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Disturbance and Sustainability in Forests of the Western United States

Chapter 6: Insects
Christopher J. Fettig, Robert A. Progar, Jeanine Paschke, and Frank J. Sapio1

Introduction
Insects are essential components of forest ecosystems, representing most of the 
biological diversity and affecting virtually all ecological processes (Schowalter 
1994). Most species are beneficial (Coulson and Witter 1984, Haack and Byler 
1993), yet others periodically become so abundant that they threaten ecological, 
economic, social or aesthetic values at local to regional scales (tables 6.1 through 
6.3). Insects influence forest ecosystem structure and function in complex and 
dynamic ways, for example, by regulating certain aspects of primary production; 
nutrient cycling; ecological succession; and the size, distribution and abundance of 
plants and other animals (Mattson 1977, Mattson and Addy 1975). Effects on forest 
vegetation range from being undetectable, to short-term reductions in crown cover, 
to modest increases in background levels of tree mortality, to extensive amounts of 
tree mortality observed at regional scales. 

1 Christopher J. Fettig is a research entomologist, Pacific Southwest Research Station, 
1731 Research Park Drive, Davis, CA 95618; Robert A. Progar is a research entomologist, 
Pacific Northwest Research Station, 1401 Gekeler Lane, La Grande, OR 97850; Jeanine 
Paschke is a contract geographic information system analyst, Forest Health Assessment 
and Applied Science Team, and Frank J. Sapio is assistant director (retired), Forest 
Health Protection, 2150 Centre Avenue, Building A, Suite 331, Fort Collins, CO 80526. 
Rob Progar is now the national entomology and pathology program leader, Research and 
Development, 201 14th Street Southwest, Washington, DC 20250.

Table 6.1—Bark beetles regarded as primary disturbance agents in western coniferous forests 

Common name Scientific	name Common host(s)
California fivespined ips Ips paraconfusus Pinus contorta, P. lambertiana, P. ponderosa 
Douglas-fir beetle Dendroctonus pseudotsugae Pseudotsuga menziesii
Fir engraver Scolytus ventralis Abies concolor, A. grandis, A. magnifica 
Jeffrey pine beetle Dendroctonus jeffreyi P. jeffreyi 
Mountain pine beetle Dendroctonus ponderosae P. albicaulis, P. contorta, P. flexilis, P. lambertiana, P. 

monticola, P. ponderosa 
Northern spruce engraver Ips perturbatus Picea glauca, Pi. × lutzii 
Pine engraver Ips pini P. contorta, P. jeffreyi, P. lambertiana, P. ponderosa 
Pinyon ips Ips confusus P. edulis, P. monophylla 
Spruce beetle Dendroctonus rufipennis Pi. engelmannii, Pi. glauca, Pi. × lutzii
Western balsam bark beetle Dryocoetes confusus A. lasiocarpa 
Western pine beetle Dendroctonus brevicomis P. coulteri, P. ponderosa 
Note: all insect species listed above are native to western North America. 
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Interactions With Other Disturbances
Forest insects are directly and indirectly influenced by other biotic (e.g., forest 
insects and diseases), abiotic (e.g., weather, wildfires, avalanches and wind-
storms), and anthropogenic (e.g., management activities and land use patterns) 
disturbances; other disturbances are often influenced by forest insects. As an 
example, consider bark beetles and wildfire, the principal drivers of change in 
western coniferous forests. Bark beetles alter forest fuels by killing varying 
numbers of trees of specific age classes, size classes, and species with conse-
quences to the frequency, intensity, and severity of subsequent wildfires (Jenkins 
et al. 2014a). Conversely, sublethal heating of critical tree tissues by low- to 
moderate-intensity wildfires predispose trees to successful colonization by bark 
beetles because of weakening of their defensive mechanisms (Parker et al. 2006). 
This, in turn, may cause localized increases in bark beetle populations that lead to 
additional levels of tree mortality, with feedback loops that further influence fire 
risk and severity (Jenkins et al. 2014a). Furthermore, some bark beetle epidemics 
have been so severe that they have converted forests from carbon sinks to carbon 
sources, further contributing to climate change (Kurz et al. 2008). Climate change 
and fire suppression activities, among other factors, have resulted in substantial 
changes in forest conditions over millions of hectares in the Western United 
States, expressed primarily as increases in the density of shade-tolerant and fire-
intolerant trees (e.g., true firs, Abies spp.) (Stine et al. 2014), further exacerbating 
both disturbances (Fettig et al. 2007, 2013; Westerling et al. 2006). These interac-
tions have sparked concerns about the sustainability of some western forests to 
maintain the numerous ecological goods and services on which human societies 
have come to rely (Morris et al. 2017, 2018), and have motivated increases in the 
pace and scale of treatments designed to increase forest resilience to these distur-
bances (Stephens et al. 2018). 

Current and Projected Trends in the Activity and 
Impacts of Forest Insects 
In the following sections, we review the ecology, recent impacts (2000−2016), and 
projected future impacts (based on the “2013−2027 National Insect and Disease 
Forest Risk Assessment”) of forest insects. We limit discussion to what we consider 
the 22 most prominent species in the Western United States in three feeding guilds 
(tables 6.1 through 6.3) based on their impacts to forest structure and composition. 
Most are native to western North America, with a few notable exceptions (tables 6.2 
and 6.3). 

This chapter reviews 
the ecology and 
impacts of 22 
prominent insect 
species in the Western 
United States.
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Bark Beetles
Trees of all species, ages, and size classes may be colonized and killed by bark 
beetles, with the greatest impacts observed in conifers (table 6.1). Each bark beetle 
species exhibits unique host preferences, life history traits, and impacts. Some 
cause extensive levels of tree mortality as demonstrated by mountain pine beetle 
(Dendroctonus ponderosae) in several pines (most notably lodgepole pine (Pinus 
contorta var. latifolia) (fig. 6.1); western pine beetle (Dendroctonus brevicomis) 
in ponderosa pine (Pinus ponderosa); Douglas-fir beetle (Dendroctonus pseu-
dotsugae) in Douglas-fir (Pseudotsuga menziesii); and spruce beetle (Dendrocto-
nus rufipennis Kirby) in spruce (Picea spp.). Others, such as several species in the 
genus Ips (Wood 1982), are secondary agents that usually colonize stressed, dead, 
or dying trees. 

Bark beetles often inflict density-dependent mortality (i.e., population growth 
rates and associated levels of tree mortality are partially regulated by the density 
of suitable hosts) (fig. 6.2), and help maintain a diversity of tree species, ages, 
sizes, and spatial heterogeneity (Fettig 2012). At endemic populations, bark beetles 
create small gaps in the forest canopy by killing trees stressed by age, drought, 
defoliation, or other factors. In this context, few negative impacts are observed 

Table 6.2—Defoliating insects regarded as primary disturbance agents in western coniferous forests 

Common name Scientific	name Common host(s)
Douglas-fir tussock moth Orgyia pseudotsugata Pseudotsuga menziesii, Abies spp., Picea spp.
Forest tent caterpillar Malacosoma disstria Populus tremuloides, other hardwoods
Larch casebearer Coleophora laricella Larix occidentalis
Pandora moth Coloradia pandora Pinus contorta, P. ponderosa
Pine butterfly Neophasia menapia P. ponderosa
Pine sawflies Neodipridon spp., Zadiprion spp. P. ponderosa, P. contorta
Western hemlock looper Lambdina fiscellaria lugubrosa Tsuga heterophylla, Abies balsamea, Picea spp.
Western spruce budworm Choristoneura freemani Ps. menziesii, Abies spp., Picea spp.
Western tent caterpillar Malacosoma californicum Po. tremuloides, other hardwoods
Note: Malacosoma spp. also occur in deciduous forests and shrublands. All insect species listed above are native to western North America except larch 
casebearer.

Table 6.3—Sap-feeding insects regarded as primary disturbance agents in 
western coniferous forests

Common name Scientific	name Common hosts
Balsam woolly adelgid Adelges piceae Abies spp.
Spruce aphid Elatobium abietinum Picea engelmanni, Pi. sitchensis
Note: both species are invasive to western North America.



84

GENERAL TECHNICAL REPORT PNW-GTR-992

Figure 6.1—The mountain pine beetle is the most significant forest insect in North America. Most 
large-scale epidemics occur in lodgepole pine forests in a nearly contiguous pattern across extensive 
areas. British Columbia, Canada, 2005. 
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Figure 6.2—Thinning has long been advocated as a preventive measure to alleviate or reduce the 
amount of ponderosa pine mortality attributed to bark beetles, Shasta County, California, 2005. 
Among other factors, thinning reduces host density; reduces competition among trees for nutrients, 
water, and other resources, thereby increasing vigor; and affects microclimate, decreasing the 
effectiveness of chemical cues used in host finding, selection, and colonization.
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(Morris et al. 2017). This differs from the impacts associated with epidemics, 
which may negatively affect timber and fiber production, water quality and 
quantity, fish and wildlife populations, recreation, grazing capacity, biodiversity, 
endangered species, carbon sequestration and storage, and cultural resources, 
among others (Morris et al. 2018). During the last three decades, the amount of 
tree mortality attributed to bark beetles in the Western States has exceeded that 
of wildfire (Hicke et al. 2016), and several recent epidemics are recognized as 
being among the most severe in recorded history (Bentz et al. 2009). Because bark 
beetles are highly sensitive to thermal conditions conducive to population survival 
and growth (Bentz et al. 2010), and drought stress negatively affects host tree vigor 
(Kolb et al. 2016), epidemics have been correlated with recent shifts in temperature 
and precipitation attributed to climate change. Forest densification has exacerbated 
the effect (Fettig et al. 2007). 

The impact of wood borers, a related group, pales in comparison to that of 
bark beetles, but there are a few species, such as the California flatheaded borer 
(Phaenops californica), and flatheaded fir borer (Phaenops drummondi), that can 
cause noticeable levels of tree mortality in western coniferous forests (Furniss 
and Carolin 1977). Wood borers commonly infest trees stressed or killed by other 
agents and serve a very important ecological function by helping to facilitate wood 
decomposition and nutrient cycling (fig. 6.3), but given their minor role as primary 
disturbances will not be considered further. 

Mountain pine beetle, Dendroctonus ponderosae— 
Mountain pine beetle is regarded as the most significant forest insect in North 
America, and colonizes 15 tree species, primarily lodgepole pine, ponderosa pine, 
sugar pine (P. lambertiana), limber pine (P. flexilis), western white pine (P. monti-
cola) and whitebark pine (P. albicaulis) (Negrón and Fettig 2014). The geographic 
distribution generally reflects the range of its primary hosts, although lodgepole 
pine extends farther to the north and ponderosa pine and other pines farther to the 
south than where mountain pine beetle populations currently exist (Bentz et al. 
2010). Historically, the range of mountain pine beetle was restricted by climatic 
conditions unfavorable to brood development, but is expanding as a result of climate 
change and other factors. Populations were detected in Nebraska in 2009 (Costello 
and Schaupp 2011); in Alberta, Canada, in 2003 (Cudmore et al. 2010); and in the 
Northwest Territories, Canada, in 2012 (Natural Resources Canada 2013). Scientists 
have expressed a concern that mountain pine beetle could expand farther eastward 
across the boreal forest of Canada and into the Eastern United States (Safranyik 
et al. 2010). However, Bentz et al. (2010) described the probability of such a range 
expansion as low during this century. 

The range of mountain 
pine beetle, regarded 
as the most significant 
forest insect in North 
America, is expanding.



86

GENERAL TECHNICAL REPORT PNW-GTR-992

With few notable exceptions (Hopkins 1905), most large-scale epidemics 
occur in lodgepole pine forests. Mountain pine beetle initially colonizes the largest 
lodgepole pine in a stand (e.g., >23 cm diameter at breast height [d.b.h.]), which 
provides a higher reproductive potential and probability of beetle survival (Graf 
et al. 2012), with progressively smaller trees being colonized over time (Klein et 

Figure 6.3—Bark beetles serve as keystone species that facilitate colonization of trees by other 
organisms. Of note, subsequent colonization by wood borers helps expedite decomposition and nutri-
ent cycling. Lassen National Forest, California, 2005. 
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al. 1978). In ponderosa pine, the small- to mid-diameter classes (e.g., 20 to 40 cm 
d.b.h.) tend to be colonized most frequently (Olsen et al. 1996), but this may be an 
artifact of these forests being less dense, less continuous, and exhibiting a higher 
diversity of stand ages and tree sizes than is observed in lodgepole pine forests 
(Fettig et al. 2014). There is usually one generation per year (Bentz et al. 2014). 

Since 2000, ~10.3 million ha have been affected by mountain pine beetle (fig. 
6.4), which represents almost half of the total area affected by all bark beetles 
combined in the Western States. Activity began to increase substantially in 2004, 
peaked in 2009 when 3 578 591 ha were affected, and has declined since then (fig. 
6.5). Despite this, mountain pine beetle is still ranked the most damaging forest 
insect in the 2013−2027 risk assessment (Krist et al. 2014), with a projected loss of 
~65.8 million m2 of basal area occurring between 2013 and 2027 (fig. 6.6). Histori-
cally, mountain pine beetle epidemics were not usual, but the magnitude and extent 
of recent events may have exceeded the range of historic variability in some cases 
(Bentz et al. 2009), and have occurred at high elevations where they formerly were 
uncommon (see “Impacts to Sustainability”). 

Western pine beetle, Dendroctonus brevicomis— 
Western pine beetle is a significant cause of ponderosa pine mortality. The only 
other primary host in the West is Coulter pine (P. coulteri), a species indigenous 
to the Transverse and Peninsular Ranges of southern California (Miller and Keen 
1960). Western pine beetle generally exhibits a preference for larger diameter 
(>50 cm d.b.h.) trees, but under certain conditions, such as extended drought, may 
colonize and kill trees of all ages and size classes (Fettig 2016). There are usually 
two to four generations per year. 

Since 2000, there have been only 3 years when <40 469 ha were affected by 
western pine beetle. In response to a severe, prolonged drought, activity recently 
increased in 2014 and peaked in 2016 when 892 041 ha were affected (fig. 6.5), 
mostly in California (846 580 ha) (fig. 6.7). In some areas of the central and south-
ern Sierra Nevada, tree mortality has exceeded 90 percent, and type conversions 
have been observed (Fettig et al. 2019), prompting California Governor Jerry 
Brown to declare a state of emergency over concerns about public health and safety. 
This event may foreshadow future impacts of western pine beetle as the intensity 
and duration of droughts, important inciting factors (Kolb et al. 2016), and the 
distribution of ponderosa pine are expected to increase in the future (Rehfeldt et al. 
2006). Western pine beetle is ranked the eighth most damaging forest insect in the 
2013−2027 risk assessment (Krist et al. 2014), with a projected loss of ~15.4 million 
m2 of basal area (fig. 6.6). 
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Figure 6.4—Area and severity of tree mortality attributed to mountain pine beetle, 2000–2016 (percentage of treed area by sub-
watersheds, 6th-level hydrologic unit codes). Data are from the U.S. Forest Service National Insect and Disease Survey database.
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Figure 6.5—Area affected by year, 2000–2016. Values represent the impact observed each individual 
year and should not be summed across years (i.e., there may be overlap in areas affected from year to 
year). Data are from the U.S. Forest Service National Insect and Disease Survey database.
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Figure 6.6—Projected losses, 2013–2027. Ips spp. including 
some species from the Eastern United States. Data are from 
the National Insect and Disease Forest Risk Assessment, 
2013–2027 (Krist et al. 2014).
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Jeffrey	pine	beetle,	Dendroctonus jeffreyi— 
Jeffrey pine beetle colonizes only Jeffrey pine (P. jeffreyi), a species that ranges 
from the Klamath Mountains in southwestern Oregon to throughout much of the 
Sierra Nevada and the Transverse and Peninsular Ranges in southern California, to 
the Sierra San Pedro Mártir in Baja California, Mexico. The species usually colo-
nizes individual trees, and its activity often goes unnoticed, but during extended 
droughts large groups of trees may be killed (Fettig 2016). Although Jeffrey pine 
beetle is a significant source of disturbance in forests containing Jeffrey pine, the 
limited distribution and abundance of the host marginalizes the beetle’s overall 
impact. There are one to two generations per year (Furniss and Carolin 1977). In 
most years, fewer than a few thousand hectares are affected (fig. 6.5), and conse-
quently Jeffrey pine beetle is ranked the 15th most damaging forest insect in the 

Figure 6.7—Western pine beetle is a primary disturbance agent in ponderosa pine forests, Sierra National Forest. California, 2016. In 
2016, 846 580 ha were affected by western pine beetle in California alone. 
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2013−2027 risk assessment (Krist et al. 2014), with a projected loss of ~2.6 million 
m2 of basal area (fig. 6.6). Based on research focused on the Lake Tahoe Basin, 
California, Scheller et al. (2018) suggested that epidemics of Jeffrey pine beetle will 
increase in severity in the future.

Spruce beetle, Dendroctonus rufipennis— 
Spruce beetle is the most significant mortality agent of mature spruce in the West 
and ranges throughout western North America, across the boreal forest of Canada, 
and into the Northeastern United States. Primary hosts include Engelmann spruce 
(Picea engelmannii) in the Intermountain West (fig. 6.8), and white spruce (Pi. 
glauca), Lutz spruce (Pi. × lutzii), Sitka spruce (Pi. sitchensis), and occasionally 
black spruce (Pi. mariana) in Alaska. Disturbances that produce an abundance 
of downed spruce, including timber harvests, blowdowns, landslides, and snow 
avalanches, have been implicated in the occurrence of most epidemics (Jenkins et 
al. 2014b). There are 0.3 to 1 generations per year (Furniss and Carolin 1977). 
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Figure 6-8—Spruce beetle is the most significant mortality agent of mature spruce in the Western United States. Bridger-Teton National 
Forest, Wyoming, 2016.



92

GENERAL TECHNICAL REPORT PNW-GTR-992

During the 1990s, a spruce beetle outbreak occurred on the Kenai Peninsula 
in south-central Alaska of a magnitude that had not been experienced in recorded 
history in North America for any bark beetle (Werner 1996), only to be surpassed 
by mountain pine beetle (fig. 6.5). At the peak, >485 000 ha were affected in a single 
year. In more recent years, activity increased in 2013 and peaked in 2016, when 
313 260 ha were affected (fig. 6.5), mostly in Colorado (141 122 ha), south-central 
Alaska (76 096 ha), and Utah (50 292 ha). At the time of this writing, spruce beetle 
populations are undergoing a dramatic increase in Alaska. 

Spruce beetle is ranked the fourth most damaging forest insect in the 
2013−2027 risk assessment (Krist et al. 2014), with a projected loss of ~49.8 mil-
lion m2 of basal area (fig. 6.6). High summer temperatures are correlated with an 
increase in the proportion of spruce beetle that complete a generation in a single 
year (Hansen and Bentz 2003), contributing to population growth and observed 
levels of tree mortality in some populations (Bentz et al. 2010, Berg et al. 2006). 
Overall, models suggest that future epidemics will be favored by increasing tem-
peratures (Bentz et al. 2010), but projected reductions in the range of Engelmann 
spruce in the Intermountain West (Rehfeldt et al. 2006) could result in reduced 
impacts in that region. 

Douglas-fir	beetle,	Dendroctonus pseudotsugae—
Douglas-fir beetle is the most important biotic disturbance affecting Douglas-fir 
forests in the Rocky Mountains (fig. 6.9). Occasionally western larch (Larix occiden-
talis) is colonized. When populations are at endemic levels, Douglas-fir beetle colo-
nizes recently killed trees or trees weakened by defoliation, root disease, ice, fire, or 
wind. Under normal environmental conditions, small groups of trees are killed, but 
when large numbers of stressed trees occur, populations may increase in these trees 
and spread to adjacent healthy trees (Furniss et al. 1979, Furniss and Kegley 2014). 
The coastal Douglas-fir region, ranging from northern California to British Colum-
bia, has sporadic epidemics of short duration that usually develop following exten-
sive windthrow or large fires. There is one generation per year (Furniss and Carolin 
1977). In most years, 80 000 to 100 000 ha are affected (fig. 6.5). In recent years, 
activity peaked in 2005 when 273 826 ha were affected (fig. 6.5). Douglas-fir beetle is 
ranked the fifth most damaging forest insect in the 2013−2027 risk assessment (Krist 
et al. 2014), with a projected loss of ~42.5 million m2 of basal area (fig. 6.6).

Western balsam bark beetle, Dryocoetes confusus—
Western balsam bark beetle is a significant source of disturbance in spruce-fir 
forests. Its range extends from British Columbia and Alberta south to Arizona 
and New Mexico (Wood 1982). This species primarily colonizes subalpine fir 

Spruce beetle is 
the most significant 
mortality agent 
of mature spruce 
in western North 
America.
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(Abies lasiocarpa), although Pacific silver fir (A. amabilis), white fir (A. concolor), 
and Engelmann spruce are also hosts (Bright 1963). Western balsam bark beetle 
preferentially colonizes trees of reduced vigor, and blowdowns appear important in 
inciting epidemics (McMillin et al. 2003). There is 0.5 generation per year (Negrón 
and Popp 2009). Activity peaked in 2004 when 105 771 ha were affected (fig. 6.5), 
primarily in Montana (66 908 ha). Western balsam bark beetle is ranked the 18th 
most damaging forest insect in the 2013−2027 risk assessment (Krist et al. 2014), 
with a projected loss of ~2.1 million m2 of basal area (fig. 6.6). 

Fir engraver, Scolytus ventralis—
Fir engraver colonizes true firs, particularly white fir. Trees of all sizes may be 
colonized and killed, but epidemics are typically associated with trees stressed by 
drought, defoliation (e.g., by Douglas-fir tussock moth (Orgyia pseudotsugata), root 
pathogens, or other factors (Berryman and Ferrell 1988, Ferrell et al. 1994). Large 
numbers of trees may be killed by fir engraver following prescribed fire (Fettig and 
McKelvey 2014). There is one generation per year throughout much of the range 
(Furniss and Carolin 1977). As was observed for western pine beetle, fir engraver 
activity increased in 2014 in response to a prolonged, severe drought, and peaked 
in 2016 when 1 186 737 ha were affected (fig. 6.5). Most of this activity occurred in 

Figure 6.9—Douglas-fir beetle is a primary disturbance agent in Douglas-fir forests in the Western United States. Boise National Forest, 
Idaho, 2017. 

C
. F

et
tig

, P
ac

ifi
c 

S
ou

th
w

es
t R

es
ea

rc
h 

S
ta

tio
n



94

GENERAL TECHNICAL REPORT PNW-GTR-992

California (1 070 920 ha) (Fettig et al. 2019). Fir engraver is ranked the ninth most 
damaging forest insect in the 2013−2027 risk assessment (Krist et al. 2014), with a 
projected loss of ~14.8 million m2 of basal area (fig. 6.6). 

Engraver beetles, Ips spp.—
There are about 25 species of Ips in the Western United States (Furniss and Carolin 
1977). In most years, fewer than 40 000 ha are affected, but activity peaked in 
2003 when 1 271 139 ha were affected in the West (by all Ips species) (fig. 6.5) 
owing largely to pinyon ips (I. confusus) in the Southwest. Collectively, Ips spp. are 
ranked the third most damaging forest insect(s) in the 2013−2027 risk assessment 
(Krist et al. 2014), with a projected loss of ~53.9 million m2 of basal area (fig. 6.6). 
However, this figure also includes contributions of several species from the Eastern 
United States. 

In the Western States, most notable is the pine engraver (I. pini), which has a 
transcontinental distribution and is one of the most common bark beetles in North 
America (Kegley et al. 1997). Like most Ips, this species usually infests slash, 
saplings, and weakened trees (table 6.1). Top killing of ponderosa pine is common, 
and often facilitates colonization by western pine beetle or mountain pine beetle. 
Colonization rates are negatively correlated with tree diameter in ponderosa pine 
(Kolb et al. 2006), and trees 5 to 20 cm d.b.h. are most frequently colonized. Infes-
tations of pine engraver are often short lived but may increase in scale and duration 
when suitable host material is plentiful and populations grow to sufficient numbers 
to kill apparently healthy trees. There are one to two generations per year (Furniss 
and Carolin 1977).  

The distribution of the northern spruce engraver (I. perturbatus), generally 
coincides with that of its primary host, white spruce. Other hosts include Engel-
mann spruce, Lutz spruce, and black spruce. Although populations have been 
recorded in Idaho, Maine, Michigan, Minnesota, Montana, Washington, and nearly 
all the Canadian provinces, northern spruce engraver exerts its greatest impacts 
in Alaska (Burnside et al. 2011). In most years, endemic populations infest forest 
debris, widely scattered individual trees, or small groups of trees. However, natural 
(e.g., flooding, wildfire, and windstorms) and anthropogenic (e.g., road building, 
construction of utility rights-of-way, and logging) disturbances may produce large 
quantities of stressed, dead, and dying spruce that serve as ideal hosts for northern 
spruce engraver. Spring drought conditions led to epidemics on the Kenai Peninsula 
in the 1990s (Holsten 1998). Increased use of mechanical fuel reduction treatments 
and low-cost wood energy systems, and elevated summer temperatures, have been 
implicated in epidemics in Interior Alaska (Fettig et al. 2013a). Furthermore, the 
mean temperature in interior Alaska is projected to increase an additional 3 to 7 °C 
by the end of this century (Walsh et al. 2008) with only modest increases in precipi-
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tation that likely will be insufficient to offset increases in evapotranspiration. As a 
result, levels of drought stress in white spruce are expected to increase (Wolken et 
al. 2011) enhancing conditions favorable to northern spruce engraver. There is one 
generation per year (Burnside et al. 2011).  

California fivespined ips (I. paraconfusus) occurs from southern Oregon 
to southern California and east to the crest of the Sierra Nevada and Cascade 
mountain ranges (Furniss and Carolin 1977) (fig. 6.10). Recently, populations were 
recorded in Washington (Murray et al. 2013). All pines occurring within the range 

Figure 6.10—Like most Ips spp., California fivespined ips readily colonizes logging slash where 
populations may rapidly increase and then emerge to colonize adjacent trees. Tahoe National Forest, 
California, 2004.
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of California fivespined ips are susceptible to colonization, especially ponderosa 
pine. Like other Ips, endemic populations infest forest debris, widely scattered 
individual trees or small groups of trees. Occasionally, epidemics result in mortality 
of large numbers of trees but are usually associated with improper slash manage-
ment or drought. California fivespined ips is also a vector of the fungus Fusarium 
circinatum, which causes pitch canker disease in Monterey pine (P. radiata) in 
California and other pines worldwide (Wingfield et al. 2008). There are two to five 
generations per year (Furniss and Carolin 1977). In most years, a few thousand 
hectares are affected. Activity peaked in 2008, when 24 130 ha were affected. 

Pinyon ips (I. confusus) is a major cause of mortality in pinyon pine (P. edulis 
and P. monophylla) (Furniss and Carolin 1977). Epidemics frequently occur in the 
Great Basin and Southwestern United States and are usually associated with forest 
densification and drought (Kleinman et al. 2012, Negrón and Wilson 2003, Shaw et 
al. 2005). There are two to four generations per year (Furniss and Carolin 1977). In 
most years, fewer than 20 235 ha are affected, but activity peaked in 2003 when 1 188 
785 ha were affected. These numbers likely under report the amount of activity as 
aerial detection surveys typically do not cover most of the pinyon-juniper woodlands.

Defoliators
Forest defoliators consume, mine, or skeletonize the foliage of trees, but their 
impacts pale in comparison to bark beetles. In most cases, eggs are laid on the 
buds, foliage, branches or boles of trees. Larval feeding may result in tree mortality 
depending on the timing, frequency, and extent of feeding (table 6.2). Most fre-
quently defoliation retards growth, decreases tree vigor, and increases the amount 
of light reaching the forest floor, influencing understory and mid-story dynamics. 
Trees of all species, ages, and size classes may be defoliated, but each defoliator 
exhibits unique host preferences, life history traits, and impacts. Only two species, 
western spruce budworm (Choristoneura freemani) (also C. occidentalis) (see Gil-
ligan and Brown 2014) and Douglas-fir tussock moth cause extensive levels of tree 
mortality. Predators and parasitoids have a strong regulatory effect on their popula-
tions, resulting in long time lags between epidemics. 

Unlike the case of bark beetles, there appear to be few consistent trends among 
factors that incite forest defoliators. The cyclic nature of epidemics has prompted 
the formulation of a number of hypotheses that attempt to explain associated 
mechanisms, including genetic variation, qualitative variation, climatic release, 
food (host) quality deterioration or improvement, and diseases (parasitoids and 
pathogens), among others (Berryman 1996, Myers 1988). Drought has been 
implicated as an inciting factor (Mattson and Haack 1987), but a recent synthesis 
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concluded that defoliators exhibit no consistent response to drought (Kolb et al. 
2016). The projected future impacts of some notable species (e.g., pine butterfly 
[Neophasia menapia]) were not considered in the 2013−2027 risk assessment (Krist 
et al. 2014), and thus are absent in the discussion below.

Western spruce budworm, Choristoneura freemani— 
Western spruce budworm is the most important defoliator in western North 
America (Brookes et al. 1987) (fig. 6.11). The species feeds on Douglas-fir, true firs, 
and occasionally spruce and western larch (Furniss and Carolin 1977). Its geo-
graphic range coincides with these hosts from British Columbia and Alberta south 
to Arizona and New Mexico and east to Colorado. Budworm populations erupt 
episodically over large regions. Defoliation continues for several years to more than 
a decade, then the insect becomes relatively rare for years to decades (Swetnam and 
Lynch 1993). This synchrony seems to be associated with favorable weather condi-
tions, warm dry summers in conjunction with synchrony of larval emergence and 
bud flush, and the influences of natural enemies (Peltonen et al. 2002, Thomson et 
al. 2012). In mature stands, the most common impact is reduced growth, although 
repeated defoliation sometimes results in top kill and tree mortality. Severely defoli-
ated trees are often colonized and killed by Douglas-fir beetle and fir engraver. 

Figure 6.11—Western spruce budworm larvae are important defoliators of true firs and Douglas-fir.
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Larvae also feed on staminate flowers and developing cones affecting regeneration. 
There is one generation per year (Furniss and Carolin 1977). 

In recent years, western spruce budworm activity peaked in 2009 when 2 
066 266 ha were affected (fig. 6.12), mostly in Idaho and Montana. The impact of 
western spruce budworm may be increasing in some areas (e.g., eastern Oregon) 
because of extensive logging of ponderosa pine, which favors Douglas-fir (Swetnam 
et al. 1995). Other research suggests that the duration and intensity of epidemics in 
western Montana have increased as a result of a decrease in the frequency of wild-
fires attributed to fire suppression efforts, causing increased host species abundance 
and multistoried stands (Anderson et al. 1987). Epidemics have also been linked to 
drought or synchrony of larval development with foliage phenology (Campbell et al. 
2006, Williams and Liebhold 1995), although other studies have found that epidem-
ics were associated with wetter conditions at the end of droughts that increase food 
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resources (Flower et al. 2014, Ryerson et al. 2003, Swetnam and Lynch 1993). West-
ern spruce budworm is ranked the 11th most damaging forest insect, second among 
native defoliators to eastern spruce budworm (C. fumiferana) in the 2013−2027 risk 
assessment (Krist et al. 2014), with a projected loss of ~10.8 million m2 of basal 
area. As observed for some bark beetles, western spruce budworm epidemics may 
increase fire risk and severity in affected stands (Hummel and Agee 2003, Ryerson 
et al. 2003, Schowalter 1986). 

Douglas-fir	tussock	moth,	Orgyia pseudotsugata—
Douglas-fir tussock moth is an important defoliator of true firs and Douglas-fir 
(fig. 6.13). The species consumes the foliage of several tree species (table 6.2), but 
only Douglas-fir, white fir, and grand fir (A. grandis) are considered primary hosts 
(Brooks et al. 1978). Epidemics develop quickly and then subside usually in 1 to 
2 years, but some have persisted for longer periods (Schaupp et al. 2008). Defolia-
tion by Douglas-fir tussock moth kills or top kills many trees, making them more 
susceptible to colonization by Douglas-fir beetle and fir engraver. There is one 
generation per year (Furniss and Carolin 1977). 

Figure 6.13—Douglas-fir tussock moth is an important defoliator of true firs and Douglas-fir. Santa Fe National Forest, New Mexico, 2016.
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Activity peaked in 2000 when 116 000 ha were affected (fig. 6.12), primarily in 
Idaho, Oregon, and Washington. Since 2001, the amount of defoliation attributed to 
Douglas-fir tussock moth has declined substantially, with the exception of 2011 and 
2012 when 47 600 and 19 270 ha were affected, respectively. Historically, epidem-
ics of Douglas-fir tussock moth in California were limited to the Sierra Nevada. 
However, an epidemic occurred in the Transverse Mountain Ranges of southern 
California in 2009 that was primarily attributed to fire suppression efforts resulting 
in significant increases in the density and continuity of white fir (Coleman et al. 
2014). As a result, the potential for elevated impacts in southern California is of 
concern. Douglas-fir tussock moth is ranked the 16th most damaging forest insect 
in the 2013−2027 risk assessment (Krist et al. 2014), with a projected loss of ~2.6 
million m2 of basal area. 

Pine	butterfly,	Neophasia menapia—
Pine butterfly is a periodic defoliator of ponderosa pine in the Pacific Northwest 
(fig. 6.14) and Rocky Mountains, although Douglas-fir, western white pine, and 
lodgepole pine may also be colonized (Keen 1952). In most years, a few adults 
can be seen fluttering around the tops of pines in late summer and early fall, but 
evidence of defoliation from larval feeding is absent or inconspicuous. Repeated 
defoliation can reduce tree growth, making trees more susceptible to other distur-
bances, such as western pine beetle. Occasionally, severe (>75 percent) defoliation 
may result in tree mortality. There is one generation per year (Furniss and Carolin 
1977). Historically, epidemics have been recorded in British Columbia, Idaho, 
Montana, Oregon, and Washington (Bousfield and Meyer 1972, Evenden 1926, 
Keen 1952). In recent years, activity peaked in 2011 when 101 343 ha were affected, 
mostly in Oregon. 

Larch casebearer, Coleophora laricella—
Larch casebearer is native to Europe (Jagsch 1973), but was introduced into North 
America, likely on nursery stock. The species was first detected in Northampton, 
Massachusetts, in 1896, in Ottawa, Canada, in 1905 (Otvos and Quednau 1981), 
and in western North America near St. Maries, Idaho, in 1957 (Tunnock and Ryan 
1983), and has since spread to Alberta, British Columbia, Montana, Oregon, and 
Washington. Larch casebearer feeds on the internal tissue of western larch needles, 
favoring younger trees growing in the open or along forest edges (Tunnock and 
Ryan 1983). Repeated defoliation can result in growth loss and tree mortality (Ryan 
et al. 1987). There is one generation per year (Furniss and Carolin 1977). 

In eastern North America, larch casebearer was the subject of a very success-
ful classical biological control program (i.e., the introduction of a natural enemy of 
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exotic origin to control an invasive species). As such, several nonnative parasitoids 
were released in the Western United States for control of larch casebearer starting 
in the 1960s (Ryan 1990). By the 1980s, two species, Agathis pumila and Chryso-
charis laricinellae, were well established throughout the region, significantly reduc-
ing populations of larch casebearer (Ryan 1997). In recent years, activity peaked 
in 2008 when 36 130 ha were affected in the Western United States (fig. 6.12), but 
usually only 10 000 to 20 000 ha are affected annually. 

Figure 6.14—Pine butterfly is a periodic defoliator of ponderosa pine in the Pacific Northwest and 
Intermountain West. Malheur National Forest, Oregon, 2010.
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Western hemlock looper, Lambdina fiscellaria lugubrosa—
Western hemlock looper colonizes western hemlock (Tsuga heterophylla). Epidem-
ics usually occur in coastal and interior wet belt regions of the Pacific Northwest in 
mature hemlock and hemlock-cedar stands. During an epidemic, western hemlock 
looper will feed on other tree species (table 6.2), and some broad-leaved trees and 
shrubs (Jardine 1969). Populations periodically increase and persist for 1 to 2 years, 
resulting in the death of large numbers of trees over limited but well-defined areas. 
There is one generation per year. Of note, 7571 ha were affected in Idaho in 2011.

Pine	sawflies,	Neodiprion spp.—
Pine sawflies are common defoliating insects of pines, consisting of 16 species in 
the Western States (Ciesla and Smith 2011, Ross 1955). Sawflies normally occur at 
low densities (e.g., a few individuals per tree); however, on occasion some species 
become epidemic, causing defoliation on a vast scale for one or more years (Furniss 
and Carolin 1977). Most species exhibit a preference for open-grown trees. For 
example, a study in Arizona showed that defoliation by Neodiprion autumnalis, the 
most widely distributed species that feeds on ponderosa pine, was limited to stands 
with <4.6 m2/ha of basal area (McMillin et al. 1996). There is one generation per 
year. Although good records are not available on the impact of sawflies in the West, 
most recent activity is reported from Arizona and Colorado.

Pandora moth, Coloradia pandora—
Pandora moth larvae feed on the foliage of several pines, primarily ponderosa, 
lodgepole, and Jeffrey pines throughout much of the West (Furniss and Carolin 
1977). Epidemics usually occur in mature stands and cause extensive defoliation, 
leading to growth loss and tree mortality. When tree mortality occurs, it is often 
associated with prolonged drought, dwarf mistletoe infection, or colonization by 
bark beetles (Wagner and Mathiasen 1985). Some epidemics encompass large areas 
but occur only where soils are loose enough for larvae to bury themselves where 
they pupate. Based on observations of 20th-century epidemics and interviews with 
American Indians who use the larvae and pupae as food, epidemics typically recur 
every 20 to 30 years and last about 6 to 8 years (Furniss and Carolin 1977). How-
ever, Clark et al. (2017) reconstructed epidemics from a 1,572-year (435 to 2006) 
ponderosa pine chronology in central Oregon and reported that epidemics occurred 
on average every 104 years. Pandora moth has 0.5 generation per year, with feeding 
and moth flight occurring in alternate years so that most of the defoliation occurs 
every other year. Although good records are not available on the impact of pandora 
moth, most recent activity is reported from Arizona.
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Forest tent caterpillar, Malacosoma disstria, and western tent caterpillar, 
Malacosoma californicum—
Forest tent caterpillar is found throughout the United States and Canada, where 
preferred hosts include numerous broad-leaved trees (Batzer and Morris 1978). 
This species often defoliates extensive areas during epidemics, resulting in severe 
(>75 percent) growth loss, but tree morality is generally rare. Interestingly, analyses 
of historical data (1950–1984) from northern Ontario, Canada, indicate that host 
abundance such as that of aspen (Populus tremuloides) has no effect on the duration 
of epidemics (Roland 1993). Instead, the duration of epidemics was best predicted 
by the amount of forest edge per unit area (Roland 1993). Because forest tent 
caterpillar populations are regulated largely by parasitoids and pathogens (Witter 
and Kulman 1979), this suggests that forest fragmentation negatively affects interac-
tions between these natural enemies and forest tent caterpillar (Roland and Kaupp 
1995). If so, increased fragmentation of forests in the Western United States may 
exacerbate future epidemics. There is one generation per year (Batzer and Morris 
1978). Forest tent caterpillar is ranked the 14th most damaging forest insect in the 
2013−2027 risk assessment (Krist et al. 2014), with a projected loss of ~2.7 million 
m2 of basal area nationwide. Among Western States, activity peaked in 2004 when 
4938 ha were affected in Utah.  

Like forest tent caterpillar, western forest tent caterpillar colonizes a wide 
range of tree and shrub species, but aspen is preferred (Furniss and Carolin 1977). 
Successive years of defoliation causes reduced growth and fruit production, branch 
dieback, top kill, and in rare cases, tree mortality. In Colorado, entire aspen stands 
across large areas have been defoliated. During epidemics, western forest tent 
caterpillar may only be one of several disturbance agents (including other insect 
defoliators and leaf diseases) that cause widespread defoliation of aspen. There is 
one generation per year. In recent years, activity peaked in 2003 when 16 828 ha 
were affected (fig. 6.12), mostly in New Mexico.

Sap-Sucking Insects
Aphids and adelgids comprise a large group of small (usually <4 mm in length), 
soft-bodied insects that are frequently found sucking sap from leaves and stems of 
plants. Most overwinter as eggs, which hatch in spring into females that reproduce 
parthenogenetically (asexually) and birth live young. This unique reproductive 
trait results in rapid changes in population densities over time (Minks and Har-
rewijn 1987). Sap-feeding insects are particularly susceptible to desiccation in drier 
climates. More mesic habitats are found to support higher populations (Progar and 
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Schowalter 2002), which are usually kept in check by numerous natural enemies 
and abiotic factors. Generally, feeding is manifested as needle stunting, needle 
chlorosis, and stem deformation. Several aphid species are also regarded as vectors 
of notable plant viruses (Minks and Harrewijn 1987). Aphids often go unnoticed 
in forests because of their small size and cryptic behavior. Adelgids are important 
pests of several conifers and are closely related to aphids (Havill and Foottit 2007). 

Balsam woolly adelgid, Adelges piceae—
Balsam woolly adelgid is a nonnative, invasive insect that threatens true fir species 
throughout North America. The species was introduced into eastern North America 
from Europe before 1900 (Foottit and Mackauer 1980), and subsequently near San 
Francisco, California, in 1928 (Ragenovich and Mitchell 2006). In the Western 
States, it is now well established in Oregon and Washington, but continues to move 
eastward through Idaho and into Montana, threatening subalpine fir (fig. 6.15). A 
similar trend is observed in British Columbia (Zilahi-Balogh et al. 2016). In 2017, bal-
sam woolly adelgid was detected for the first time in Utah, and now populations have 
been confirmed in several counties within the state (Alston et al. 2018). Hrinkevich 
et al. (2016) developed a climatic risk model for balsam woolly adelgid, and reported 

Figure 6.15—Balsam woolly adelgid is a nonnative, invasive insect that threatens fir species through-
out North America. Feeding causes swelling or gouting on new growth. Wallowa-Whitman National 
Forest, Oregon, 2012. 

R
. P

ro
ga

r, 
P

ac
ifi

c 
N

or
th

w
es

t R
es

ea
rc

h 
S

ta
tio

n



105

Disturbance and Sustainability in Forests of the Western United States

climatic susceptibility decreases from the Olympic Peninsula in Washington and the 
Cascade Range in Oregon and Washington eastward, with the exception of some 
high-risk areas in northern Idaho and western Montana. There is also a pattern of 
decreasing climatic suitability from north to south in the Rocky Mountains. 

In response to feeding by balsam woolly adelgid, the host produces a type of 
compression wood in the sapwood that inhibits waterflow within the tree, eventu-
ally leading to tree death. There are usually two generations per year (McMullen 
and Skovsgaard 1972). Balsam woolly adelgid is ranked the 10th most damaging 
forest insect, first among invasives in the Western United States in the 2013−2027 
risk assessment (Krist et al. 2014), with a projected loss of ~11.3 million m2 of basal 
area. In recent years, activity in the West peaked in 2010 when 79 757 ha were 
affected (fig. 6.12), mostly in Oregon. Balsam woolly adelgid is likely to become a 
more important disturbance agent in forests of Idaho, Montana, and Utah (Hrinkev-
ich et al. 2016). 

Spruce aphid, Elatobium abietinum—
Spruce aphid causes chlorosis, defoliation, and mortality of spruce (fig. 6.16) but 
has also been recorded infesting pine and Douglas-fir (Furniss and Carolin 1977). 
This insect, an exotic invasive from Europe, was first reported in British Columbia 
in 1916 (Carter and Halldórsson 1998), and has since spread throughout coastal 
British Columbia, southeast Alaska, Oregon, and Washington as well as several 
mountain ranges in Arizona and New Mexico (Lynch 2014). The highly dispersive 
nature of alates (winged individuals) allows populations to spread rapidly to the 
limits of its climatic tolerances (e.g., temperatures below -10 °C in maritime areas). 
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Figure 6.16—Defoliation of Sitka spruce by spruce aphid in southeast Alaska, 2005.
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High densities can lead to severe defoliation, but needle loss is generally restricted 
to 1-year-old and older needles in spring and summer. In the fall and winter, feeding 
occurs on current as well as older needles, and high populations at this time of year 
are capable of causing complete defoliation of the tree. Young trees that have been 
heavily defoliated during the winter often have terminal buds that fail to break the 
following spring (Carter 1977). Impacts are most significant in coastal southeast 
Alaska on Sitka spruce and in Arizona on Engelmann spruce. In 2003, 73 039 ha 
were affected (fig. 6.12), mostly in Arizona. 

Host water stress is thought to positively influence sap-sucking insects through 
an increase in phloem nitrogen content (Kolb et al. 2016). Spruce aphid populations 
are higher when water stress is intermittent and lowest when water stress is continu-
ous. Lynch (2003) reported that epidemics tend to occur after dry winter and spring 
conditions in high-elevation forests in Arizona, but do not seem to be influenced 
by the amount of moisture received during the summer monsoon. Given projected 
increases in temperature and the frequency of droughts in the West, spruce aphid 
will likely become a more significant disturbance agent. 

Role of Management in Mitigating Impacts
Several tactics are available to reduce the vulnerability of forests to insects, includ-
ing those that help reduce atmospheric warming (through reductions in carbon 
dioxide and other greenhouse gas emissions), which increases drought stress and 
the probability that trees will succumb to colonization by insects (Kolb et al. 2016). 
Others facilitate transition of forest stands to tree species better adapted to future 
climates (Fettig et al. 2013b, Millar et al. 2007, Millar and Stephenson 2015). 
Historically, management has focused on suppression and prevention. Suppression 
involves short-term tactics designed to reduce current infestations by manipulating 
insect populations through the use of fire, pesticides (contact and systemic insec-
ticides, microbials [bacteria, viruses, pathogens and nematodes]), insect growth 
regulators, soaps, and horticultural oils, semiochemicals (chemicals produced by 
one organism that elicits a response, usually behavioral, in another organisms, 
e.g., pheromones), sanitation harvests (harvesting currently infested material and 
destroying living life stages in that material before they emerge), or combinations 
of these treatments (Coulson and Witter 1984, Fettig and Hilszczański 2015). For 
suppression to be effective, accurate detection and survey methods are required 
to identify and delineate infestations prior to treatment. Prevention is designed to 
reduce the probability and severity of future infestations by manipulating forest 
conditions through thinning, prescribed burning, or alterations of age classes and 
species composition. There is considerable support for thinning of conifer forests to 
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reduce the severity of bark beetle infestations (Fettig and Hilszczański 2015, Fettig 
et al. 2007, but see Six et al. 2014). In contrast, there is little consensus regard-
ing the efficacy of thinning for reducing vulnerability to most forest defoliators 
(Muzika and Liebhold 2000). Given the diversity of ecologies and life histories 
displayed by forest insects, it should be no surprise that the application of many of 
these tactics must be tailored to specific insect-host associations (e.g., in regard to 
timing of treatments, use of specific semiochemicals, etc.).  

When implementing prevention or suppression, there are opportunities for 
collaboration with other resource disciplines, allowing additional objectives to be 
met perhaps with little or no additional cost. For example, fuel reduction treatments 
are frequently applied in the Western States to reduce the quantity and continuity of 
forest fuels (Stephens et al. 2012). Although prescriptions generally differ between 
thinning implemented for fuels reduction and that for prevention of certain insects 
(e.g., bark beetles), there are opportunities to alter fuel reduction treatments without 
reducing their efficacy while increasing the effectiveness of these same treatments 
for reducing the vulnerability of forests to insects.

Impacts to Sustainability
The impacts of insects on forests extend beyond the levels of tree mortality caused 
and associated cascading ecological effects. For example, bark beetle epidemics 
may increase water yield yet diminish water quality because of pulses of concen-
trated nutrients and suspended sediment loads (Mikkelson et al. 2013), as well 
as degrade air quality by the release of volatile organic compounds and biogenic 
aerosols (Berg et al. 2013). Landscape aesthetics are important drivers of nature-
based tourism and may be negatively affected (Morris et al. 2018). In the wildland-
urban interface, concerns are often more practical and focused on property values, 
hazard trees, and fire risk (Cohen and other 2016). Interestingly, a notable western 
pine beetle outbreak in southern California affected how homes were advertised and 
sold (Fettig 2019). 

Several recent assessments have concluded that western forests are increasingly 
vulnerable to mortality associated with the direct and indirect effects of climate 
change, and that substantial shifts in the geographic distributions of some tree 
species and forest ecosystems is likely (Fettig et al. 2013b, Williams et al. 2013). 
Rehfeldt et al. (2006) suggested that about 48 percent of the Western U.S. landscape 
is likely to experience climate profiles with no contemporary analog for the current 
coniferous vegetation by the end of this century. Projections show that distributions 
of grassland, chaparral, and montane forest are likely to increase at the expense of 
subalpine forest, tundra, and Great Basin woodland. Shifts are expected to be most 
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rapid along ecotones, particularly in semiarid landscapes (Allen and Breshears 
1998). To that end, Krist et al. (2014) projected that most Western States have at 
least 10 percent of their forested landscapes at risk (defined as without remediation 
at least 25 percent of standing live basal area greater than 2.54 cm in diameter 
will be killed in the next 15 years) to forest insects and diseases epidemics. Most 
notable, in Idaho 28 percent of the forested landscape is considered at risk (Krist et 
al. 2014). 

In the West, seven trees species are expected to suffer substantial levels of tree 
mortality in the near future, including whitebark pine (58 percent of total basal 
area), limber pine (44 percent), lodgepole pine (39 percent), ponderosa pine (28 per-
cent), pinyon pine (27 percent), Jeffrey pine (26 percent), and grand fir (25 percent) 
(Krist et al. 2014). In particular, whitebark pine is of concern as it serves as a key-
stone species. Whitebark pine seed is a critical food source for birds, small mam-
mals, and bears. Furthermore, the species quickly establishes after disturbance, 
and is important in maintaining snowpacks and reducing erosion of steep slopes. 
Significant levels of whitebark pine mortality have been attributed to mountain pine 
beetle (and its interactions with climate change and white pine blister rust), and the 
U.S. Fish and Wildlife Service first announced in 2011 that it determined whitebark 
pine to warrant protection under the Endangered Species Act, but that adding the 
species to the Federal List of Endangered and Threatened Wildlife and Plants was 
precluded by the need to address other listing actions of higher priority (Federal 
Register 2011). Some have questioned if the species can be saved (Neuenschwander 
et al. 1999).

Conclusions
Most forest insects are beneficial (e.g., they help facilitate decomposition, nutri-
ent cycling, and pollination), but a few species periodically become so abundant 
that they threaten ecological, economic, social, or aesthetic values. In the Western 
United States, chief among these are several species of bark beetles (table 6.1), most 
notably mountain pine beetle. Several defoliating and sap-sucking insects are also 
important (tables 6.2 and 6.3). These disturbance agents have interacted with others 
such as wildfire for millennia, shaping the structure and composition of forests 
over time. Unlike the Eastern United States, relatively few exotic insects are the 
source of important disturbance in western forests, but we expect an increase in 
their prevalence in the future owing to recent shifts in human populations and trade 
(Aukema et al. 2010, 2011), among other factors. Relatedly, the recent establishment 
of goldspotted oak borer (Agrilus coxalis) in California (Coleman and Seybold 
2008) and emerald ash borer (A. planipennis) in Colorado (Berry et al. 2017) are 
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cause for concern. The heterogeneity of western landscapes and the diversity of 
climates that occur in relatively small geographic areas (ranging from deserts to 
subarctic) do provide some buffer against invasion. 

We expect that epidemics of the species described herein will occur with 
relatively predictable frequency and that basic host relationships will remain largely 
intact. However, with climate change, we expect the severity of most bark beetle 
epidemics to increase as long as susceptible hosts exist. Overall, the impact of cli-
mate change on defoliating and sap-sucking insects is less unclear. Finally, we agree 
with many experts who have argued to increase the pace and scale of treatments 
designed to increase forest resilience to insects and other disturbances exacerbated 
by climate change. 
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