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ADDITIVITY AND MAXIMUM LIKELIHOOD ESTIMATION OF 
NONLINEAR COMPONENT BIOMASS MODELS

David L.R. Affleck1

Abstract—Since Parresol’s (2001) seminal paper on the subject, it has become common 
practice to develop nonlinear tree biomass equations so as to ensure compatibility among 
total and component predictions and to fit equations jointly using multi-step least squares 
(MSLS) methods. In particular, many researchers have specified total tree biomass models 
by aggregating the expectations of nonlinear component equations. More recently, an 
alternative approach has been used wherein compatibility is ensured by specifying a total 
biomass equation plus one or more component disaggregation functions. Yet calibration 
of such equations typically has not recognized the additivity of the biomass data or the 
implied stochastic constraints necessary for development of a valid probability model. For 
model selection based on information criteria, stochastic simulation, Bayesian inference, 
or estimation with missing data, it is important to base estimation and inference on 
probabilistic models. Thus, we show how to specify valid stochastic models for nonlinear 
biomass equation systems and how to estimate parameters using maximum likelihood 
(ML). We also explain how ML procedures can accommodate unobserved or aggregated 
component biomass data. We use Parresol’s slash pine data set to contrast model forms and 
demonstrate Gaussian ML from complete and missing data using open-source software.

Forest inventory programs commonly report estimates 
of total aboveground biomass and carbon in live trees. 
The estimates are often obtained from individual 
tree equations that also furnish estimates for foliage, 
branches, stems, and other tree components. For 
many purposes, compatibility among component and 
total tree biomass models is important. As pointed 
out by Parresol (2001) this compatibility should, 
at a minimum, ensure that component biomass or 
carbon estimates do not exceed estimates of whole-
tree biomass or carbon, and that component estimates 
sum to the estimates of the totals. Yet this level 
of compatibility is insufficient for analytical and 
estimation procedures such as mixed-effects modeling, 
stochastic simulation, and Bayesian inference. These 
techniques require that the additive nature of tree 
biomass measurements be recognized and that valid 
probabilistic models be formulated.

The objectives of this research were to synthesize 
alternative approaches to nonlinear biomass equation 
specification within a probabilistic modeling 
framework, and demonstrate how the models and ML 
algorithms can be extended to accommodate missing 
component biomoass observations.  

ADDITIVITY OF BIOMASS 
COMPONENTS
Let Y1,Y2,…,YM denote M biomass components 
of a tree and Yt the total of interest. A fundamental 
identity is Yt = Σm Ym. This identity holds when the 
symbols represent unobserved tree biomass quantities 
and is often desired of biomass estimates. Yet it also 
generally holds when the symbols represent biomass 
measurements. This is because total tree biomass 
typically goes unmeasured and is obtained instead by 
summing the component biomass estimates gathered in 
the field. From the identity stems the result that, given 
a set of predictors x, the joint probability law for a set 
of random variables Y1,Y2,…,YM and Yt is
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That is, the joint probability model for Y1,Y2,…,YM 
and Yt is a simple multiplicative function of the model 
for Y1,Y2,…,YM with the multiplier being independent 
of any model parameters or predictors. As such, the 
ML estimators of the parameters governing the former 
model can be obtained by maximizing only the latter 
model. Given the biomass components and their 
additivity there is no additional information in the 
biomass totals.

SYSTEMS OF NONLINEAR 
BIOMASS EQUATIONS
Parresol (2001) noted that in the nonlinear setting, 
additivity of component estimates can be guaranteed 
only by restricting the total biomass equation to be 
the sum of the component biomass equations. He 
advocated direct specification of individual component 
equations E(Ym) = gm(xm; βm), deriving the equation for 
the total (and/or subtotals) through aggregation E(Yt) = 
Σm gm(xm; βm), and completing a statistical model

Ym = gm(xm; βm) + εm m = 1,2,…,M
Yt = Σm gm(xm; βm) + εt

allowing for non-constant variance as well as cross-
correlations on the error terms ε•. Parresol further 
recommended joint estimation of the parameters of 
this system by MSLS using observations of component 
and total biomass.

An alternative approach, developed initially in the 
Chinese literature (Tang et al. 2000; see also Dong et 
al. 2015), is to specify first an equation for the total, 
then use multiplicative disaggregation functions to 
yield component equations. For example, 

Yt = gt(xt; βt) + εt

Yc = gt(xt; βt) gcs(xcs; βcs) + εc

Yw = gt(xt; βt) [1 – gcs(xcs; βcs)] gwb(xwb; βwb) + εw

Yb = gt(xt; βt) [1 – gcs(xcs; βcs)] [1 – gwb(xwb; βwb)] + εb

where Yc, Yw, and Yb denote respectively crown, stem-
wood, and stem-bark biomass; and gcs(•) and gwb(•) 
are functions bounded by 0 and 1 that disaggregate, 

respectively, the total into crown and stem fractions, 
and the stem fraction into wood and bark fractions. 
Tang and Wang (2002) describe a MSLS approach 
for this system that accounts for non-constant error 
variance and cross-correlations among errors.

While guaranteeing additivity of estimates, neither of 
the above systems recognizes the additivity of the data 
and thus neither represents a valid probability model. 
It follows that the associated MSLS strategies are not 
ML procedures. Essentially, Yt = Σm Ym together with 
gt(xt; βt) = Σm gm(xm; βm) implies εt = Σm εm, meaning 
that the variance function and cross-correlations 
of εt are constrained. The MSLS procedures do not 
recognize these constraints, so using the observed 
totals in estimation amounts to specifying an 
internally inconsistent system and estimators with 
inscrutable properties. The simplest way to align the 
above equation systems with probabilistic models 
is to strike the submodels for biomass totals. With 
component variance and cross-correlation structures 
otherwise preserved the reduced systems are valid 
probability models; parameters can be estimated 
by ML and information criteria such as AIC can be 
used in model selection. The models can then also be 
extended to accommodate mixed-effects or Bayesian 
specifications, or used for stochastic simulation.

MISSING BIOMASS DATA
A further advantage of specifying a valid probabilistic 
component biomass model is that missing data patterns 
can be accommodated. In particular, if the missingness 
mechanism is uninformative (Little & Rubin 1987, 
ch.1) then the complete data likelihood for impacted 
trees can be integrated to yield an observed data 
likelihood for ML estimation.

With component biomass data, there are two important 
forms of missingness. The first results when individual 
components (and thus biomass totals) go unobserved. 
For example, if crown material is lost and only stem 
biomass components are observed then the likelihood 
for the tree in question reduces to
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A second form of missingness is when all components 
are represented (and thus the total is computable), but 
some are known only in aggregate. For example, if 
crown biomass and overall stem biomass (but not bark 
and wood biomass) are available for a certain tree, 
then its contribution to the overall likelihood is 

Both integrals are complex in the general case, but 
easily obtained for Gaussian models.

CASE STUDY: PARRESOL’S (2001) 
SLASH PINE DATA
Parresol (2001) presented biomass data for 40 slash 
pine (Pinus elliottii) grown in Louisiana, USA. Table 1 
reproduces the data and identifies observations masked 
from missing data analyses.

To the complete and simulated-incomplete data were 
fit Parresol’s (2001) aggregative system of equations 
with variance functions

var(Ym) = θm1(d.b.h.) 

and unstructured cross-correlations between crown, 
bark, and wood biomass observations from the same 
tree. With the same variance and cross-correlation 
structures, a disaggregation-based system of equations 
was also fit with

 gt(xt; βt) = exp[ βt1 + βt2 ln(d.b.h.) + βt2 ln(h) ]

 gcs(xcs; βcs) = (1 + exp[ βcs1 + βcs2 ln(d.b.h.) + 
βcs2 ln(h) ])-1

 gwb(xwb; βwb) = (1 + exp[ βwb1 + βwb2 ln(d.b.h.) + 
βwb2 ln(h) ])-1

where h is tree height.

The models were fit by Gaussian ML using the gnls 
function of the nlme package (Pinheiro et al. 2014) 
in R (R Core Team 2014). To do so, a symmetric 
covariance structure was coded from the basic gnls 
correlation structure; this allowed for reduction 
of the covariance matrix to account for missing or 
aggregated components.

Model fit statistics are in Table 2. The systems provide 
comparable predictive models, and the patterns of 
missingness shown in Table 1 only slightly degrade 
model-data agreement. The models are also similar 
to the two-stage and three-stage least squares models 
presented in Parresol (2001) but, as they constitute 
valid probability models, they can be extended to 
include random effects (e.g., to express dependence 
among trees within plots) or prior information on 
parameters (using Bayesian techniques).
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Table 1—Slash pine biomass data from Parresol (2001) with tree diameter at breast height (d.b.h.) and total 
height (h).  Shaded cells identify data masked from some analyses; within these cells component values 
printed in white are assumed missing (i.e. unknown along with the tree total) while those printed in black are 
assumed known only in aggregate (i.e. stem mass known but not wood or bark separately).

d.b.h. height Green mass (kg)
Tree (cm) (m) Wood Bark Crown Total
1 5.6 7.9 6.5 2.3 1.0 9.8
2 6.4 8.5 7.4 2.6 2.1 12.1
3 8.1 10.7 17.6 4.5 2.3 24.4
4 8.4 11.3 18.5 4.3 4.2 27.0
5 9.1 11.0 22.6 5.4 5.6 33.6
6 9.9 13.1 30.6 7.4 5.5 43.5
7 10.4 14.3 32.9 6.7 6.4 46.0
8 11.2 14.6 40.6 9.3 6.2 56.1
9 11.7 14.3 46.0 10.7 7.7 64.4
10 12.2 14.9 51.6 13.1 6.1 70.8
11 11.9 16.8 60.4 10.1 5.4 75.9
12 13.2 13.7 62.8 15.2 10.7 88.7
13 12.2 15.8 67.5 12.9 15.3 95.7
14 13.7 18.0 81.2 12.5 8.7 102.4
15 14.2 16.5 94.3 18.2 11.2 123.7
16 15.0 20.1 123.4 16.5 7.7 147.6
17 15.7 16.8 107.3 21.5 19.7 148.5
18 16.5 17.1 123.8 22.1 28.9 174.8
19 16.5 17.1 151.6 24.6 16.8 193.0
20 19.6 13.7 140.4 25.1 46.2 211.7
21 17.5 19.2 170.4 27.4 16.8 214.6
22 17.8 18.3 169.6 31.7 24.0 225.3
23 18.5 17.7 160.3 36.9 47.5 244.7
24 19.6 19.8 199.8 38.7 19.7 258.2
25 18.5 22.9 231.6 29.6 24.6 285.8
26 19.8 18.6 217.9 33.9 45.8 297.6
27 20.6 17.4 216.0 32.6 61.2 309.8
28 21.6 17.7 200.6 40.2 75.4 316.2
29 19.8 18.9 217.5 38.5 62.0 318.0
30 22.9 19.8 314.8 43.1 43.2 401.1
31 23.6 18.3 287.1 63.4 51.7 402.2
32 23.1 18.9 290.9 44.3 76.7 411.9
33 24.1 21.3 320.1 50.6 75.6 446.3
34 26.4 19.2 308.6 65.7 116.0 490.3
35 24.6 25.0 403.0 49.8 69.8 522.6
36 25.1 19.8 390.4 48.8 83.5 522.7
37 29.0 20.4 445.2 60.4 88.0 593.6
38 28.4 26.8 736.4 84.0 79.9 900.3
39 31.8 27.4 770.9 93.8 170.2 1034.9
40 33.0 27.7 921.3 108.0 169.2 1198.5
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Table 2—Component root mean squared error (RMSE) and corrected Akaike’s information criterion (AICc) for 
alternative models, parameter estimation routines, and data. 

RMSEa (kg)
Model Estimation Data Crown Bark Wood Total AICcb

Aggregative ML complete 13.3 5.1 26.9 30.4 784.6
ML incomplete 13.2 5.2 26.9 30.7 786.4
2SLSc complete 13.9 5.0 26.7 31.4 795.6
3SLSc complete 12.8 5.0 26.7 29.8 808.5

Disaggregation ML complete 13.4 4.8 26.2 29.6 789.1
ML incomplete 13.4 5.4 26.2 30.3 792.8

a Based on the complete data without weight functions or degrees of freedom adjustments.
b Based on the complete data and a joint Gaussian model for crown, bark, and wood biomass.
c From coefficients published in Parresol (2001).




