow pack Annual (2013) 270-m % 44.3 76.0 88.6 46.9 68.1 82.1

Energy release

component

Daily 4-km Unitless 64.4 78.8 81.3 68.1 72.1 79.1

Burning index Daily 4-km Unitless 48.9 55.9 73.0 51.0 57.2 73.1

Table 2 Percent composition of dominant 2012 LANDFIRE Enhanced Vegetation Type classes across the Stanislaus NF and

Yosemite NP land designations within the footprint of the 2013 Rim Fire

EVT class ID Stanislaus NF Yosemite NP

Mediterranean california mesic mixed conifer forest and woodland 3028 30.9 42.6

Mediterranean california mixed oak woodland 3029 19.8 6.4

Mediterranean california red fir forest 3032 1.4 20.1

Mediterranean california dry-mesic mixed conifer forest and woodland 3027 14.6 5.2

California montane woodland and chaparral 3098 5.5 6.1

Mediterranean california lower montane conifer forest and woodland 3030 6.5 1.3

California montane riparian systems 3152 3.2 4.1

California lower montane foothill pine woodland and savanna 3114 6.7 0.2

California montane jeffrey pine (-ponderosa pine) woodland 3031 4.7 2.2

Mediterranean california sparsely vegetated systems II 3221 1.4 3.6

North pacific montane grassland 3138 1.3 2.5

Northern and central california dry-mesic chaparral 3105 1.1 0.2

Classes included in the table represent those that accounted for[ 1% coverage for both areas and represent 97 and 95% of the Rim

Fire area within Stanislaus NF and Yosemite NP, respectively
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of burning since 1930 (van Wagtendonk 2012), while

the latter burned between 1984 and 2012 and included

fire severity data. In total, we developed four RF

models: (1) Stanislaus NF, reburned areas; (2) Stanis-

laus NF, fire-excluded areas; (3) Yosemite NP,

reburned areas; and (4) Yosemite NP, fire-excluded

areas.

Predictor variables

Table 3 includes a description of the predictor vari-

ables. Native raster resolution varied from 10 to 4,000-

m across predictor variables (Table 3). All rasters

were resampled to 30-m resolution to match the

RdNBR data.

Fire history

Fire perimeter data (1930–2013) were downloaded

from the California FRAP (Fire and Resource Assess-

ment Program) database and were used to remove

areas that experienced fire but did not include severity

data.

For reburn models, predictor variables included: the

number of past fires, years since last fire, maximum

previous RdNBR (Kane et al. 2015b; Lydersen et al.

2017), and the distance from past fire boundary. The

latter only included fires that burned\ 10 years prior

to the Rim Fire, which corresponds to a threshold

where past fires provide limited control on subsequent

fires (Collins et al. 2009). Values for this variable were

negative for pixels within the perimeter of a previous

fire, and positive for pixels outside previous fires.

Climate and climate variablity

To quantify spatial variability in long-term climate,

we used 30-year climate normals data from the 2014

California Basin Characterization Model (BCM,

http://climate.calcommons.org) (Flint et al. 2013).

BCM uses a gradient-inverse distance squared

approach to spatially downscale PRISM climate data

(PRISM Climate Group 2013) from 800 to 270 m. We

used climate normals data calculated for the years

1981–2010 to represent long-term actual evapotran-

spiration (AET), climatic water deficit, maximum

temperature, annual precipitation, and April 1 snow-

pack (Tables 1, 3).

The BCM dataset was also used to represent

percentile conditions for the year of the Rim Fire

(2013, lag0) and year prior to fire (2012, lag1) for the

same set of predictor variables. Annual data were

downloaded for the years 1969–2013 in their native

units from which percentiles were calculated for each

pixel (Tables 1, 3).

Fire weather

To characterize local weather conditions for each daily

burn period, we used the spatially explicit 4-km

GRIDMET daily weather from Abatzaglou et al.

(2013). While these data are coarse grained, they

capture some spatial variability not captured by an

individual remote weather station, which is commonly

used (Harris and Taylor 2017; Lydersen et al. 2017).

Predictor variables included Energy Release Compo-

nent (ERC), Burning Index (BI), 100- and 1000-h dead

fuel moistures, and wind speed (m s-1). ERC is a

measure of the potential heat release per unit area and

corresponds to fuel moisture. BI is proportional to the

expected flame length and is a product of the ERC and

the predicted headfire rate of spread. BI and ERC

describe important aspects of short and long-term fire

weather and are related to both the expected size and

intensity of the flaming front.

Topography

A 10-m DEM (Gesch et al. 2002) was processed using

USDA Forest Service’s FUSION v3 software package

(http://forsys.cfr.washington.edu/fusion.html) to

develop slope, aspect, standardized topographic posi-

tion index (250-, 500-, 1000-, 2000-, and 4000-m

radius windows), and solar radiation rasters.

Vegetation/live fuels

Following Parks et al. (2018b) we used several

LANDSAT-derived metrics to quantify pre-fire live

fuels: NDVI (normalized difference vegetation index),

NDMI (normalized difference moisture index), and

EVI (enhanced vegetation index). These were derived

from the LANDSAT-8 imagery captured on July 14,

2013 included in the Rim Fire MTBS (Monitoring

Trends in Burn Severity) data package (Eidenshink

et al. 2007).
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Table 3 The global list of predictor variables used in the random forest modeling of Rim Fire severity

Resolution (m) Source Units

Climate normals

Actual evapotranspiration (AET) 270 Flint et al. (2013) mm water

Climatic water deficit (Deficit) 270 Flint et al. (2013) mm water

Annual precipitation 270 Flint et al. (2013) mm water

Annual temperature 270 Flint et al. (2013) mm water

April snowpack 270 Flint et al. (2013) mm depth

Antecedent weathera

Max annual temperature (Lag 0b, Lag 1c) 270 Flint et al. (2013) Degrees C

Annual precipitation (Lag 0, Lag 1) 270 Flint et al. (2013) mm water

Annual snowpack (Lag 0, Lag 1) 270 Flint et al. (2013) mm depth

Fire weather

Daily energy release component 4000 Abatzoglou et al. (2013) Unitless

Daily burning index 4000 Abatzoglou et al. (2013) Unitless

Daily windspeed 4000 Abatzoglou et al. (2013) m s-1

Vegetation/fuels

Normalized difference vegetation index 30 MTBS Unitless

Normalized difference moisture index 30 MTBS Unitless

Conifer vegetation coverage 30 LANDFIRE Percentage

Shrub and grass coverage 30 LANDFIRE Percentage

Non-burnable coverage 30 LANDFIRE Percentage

Hardwood coverage 30 LANDFIRE Percentage

Topography

Aspect 10 USGS DEM Cosine degree

Slope 10 USGS DEM Percent

Solar radiation index 10 USGS DEM Relative index

Standardize topographic position index 10 USGS DEM Relative index

Topographic wetness index 10 USGS DEM Unitless

Heat load index 10 USGS DEM Unitless

Distance to road 10 TIGER m

Fire history

Maximum previous RdNBR 30 MTBS Unitless

Time since last fire 30 MTBS Years

Number of previous fires 30 MTBS Count

Distance to past fire edge (\ 10 year)d 30 MTBS m

Management

Any management, mechanical treatment, surface treatment NA FACTS/CAL FIRE Yes/No

Mechancial treatment, mechanical treatment ? surface treatment 180 (radius) FACTS/CAL FIRE Percentage

Spatial autocorrelation

PCNM vectors 1 – 10e 270 Unitless

Predictor variable names in italics were included in at least one of the final models after variable selection
aAntecedent weather variables were represented as percentile values calculated from 1969–2013
bYear of the fire (2013)
cYear prior to the fire (2012)
dOnly fires that occurred\ 10 years prior to the Rim Fire were included
ePrincipal coordinates of neighborhood matrices (PCNM), see text. For Yosemite PCNM 6 was selected and for Stanislaus PCNM 3,

4, 5, and 8 were selected
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We assessed pre-fire vegetation using the 2012

LANDFIRE existing vegetation type (EVT) layer

(LANDFIRE 2012). Data were incorporated into the

analysis in two forms: (1) a classification of the EVT

into conifer, hardwood, shrub/grass, and non-burnable

types, and (2) the percentage of each type within a

180-m radius around each pixel. We used the latter to

evaluate the vegetation conditions within a local

neighborhood which may influence fire effects.

Mechanical thinning and surface fuel treatments

Past harvest and fuel reduction treatment records from

1995 to 2013 were downloaded from the US Forest

Service Activity Tracking System (FACTS) for the

Stanislaus NF and from the California Department of

Forestry and Fire Protection for Tuolumne and

Mariposa Counties. Management activities were clas-

sified as clearcut, salvaged, shelterwood, and fuels

reduction thinning (4 classes). Each category was also

distinguished using post-harvest prescribed burning or

mechanical surface fuel manipulation leading to a total

of 12 classes (4 forest treatment classes 9 3 surface

fuel treatments (none, burn, mechanical)). These data

were reclassified as any management (yes/no),

mechanical treatment (yes/no), surface treatment

(including broadcast burning and other mechanical

treatments; yes/no), percentage area thinned (180-m

window), percentage area thinned ? surface treat-

ment (180-m window).

Spatial autocorrelation

Predictor variables obtained from a principal coordi-

nates of neighbor matrices (PCNM) were used to

represent SA (Borcard and Legendre 2002; Dray et al.

2006). The PCNM procedure, a special case of spatial

eigenvector maps, creates a truncated Euclidean

distance matrix for points within a predefined distance,

which is submitted to a principal coordinates analysis,

and all eigenvectors with positive eigenvalues are

returned. These vectors form fine- to broad-scale

regions of spatially correlated values (Figs. S2–S4).

Low-order PCNM vectors represent broad-scale SA,

while higher-order vectors represent more fine-scaled

SA (Borcard and Legendre 2002). These variables

allowed the model to capture (1) non-stationarity in

predictor-response relationships (Dormann et al.

2007), (2) unmeasured or unobservable variation in

fire severity patterns, and (3) SA inherent to conta-

gious fire spread.

Several studies have incorporated spatial eigenvec-

tor mapping into machine learning models including

MAXENT (De Marco Jr et al. 2008; Blach-Overgaard

et al. 2010; Reshetnikov and Ficetola 2011; Václavı́k

et al. 2012; Cardador et al. 2014), boosted regression

trees (Huang and Frimpong 2015), neural networks

(Komac et al. 2016), and random forest (Ryo et al.

2018).

Truncated distance matrices were developed with a

threshold distance of 10,000-m based on Moran’s I

correlograms of RdNBR (Fig. S1). From initial data

exploration, we found that lower-ordered (e.g., 1–10)

PCNM vectors consistently showed the highest vari-

able importance. Given the computational time and

system memory required to run PCNM on large

matrices (Dormann et al. 2007), we calculated the first

30 PCNM eigenvectors for each of the four model

runs, which captured broad- to medium-scale spatial

patterns. The number of PCNM variables included in

each of the four models was further reduced using

feature selection (‘‘Variable reduction and model

selection’’).

PCNM analyses was conducted in R using scripts

modified from the ‘‘pcnm’’ function in the vegan

package (Oksanen et al. 2018). The ‘‘eigs_sym’’

function from the RSpectra package (Qiu and Mei

2018) replaced the base ‘‘eigen’’ function, which

calculated only the top N eigenvectors with the largest

algebraic eigenvalues. This greatly reduced computa-

tional time, and produced identical results to the base

‘‘eigen’’ function.

Data sampling

We further addressed potential SA in our data using

gridded sampling. All data layers were sampled on a

grid at various spacing intervals (30-, 60-, 90-, 180-,

270-, 360-m). From initial modeling, we decided upon

270-m spacing, which matched the resolution of the

downscaled BCM climate data. Sample points within

100-m of the fire boundary were removed to reduce

edge effects (Parks et al. 2018b).

Sampling points were further screened to remove

the very highest (RdNBR[ 1200) and very lowest

(RdNBR\- 100) severity values to avoid outliers in

the distribution, similar to Lutz et al. (2011). These

represented\ 3% of the total number of sample
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points. Sample points were also removed if they

corresponded with a non-burnable substrate such as

rock, water, ice, or other barren land type (LANDFIRE

2012).

Machine learning modeling

Random forest models were developed separately for

the four scenarios. Modeling was conducted in the R

3.5.1 statistical software (R Core Team 2018) using

the mlr package (Bischl et al. 2016). Variable

importance was assessed with conditional RF models

using the ‘‘cforest’’ function from the party package.

Conditional RF uses hypothesis testing to determine

variable significance at each split based on the null

hypothesis of independence between predictor and

response variables (Strobl et al. 2007, 2008). We

found higher error rates for conditional RF models

compared to the original RF implementation and

therefore used (1) conditional RF for all analyses

related to variable importance and (2) RF for model

predictions, error-rates, and partial plots. We used

default settings for RF, but increased the number of

trees from 500 to 2500 to ensure stability in variable

importance metrics.

Variable reduction and model selection

The goal of variable reduction was to (1) reduce the

number of predictor variables (Table 3) to a parsimo-

nious set (Table S2), (2) allow direct comparisons of

predictor variables across models, and (3) retain

variables within predictor variable groups represent-

ing fire-weather/climate, topography, fuels, past wild-

fire history (reburns only), and management

(Stanislaus NF only), such that each group is repre-

sented in the final models.

We performed variable reduction separately for

each of the four models resulting in four subsets of

predictor variables. We then combined variable sets

across models to allow for a direct comparison of

predictor variable importance and their relationship to

fire severity patterns. Variable reduction began by

removing multicollinearity among predictor variables

(|r| C 0.7). Correlated variables with higher Pearson’s

r coefficient with RdNBR were retained. Backwards

elimination was used to identify a parsimonious set of

predictor variables for each model whereby variables

with the lowest importance were sequentially

eliminated until final model R2 fell below 95% of

the maximum R2. The 95% cutoff was selected to

balance model performance and parsimony and cor-

responded with a threshold where fewer variables

greatly reduced model performance. Final variables

selected across all four models were combined and

included in all four models with the exception of

management variables, which were specific to Stanis-

laus NF, and past fire history variables, which were

specific to reburned areas.

Due to relatively low importance when considering

the entire dataset of 30-m pixels, topographic and

management variables were excluded during variable

reduction. However, given our model objectives, we

were interested in determining if strong local impor-

tance could be identified for these variables and in

quantifying the amount of shared and pure variance

attributed to each variable group. Therefore, we

included two topography variables, STPI (4000-m

window) and slope, based on their inclusion in

previous research (Kane et al. 2015b; Harris and

Taylor 2017), and four management variables

(Table S2).

Following variable reduction, the PCNM eigen-

vector 6 was selected for both Yosemite NP models,

and PCNM vectors 3-5, and 8 for Stanislaus NF, which

represented SA at scales between 2 and 9-km for fire-

excluded areas and 7–12-km for reburns (Fig. S4).

Variable reduction procedures are commonly applied

in regression analyses to eliminate nonsignificant

PCNM vectors (Borcard and Legendre 2002; Bellier

et al. 2007; Hernández-Stefanoni et al. 2011). In lieu

of statistical significance measures for the RF models,

we determined that the limited number of PCNM

predictors selected by variable reduction sufficiently

removed extraneous SA variables.

Local variable importance

Predictor variable importance was further assessed at

individual sample points using the mlr package

(Bischl et al. 2016). Local importance values were

scaled such that all values\ 0 (low importance) were

converted to NA and remaining values were scaled

between 0 (lowest)–100 (highest) using a linear

transformation. Scaled values were subsequently

mapped for further inspection.
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Variance partitioning

Variance partitioning develops factorial combinations

of predictor variables or variable groups, and calcu-

lates the pure, shared, and total variance explained

among them (Borcard et al. 1992). Pure variance refers

to the individual contribution of a variable group,

while shared variance is jointly accounted for by more

than one group. Predictor groups included climate/

weather, topography, fuels (i.e., fire history, NDVI and

NDMI), and spatial autocorrelation (Table S2). These

methods were conducted using out-of-bag model R2

for RF models with scripts modified from the varpart

function within the vegan package (Oksanen et al.

2018).

Variance partitioning is generally used with linear

models, rather than machine learning algorithms

(Chen 2015). The important distinction is that most

machine learning algorithms incorporate interactions

among variables while linear models are additive.

Recently, variance partitioning methods have been

extended to include regression trees (Boone and Krohn

2000; Bucini et al. 2009), and boosted regression trees

(Quisthoudt et al. 2013; Feld et al. 2016; Lemm et al.

2019). To test the effect of RF on variance partitioning

results, we re-ran variance partitioning with general-

ized additive models (GAM). GAMs are flexible and

capable of modeling non-linear relationships, but

combinations of predictors are additive rather than

interactive as is the case for RF.

Fig. 3 Observed Rim Fire severity (RdNBR) versus out-of-bag

random forest model predictions. Blue shading represents a

2-dimensional kernel density estimate with darker hues repre-

senting higher densities of observations. Black diagnol dashed

line repesents the 1:1 line where predictions are equivalent to the

observed severity. Dotted lines represent fire severity class

cutoffs: low (green), moderate (yellow), and high (red). (Color

figure online)
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Results

Model performance

For Yosemite NP, the reburn model had a higher out-

of-bag R2 (64.5%) compared to the fire-excluded

model (41.4%; Fig. 3; Table 4). However, for Stanis-

laus NF the model for fire-excluded areas had a higher

out-of-bag R2 (64.5%) compared to the reburn model

(56.7%). Models generally over-predicted the

unchanged and low severity classes and under-

predicted the high severity class (Fig. 3). Spatial

trends in model predictions showed that models were

accurate for general trends in fire severity patterns, but

were not sensitive to much of the fine-scaled pattern-

ing associated with non-plume dominated days

(Fig. 4). Differences between the observed (30-m)

and predicted (270-m) severity maps (Figs. 2, 4) can

partially be attributed to the coarser resolution of the

training data. Moran’s I correlogram showedmoderate

levels of SA in Rim Fire RdNBR, which was

effectively removed in the RF residuals both with

and without the SA variables (Fig. S1).

Predictor variable importance

Key differences were apparent in model variable

importance across Stanislaus NF and Yosemite NP

Table 4 Sample sizes (i.e., number of pixels used as training data) and out-of-bag R2 for random forest models used to model Rim

Fire severity

Ownership Fire-type Sample size R2
OOB

Yosemite NP Reburned 3703 64.5

Yosemite NP Fire-excluded 716 41.4

Stanislaus NF Reburned 4234 56.7

Stanislaus NF Fire-excluded 2988 64.5

Fig. 4 a Random forest predicted Rim Fire severity (RdNBR,

270-m resolution), reclassified into fire severity class bins, and

b classified model residuals. Areas within the Rim Fire without

predictions are where fire burned previously before 1984 and no

RdNBR data existed for these fires. Grey solid lines represent

boundaries of previous fires that burned between 1984–2012.

Black lines depict the boundaries of the Stanislaus National

Forest to the west and Yosemite National Park to the east
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(Figs. 5, 6, 7). For fire-excluded areas, fuels variables

(conifer cover and NDVI) were the most important

drivers of severity in Yosemite NP, while daily fire

weather and SA variables were most important in

Stanisluas NF (Figs. 5, 6). For both models, daily fire

weather variables were of greater importance than

long-term climate variables, and topography variables

had low importance overall (Figs. 5, 6).

For reburned areas, previous fire severity was the

main driver for both Yosemite NP and Stanislaus NF,

and severity increased linearly with previous RdNBR.

However, variable importance for previous RdNBR

was much higher for Yosemite NP (Figs. 5, 7). Similar

to fire-excluded areas, fuels variables tended to have

higher variable importance in Yosemite NP, and SA

variables were more influential in Stanislaus NF.

Topography variables were similarly poor predictors

overall. Daily fire weather variables were compara-

tively less important for reburn models (Figs. 5, 7).

Forest management variables showed low overall

variable importance regardless of the management

action for both reburned and fire-excluded areas

(Fig. 5).

Spatial autocorrelation variables generally had

higher importance for Stanislaus NFmodels compared

to Yosemite NP (Figs. 5, S4–S6). Response curves for

SA variables were generally non-linear, but note that

there are no a priori functional relationships between

these variables and RdNBR as the PCNM axes

represent purely spatial trends (Figs. S5, S6).

Local drivers of fire severity

For fire-excluded areas, fire weather was the dominant

variable in Stanislaus NF for both plume and non-

plume dominated days, with some areas of high fuels

importance near the Clavey and Tuolumne Rivers

(Figs. 8, S1). In Yosemite NP, fuel was the most

important variable for fire-excluded areas followed by

fire weather, which were located at the southeastern

border of the fire outside of the plume-dominated burn

days (Fig. 2b, c).

For reburned pixels, previous fire history was the

main driver of fire severity for Stanislaus NF and

Yosemite NP under both plume and non-plume

dominated days (Fig. 8). However, fire history vari-

ables had weak importance in a large area near the

boundaries of the Stanislaus NF and Yosemite NP near

the center of the fire. This area corresponded with high

importance for weather variables in the Stanislaus NF,

with mixing of high importance for fuels (NDVI,

conifer coverage) and weather variables in Yosemite

NP.

Overall, topographic variable importance was low,

but increased near rivers and lakes, and for isolated

patches dispersed throughout the fire extent. For

instance, near the center of the Stanislaus NF, high

topographic variable importance corresponded with a

large depression (low STPI) among rolling terrain

dissected by a riparian area (Fig. 8), which experi-

enced comparably lower fire severity than surrounding

areas (Fig. 2).

Evidence of effective past management was appar-

ent for some isolated treatment units near the

Yosemite NP boundary, near the Clavey River, and

between Cherry and Eleanor Lakes (Figs. 8, S1). Near

Fig. 5 Dotplot depicting the relative variable importance for

the four random forest models used to model Rim Fire severity.

Abbreviations are: RdNBR relativized differenced normalized

burn ratio, ERC energy release component, NDVI normalized

difference vegetation index, NDMI normalized difference

moisture index, PCNM principal coordinates of neighborhood

matrices, AET actual evapotranspiration
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the southeastern border of Stanislaus NF, a large

treated area, consisting of a[ 700-ha commercial

thin * 16–18 years prior to the fire and a[ 400-ha

clearcut following the 1996 Ackerson Fire exhibited

high variable importance (Fig. 8). Both units were

outside the area covered by the two most extreme

plume-dominated burn days, but were affected by later

plume-dominated fire progressions, which burned less

severely. Near the Clavey River, a 1997 clearcut area

(* 600-ha) near the eastern extent of the 1996 Rogge

Fire corresponded with high importance for manage-

ment variables.

Variable importance values for management vari-

ables were lower under plume-dominated conditions

Fig. 6 Partial dependence plots for the top 8 predictor variables

(excluding SA variables) for random forest models used to

evaluate fire-excluded areas (e.g., areas that burned during the

2013 Rim Fire for the first time on record). Plots depict the

marginal effect of a predictor variable on predicted Rim Fire

severity. Points represent severity predictions made for 25

values across the range of each predictor variable. Dashed grey

lines are lowess (locally weighted scatterplot smoothing)

smoothed trend lines, and colored dotted lines are 2 * SE of

the lowess estimate. The opacity of each point was determined

by the empirical density function of the predictor variable with

darker hues representing higher densities and lighter hues

representing sparse data. Values in parentheses represent

variable importance for Stanislaus NF (STF) and Yosemite

NP (YOSE), and panels are ordered by the mean variable

importance. Blue and gold tick marks on plot margins indicate

the mean fire severity for STF (blue) and YOSE (gold). (Color

figure online)
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(Fig. S7). However, where management was effective

under the plume, treatments led to relatively lower fire

severity compared to treatments outside the plume

(Fig. S7). Spatial autocorrelation variables exhibited

high importance in the southwestern portion of the

Rim Fire in a reburned landscape near the Tuolumne

River (Fig. 8). This area was influenced by plume-

dominated fire spread and all other variable groups had

low explanatory power in this region.

Variance partitioning

Variance partitioning of the RFmodels revealed a high

level of shared variance among predictor groups,

particularly with SA (Fig. 9). Much of the observed

Fig. 7 Partial dependence plots for the top 9 predictor variables

(excluding SA variables) for random forest models used to

evaluate reburn fires (e.g., areas that burned between

1984–2012) within the 2013 Rim Fire. Plots depict the marginal

effect of a predictor variable on predicted Rim Fire severity.

Points represent severity predictions made for 25 values across

the range of each predictor variable. Dashed grey lines are

lowess (locally weighted scatterplot smoothing) smoothed trend

lines, and colored dashed lines are 2 * SE of the lowess estimate.

The opacity of each point was determined by the empirical

density function of the predictor variable with darker hues

representing higher densities and lighter hues representing

sparse data. Values in parentheses represent variable importance

for Stanislaus NF (STF) and Yosemite NP (YOSE), and panels

are ordered by the mean variable importance. Blue and gold tick

marks on plot margins indicate the mean fire severity for STF

(blue) and YOSE (gold). (Color figure online)
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shared variance was between weather, fuels and SA.

The level of pure variance explained by any one

variable group was relatively low, and only 4–16% of

the explained variance was attributable to the pure

variance explained by climate/weather, topography,

and fuels variable groups. Pure variance explained was

generally higher in reburn models compared to models

for fire-excluded areas.

Compared to the RF modeling, GAM models

exhibited lower overall variance explained, but much

of this difference was due to a reduction in shared

variance between SA, fuels, and weather in the GAM

models (Fig. S9). For example, for fire-excluded areas

Fig. 8 Local predictor variable importance for the random

forest model was used to evaluate drivers of fire severity for

first-entry fires and reburns within the 2013 Rim Fire boundary

(dark red line). Each raster pixel (270-m resolution) represents

the relative strength of each predictor variable category with

darker colors representing higher importance. Classes represent

scaled local variable importance values\ 0, 0–20, 20–40,

40–60, 60–80, and 80–100. Solid grey polygons in the lower left

panel were managed between 1995–2012. Previous fire bound-

aries (1984–2012) are outlined in dark grey. Stanislaus National

Forest (west) and Yosemite National Park boundaries (east) are

demarcated in black lines. Lakes and major rivers are included

for reference. Areas with no local variable importance metrics

(i.e., white space within Rim Fire boundary) were burned prior

to 1984, had no fire severity data for the previous fire and were

subsequently removed from analyses. Additional white space in

the ‘‘fire history’’ panel further removes first-entry fire area and

shows only the area reburned by the Rim Fire. (Color

figure online)
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in Stanislaus NF, shared variance among weather,

fuels, and SA totaled 56.2% for RF models, but only

34% for GAM models. Similarly, shared variance for

RF models in reburned areas of Stanislaus NF was

33.1% compared to only 8.1% for GAM models.

Similar trends were found for Yosemite NP reburns

(45.6% RF; 21.8% GAM) and fire-excluded areas

(21.5% RF, 15.3% GAM).

Discussion

Our results demonstrate that wildfires are inherently a

multi-scaled process driven by top-down and bottom-

up factors, similar to findings across the western US

(e.g., Estes et al. 2017; Parks et al. 2018b). The results

revealed a diverse mixture of environmental controls

on fire severity that varied markedly across burn

periods, environmental gradients, and land owner-

ships. Reliance on global variable importance mea-

sures and response curves that display average trends

limits understanding of the local controls that mediate

fire severity and contribute to landscape heterogeneity.

Modeling methods should capture both the complex

relationships between drivers of fire severity patterns

and the spatial non-stationarity in the magnitude and

direction of these relationships.

Fig. 9 Variance decomposition plot depicting the percentage

of the out-of-bag variance explained by random forest models

for individual predictor variable groups (non-overlapping

regions) and shared among predictor variable groups (overlap-

ping regions). Residuals are the remaining variance left

unexplained by each model and is equal to 100 - R2. Variable

groups are: W weather, F fuels, T topography, SA spatial

autocorrelation. See Table S2 for a list of the variables included

in each group
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Top-down controls on Rim Fire severity patterns

Fire weather was a dominant driver of severity in

Stanislaus NF, particularly where the Rim Fire burned

in areas where fire was excluded for[ 80 years.

These areas generally burned under the two largest

plume-dominated burn days where 47% of pixels

burned with high severity compared to 21% for all

other burn days. Bottom-up factors played a minimal

role in mitigating fire severity during this time, but

provided some local control throughout. However,

simply interpreting the pattern of observed fire effects

during plume-dominated fire spread as evidence of

top-down control is not entirely appropriate. Plume

formation is the result of teleconnections between

combustion at the surface and atmospheric conditions

(Werth et al. 2016). The effect of fire exclusion on fuel

loads and continuity over much of the Stanislaus NF

likely contributed to accelerated heat release rates,

which may have influenced observed plume dynamics

(Peterson et al. 2015, 2018). In this light, the ‘‘plume

effect’’ represents an interesting interaction between

top-down and bottom-up controls, which merits fur-

ther research.

Other top-down climatic variables including long-

term AET and water deficit (30-year normals) were

weakly related to severity, which was also reported by

Harris and Taylor (2017) for reburns within the Rim

Fire extent. The Rim Fire occurred during the historic

2012–2015 drought, which corresponded with

severely reduced precipitation, snowpack, streamflow

and soil moisture levels (Funk et al. 2014; Griffin and

Anchukaitis 2014). These conditions likely led to low

moisture content in live and dead surface and canopy

fuels with relatively low spatial variability across the

landscape (Asner et al. 2016), weakening the influence

of climatic variation on fire effects.

Bottom-up controls on Rim Fire severity

Previous fire history

Bottom-up controls provided by previous burns were

dominant across reburned areas, similar to other Rim

Fire studies (Kane et al. 2015a; Harris and Taylor

2017; Lydersen et al. 2017) and elsewhere in the Sierra

Nevada (van Wagtendonk 2012; Coppoletta et al.

2016). We found a strong linear relationship between

past severity and Rim Fire severity, indicating that fire

severity is self-reinforcing (van Wagtendonk et al.

2012; Kane et al. 2015a; Harris and Taylor 2017;

Lydersen et al. 2017). Importantly, we found that these

patterns held for reburns under both plume and non-

plume dominated burn periods, emphasizing the

strength of previous fire as a bottom-up control in

these ecosystems even under extreme fire weather

conditions.

Our results suggest that high-severity fire is self-

reinforcing in these landscapes and can occur inde-

pendent of strong top-down factors such as severe

weather conditions, particularly where time-since-last

fire exceeded 10–15 years. Parks et al. (2014) suggest

possible pathways for self-reinforced high-severity

fire. Firstly, repeated high severity fires in shrubland

types, which represented * 8% of the Rim Fire

burned area, are generally self-replacing under a

high-severity regime. Secondly, post-fire conversions

from forest to shrubland can perpetuate where fires

return prior to forest re-establishment (van Wagten-

donk et al. 2012; Lydersen et al. 2014; Coppoletta

et al. 2016). For example, Lydersen et al. (2014)

showed that, under mild fire weather, the Rim Fire

burned at higher severity where shrub cover exceed

22%. Thirdly, heavy fuel loads and/or dense post-fire

regeneration within high severity patches can cause

subsequent high severity fire. In the northern Sierras,

Coppoletta et al. (2016) found that high- and moder-

ate-severity fire patches led to increases in both shrub

and standing snags, which contributed to subsequent

high-severity fire.While the contribution of these fuels

is unclear from remotely sensed vegetation, Lydersen

et al. (2014) showed that Rim Fire severity increased

with increasing time-since-fire, particularly where

past burns occurred[ 14 years prior, suggesting that

post-fire vegetation and fuel dynamics over time likely

contributed to increased risk of high severity fire. Our

findings, along with those of Kane et al. (2015a) and

Harris and Taylor (2017), also showed severity

increased with time-since-last fire, with more pro-

nounced increases in fire severity after 10–15 years,

corroborating the results of Lydersen et al. (2014)

across the whole of the Rim Fire area.

Fuels

Fuels variables exhibited higher overall importance in

Yosemite NP compared to Stanislaus NF. In Yosemite

NP, our fuel proxies (conifer cover and NDVI) were
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the main drivers throughout much of the fire extent,

even within some portions of the plume-dominated

spread. Spatial maps of predictor variable importance

showed that within a single burn period, fire effects

shifted from weather-dominated in Stanislaus NF in

favor of fuels and fire history variables in Yosemite

NP, possibly as a result of reduced surface and canopy

fuels in the park resulting from recent prescribed and

managed fires. These fuel changes may have pre-

cluded strong plume formation, though more research

is needed to explore these dynamics. Forest structure

differed between ownerships, particularly in the

greater abundance of large trees in the NP (Collins

et al. 2017a), which are more resistant to fire-related

mortality due to increases in canopy base heights and

thicker bark (Lentile et al. 2006). In addition,

management of Yosemite NP incorporated a consid-

erable amount of fire use, through both prescribed fire

and allowing natural fire starts to burn under less-than-

extreme weather conditions (Miller et al. 2012).

Together, these factors have promoted forest structure

that is more similar to that observed under an active-

fire regime (Lydersen and North 2012), despite

aggressive fire suppression prior to the mid-1970s

(van Wagtendonk 2007).

Topography

Topography provided weak bottom-up controls on fire

severity overall, but evidence of local importance for

topographic variables was exhibited throughout the

Rim Fire. This contrasts with past research that

suggests a strong role for topographic variables in

explaining fire severity (Alexander et al. 2006; Holden

et al. 2009; Harris and Taylor 2015, 2017; Estes et al.

2017) and fire spread (Coen et al. 2018; Povak et al.

2018) patterns. The role of topography is complex as it

provides both direct (i.e., convective heating on steep

slopes) and indirect (e.g., changes in solar regimes,

vegetation, and soils) influence on fire behavior

(Heyerdahl et al. 2001; Alexander et al. 2006; Holden

et al. 2009; Estes et al. 2017). The weak role of

topography in our study suggests that indirect controls

on vegetation, fuels and microclimate conditions were

better captured by those spatial variables directly

(Lydersen and North 2012; Kane et al. 2015b;

Coppoletta et al. 2016; Estes et al. 2017; Parks et al.

2018b). Variance partitioning in our study showed that

fuels and weather variables exhibited a similar amount

of shared variance with topographic variables, sug-

gesting that topography influenced patterns of both

variables equally with respect to their control on fire

severity patterns. High local importance for topo-

graphic variables in our study generally corresponded

with lower fire severities and occurred along topo-

graphic breaks (e.g., changes in aspect) that presented

barriers to fire spread (Meddens et al. 2018; Blomdahl

et al. 2019), as well as topographic depressions and

riparian areas that likely mitigated fire severity

through increases in soil moisture and localized

cold-air pooling (Lundquist et al. 2008; Minder et al.

2010; Van de Water and North 2010). Results

demonstrate how local importance maps can identify

topographically enforced fire refugia that can provide

important post-fire seed sources and habitat (Camp

et al. 1997; Meddens et al. 2018; Martinez et al. 2019).

Mechanical treatment effects

Mechanical treatments showed low global importance

in RF models, but local effectiveness of mechanical

treatments was observed in portions of the NF. The

limited area affected by management (* 8% of

Stanislaus NF within the Rim Fire extent) and even

lower incidence of fuels reduction treatments may

have precluded finding important effects of specific

treatments on fire severity. In addition, NDVI and

NDMI variables may implicitly incorporate the effect

of management activities, which may better capture

the vegetation response to management and remove

the effect of categorical treatment variables (Parks

et al. 2018b). The variable importance for mechanical

treatments was higher outside of plume-dominated

progression intervals suggesting that treatment effec-

tiveness is likely greater under milder burning condi-

tions. However, where treatment variables had high

local importance, treatments within the plume were

shown to have a greater relative effect at reducing fire

severity compared to treated areas outside the plume-

dominated spread, particularly for fire-excluded areas

(Fig. S7). Similarly, Prichard and Kennedy (2014)

found evidence for treatment effectiveness under

extreme fire weather conditions during the 2006

Tripod Complex fires in central Washington. This

suggests that treatments can help mitigate fire severity

even under the most extreme weather conditions,

although the likelihood of effectiveness is reduced.
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Relative role of weather, fuels, and topography

Despite much research into identifying drivers of fire

severity, questions remain as to the relative roles of

weather, fuels, and topography in driving landscape-

level fire severity patterns (Parks et al. 2011; Birch

et al. 2015; Fang et al. 2015; Parks et al. 2018b). Parks

et al. (2018a) showed that live fuels (i.e., NDMI, and

enhanced vegetation index (EVI)) were * 2.4 times

more influential than climate variation (i.e., year-of-

fire climate) for predicting low-severity fire across[
400 fires in the southwestern US. Similarly, Parks

et al. (2018b) modeled the drivers of high-severity fire

for[ 2000 fires across the western US and found that

live fuels were * 2.3 times more influential than fire

weather variables, though substantial ecoregional

variation existed.

Results from our variance partitioning analyses

were more equivocal due to the high levels of shared

variance exhibited across variable groups. Much of the

variance explained was shared between SA, weather,

and fuels variable groups. Parks et al. (2011) similarly

showed that statistical models of simulated burn

probability exhibited high shared variance among

elevation, ignitions and fuels predictors. The authors

concluded that high shared variance complicates

model interpretation and can potentially lead to

counterintuitive relationships. Statistical modeling

methods should therefore be employed to tease apart

the relative strength of these feedbacks, which may

help reveal contributions of top-down and bottom-up

drivers to fire severity patterns.

Fuels variables exhibited the highest level of pure

and total variance explained for reburn models, further

demonstrating that landscape vegetation patterns

contribute strong controls on fire behavior during

large fire events (Bradstock et al. 2010; Prichard and

Kennedy 2014). However, high shared variance

among fuels and weather variables indicated the role

of fuels in controlling fire severity is contingent upon

weather conditions as has been shown previously

(Collins et al. 2009; Prichard and Kennedy 2014;

Stevens-Rumann et al. 2016; Prichard et al. 2017).

Fuels were comparatively stronger for Yosemite NP

reburns, suggesting a higher level of bottom-up

controls provided by vegetation in the park, which

has a higher degree of restored natural fire and legacy

large trees (Johnson et al. 2013; Collins et al. 2017a).

Furthermore, the relative dominance of fuels and

weather variables was reversed for fire-excluded areas

where fuels exhibited a much lower level of control in

both land designations, possibly due to similarities in

vegetation conditions across ownerships due to fire

exclusion.

To our knowledge, this was the first application of

variance partitioning to fire severity research, and it

appears to be a promising avenue of research to

disentangle relationships among drivers of severity

patterns. Parks et al. (2018a, b) calculated the relative

influence of variable groups as the difference in cross-

validated error-rates between the full model andmodel

subsets where variables groups were iteratively

excluded. This method is an effective way to rank

the relative importance of variable groups, but cannot

represent shared variance among them. However,

caution should be used when interpreting these results

as the shared variance components may have been

overexpressed by the RF models. Compared to RF,

GAMs (flexible function, but with no interaction

terms) showed lower total variance explained, partic-

ularly for the Stanislaus NF models (Fig. S8). Much of

the loss in variance explained in the GAMs was related

to the lower shared variance component (i.e., 20–36%

for GAMs vs. 32–52% for RF models), while the pure

variance components were similar across models.

Inflated estimates of shared variance have previously

been reported for boosted regression trees (similar to

RF) in variance partitioning applications used to

model aquatic organism populations (Lemm et al.

2019) and their stressors (Feld et al. 2016). However,

Quisthoudt et al. (2013) found only slight increases in

shared variance in boosted regression trees compared

to linear models and GAMs. The increased accuracy

provided by machine learning algorithms appear to

come at the expense of model interpretability given

that much of the additional variance explained is

partitioned into shared variance components. How-

ever, the level of shared variance identified by the

GAM models was still large, which reinforces the

finding of a lack of independence among predictors.

More research is needed to identify these interactions,

their functional form, and their generalizability to

other environments.

Spatial autocorrelation

Inferences from the spatial analyses were that (1) SA

in model residuals was negligible at all scales with and
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without spatial PCNM variables included in the

models, (2) SA variables represented broad-scale

spatial patterns (* 10 km), and (3) long-range inter-

dependencies among fire severity and main predictors

revealed strong shared variance among SA and

environmental predictors (Fig. 9). Few differences

were found in variable importance, response curves, or

inferences made from RF models with and without SA

predictors, and SA variables only slightly increased

model performance (B 10% increase in R2
OOB). Envi-

ronmental predictors appeared to adequately capture

SA, which runs counter to past studies that showed

increased model performance and lower residual SA

with spatial covariates (Crase et al. 2012). For

example, Portier et al. (2018) showed that RAC

models outperformed aspatial models and provided

more realistic estimates of pure and shared variance

among predictors. This latter point was confirmed in

our analyses given that SA variables accounted for

much of the shared variance among predictor groups,

suggesting that estimates of the remaining shared and

pure components were likely more reliable.

High levels of shared variance among environmen-

tal and SA variables also suggests that the spatial

patterns of fire severity were largely influenced by the

strong spatial structure of the predictor variables. This

suggests that (1) environmental variables are highly

interactive, (2) that gradients exist whereby gradual

changes in variables create similar conditions across

space, (3) fire severity is a highly non-stationary

process where the relative influence of key drivers

change across burn days and environments and these

relationships are dependent upon their spatial context.

Methods, such as SAR, that incorporate local neigh-

borhood SA into the model (Prichard and Kennedy

2014) may miss important broad-scale spatial depen-

dencies, which require a multi-scaled assessment of

SA to capture. We speculate that broad-scale patterns

were predominantly driven by changes in weather

conditions across burn periods that led to severe or

benign fire behavior (Hammill and Bradstock 2009;

Bradstock et al. 2010; Coen et al. 2018), particularly in

the fire-excluded areas. Plume-dominated fire behav-

ior in these areas led to large patches of high severity

fire, creating a broad-scale pattern of similar severity,

consistent with patterns observed for recent fires

across California (Stevens et al. 2017; Steel et al.

2018). Across the remaining burn periods, severity

was lower overall, patch sizes were smaller, and

exhibited a greater intermixing of fire severities. These

patterns are also characteristic of fire-use wildfires that

burn under moderate conditions for their ecological

benefits and are similar to historical patterns (Mallek

et al. 2013; Meyer 2015).

Conclusions

We assessed spatial patterns of fire severity for the

2013 Rim Fire and quantified the relative role of

weather, topography, fuels, and spatial autocorrelation

on explaining fire severity patterns within fire-ex-

cluded and reburned areas. Our methods extended

those of previous studies (Kane et al. 2015a; Harris

and Taylor 2017; Lydersen et al. 2017) to (1) quantify

the relative role of top-down and bottom-up controls,

(2) map spatial patterns of predictor variable impor-

tance, (3) compare drivers across managed (Stanislaus

NF) and unmanaged (Yosemite NP) lands, and (4)

assess the relative role and scale at which spatial

autocorrelation influences model results.

Our results show that while fire weather was an

important driver of high severity fire, weather vari-

ables were most influential in fire-excluded areas. One

explanation for this is that fuels are more uniformly

high in long fire-excluded areas, and as a result did not

vary enough to warrant strong statistical influence.

While fire suppression activities have influenced both

Yosemite NP and Stanislaus NF, the latter had

appreciably more area untouched by recent fire.

Within the Rim Fire footprint, approximately

22,800 ha (32%) were fire excluded ([ 80 years) in

Stanislaus NF compared to 6000 ha (19%) in Yose-

mite NP. These fire-excluded areas often corre-

sponded with—and possibly contributed to—

extreme plume-dominated fire severity (Peterson

et al. 2015; Werth et al. 2016), which usurped most

bottom-up controls and created large high-severity

patches. However, evidence of local bottom-up con-

trols was identified throughout the fire extent suggest-

ing that strong top-down control from fire weather can

be overridden by local patterns of topography, vege-

tation, and fuels (Safford et al. 2012; Prichard and

Kennedy 2014). Reburned areas showed strong bot-

tom-up controls from previous burns suggesting a high

degree of landscape memory and feedbacks in the

system whereby reburn severities were similar to the
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previous fire (Collins et al. 2009; Parks et al. 2014;

Harris and Taylor 2017; Lydersen et al. 2017). Fuels

also played a dominant role in Yosemite NP, where

lower overall fire severity was associated with a

history of prescribed and fire-use fires along with the

presence of large, old trees, which likely contributed to

high resiliency (Thompson and Spies 2009; Collins

et al. 2017a). Accordingly, local variable importance

results presented here corroborated recent anecdotal

evidence that plume-dominated fire spread weakened

once the fire reached portions of Yosemite NP that had

experienced past fires (Keeley and Syphard 2019). The

variability in both fire severity and predictor variable

importance emphasizes a need to more explicitly

characterize spatial patterns within individual wild-

fires (e.g., Collins et al. 2017b) rather than labeling

them as ‘‘extreme events’’ or ‘‘megafires’’. These

labels connote homogenous, and often negative,

impacts, which is not always the case (Rollins et al.

2002; Hammill and Bradstock 2009; Keane et al.

2009; Bradstock et al. 2010; Lydersen et al. 2014;

Harris and Taylor 2017). Furthermore, strong shared

variance across predictor variable groups suggests a

high-level of cross-talk among bottom-up and top-

down factors and signals important teleconnections

within and among terrestrial and atmospheric pro-

cesses that may be indicative of large fires.

Results confirm that low- and moderate-severity

fire can mitigate subsequent wildfire severity, even

under extreme fire weather, regardless of past man-

agement history. In these environments, prescribed

burning alone, or as a surface treatment following

mechanical operations, has high utility in restoring

historical fire regime properties and concomitant

ecological processes, as well as allowing forests to

adapt to future predicted increases in temperature and

drought (Williams et al. 2015).

Models that rely on global variable importance and

response curves that display average trends can

obfuscate the importance of local controls. Maps of

predictor variable importance revealed tradeoffs

between bottom-up and top-down factors. For exam-

ple, topography and recent management variables

showed high importance in some localized areas

despite exhibiting low variable importance overall

(Fig. 5). Such information can improve our under-

standing of the conditions under which bottom-up

controls provide buffers or barriers to fire severity and

spread, help prioritize landscape treatments, and

inform fire suppression efforts.

Spatial autocorrelation analyses revealed broad-

scale spatial dependencies in pattern-process linkages

up to * 10-km. High levels of shared variance among

weather, fuels, and spatial autocorrelation variables

suggested that drivers of fire severity are highly

interactive, and exhibit strong, broad-scale spatial

structure. Fine-scaled heterogeneity within these

larger patterns occurred where unique combinations

of bottom-up factors collectively mediated severity.

Such information is invaluable for directing spatial

locations and arrangements of future restoration

treatments, which should be the focus of future

research.
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Incorporating spatial constraints in different periods of the

annual cycle improves species distribution model perfor-

mance for a highly mobile bird species. Divers Distrib

20:515–528

Chen Y (2015) Distinguishing niche and neutral processes:

issues in variation partitioning statistical methods and

further perspectives. Comput Ecol Softw 5:130

Coen JL, Stavros EN, Fites-Kaufman JA (2018) Deconstructing

the King megafire. Ecol Appl 28:1565–1580

Collins BM, Everett RG, Stephens SL (2011) Impacts of fire

exclusion and recent managed fire on forest structure in old

growth Sierra Nevada mixed-conifer forests. Ecosphere

2:1–14

Collins BM, Fry DL, Lydersen JM, Everett R, Stephens SL

(2017a) Impacts of different land management histories on

forest change. Ecol Appl 27:2475–2486

Collins BM, Miller JD, Thode AE, Kelly M, Van Wagtendonk

JW, Stephens SL (2009) Interactions among wildland fires

in a long-established Sierra Nevada natural fire area.

Ecosystems 12:114–128

Collins BM, Stevens JT, Miller JD, Stephens, SL, Brown PM,

North MP (2017b) Alternative characterization of forest

fire regimes: incorporating spatial patterns. Landsc Ecol

32:1543–1552

Coppoletta M, Merriam KE, Collins BM (2016) Post-fire veg-

etation and fuel development influences fire severity pat-

terns in reburns. Ecol Appl 26:686–699

Crase B, Liedloff AC, Wintle BA (2012) A new method for

dealing with residual spatial autocorrelation in species

distribution models. Ecography 35:879–888

Cui W, Perera AH (2008) What do we know about forest fire

size distribution, and why is this knowledge useful for

forest management? Int J Wildland Fire 17:234–244

Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT,

Gibson J, Lawler JJ (2007) Random forests for classifica-

tion in ecology. Ecology 88:2783–2792

De Marco Jr P, Diniz-Filho JAF, Bini LM (2008) Spatial anal-

ysis improves species distribution modelling during range

expansion. Biol Lett 4:577–580

Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large

wildfire trends in the western United States, 1984–2011.

Geophys Res Lett 41:2928–2933

Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J,
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