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Abstract
Kopper, Karen E.; McKenzie, Donald; Peterson, David L. 2009. The 

evaluation of meta-analysis techniques for quantifying prescribed fire  
effects on fuel loadings. Res. Pap. PNW-RP-582. Portland, OR: U.S. 
Department of Agriculture, Forest Service, Pacific Northwest Research  
Station. 24 p.

Models and effect-size metrics for meta-analysis were compared in four separate 
meta-analyses quantifying surface fuels after prescribed fires in ponderosa 
pine (Pinus ponderosa Dougl. ex Laws.) forests of the Western United States. 
An aggregated data set was compiled from 8 published reports that contained 
data from 65 fire treatment units. Downed woody and organic fuels were 
partitioned into five classes, and four meta-analyses were performed on each in 
a 2 by 2 factorial combination of fixed-effects vs. mixed-effects models with a 
difference-based metric (Hedges’ d) vs. a ratio-based metric (log-response ratio). 
All analyses yielded significant effect sizes for each class of fuels, although 
mixed-effects models had larger confidence intervals around mean effect sizes 
and smaller ranges in those means. The use of multiple methods produced a robust 
result for this study, but also carries the danger of selective interpretation if results 
are contradictory. Meta-analysis in fire research merits further consideration 
because it facilitates inferences across data sets reported by multiple authors, 
even when reporting is inconsistent. Nevertheless, standardized methodology, 
consistent measurement protocols, and complete reporting of both significant 
and nonsignificant results will greatly assist future synthesis efforts using meta-
analysis. 

Keywords: Effect size, fuel treatment, Hedges’ d, log-response ratio, 
mixed-effects model.



Summary
The wealth of studies on prescribed fire provides ample opportunity to examine its 
effect on fuels, but the utility of these studies depends on our ability to reconcile 
their multiple approaches to data collection and analysis. Meta-analysis is a 
powerful technique used to analyze large data sets obtained from multiple sources 
and different sampling techniques, and is widely used in the social and medical 
sciences. 

We performed four different meta-analyses of published fire effects data in 
which we compared the effect sizes of prescribed fire treatments on the fuel loads 
of five fuel-size classes of downed wood collected before and after prescribed fires. 
We compiled fuel loading statistics from 8 studies from the literature comprising 65 
treatment units. To compare different meta-analysis test statistics, we used a 2 by 
2 factorial design of fixed-effects vs. mixed-effects models with a difference-based 
metric (Hedges’ d) vs. a ratio-based metric (log-response ratio).

Prescribed fire produced a significant fuel reduction effect for each of the fuel-
size classes in all of the meta-analyses, but the amount and variance of the effect 
sizes differed per analysis. The fixed-effects models had significant heterogeneity 
within and between their fuel-size classes, which we explored through categorical 
subanalyses within the fuel-size classes using techniques similar to ANOVA. We 
partitioned each fuel-size class by season and also separated the large-diameter 
fuels into solid and rotten categories. The meta-analyses performed with the mixed-
effects model, which assumes and accounts for random variation among observa-
tions, reduced the heterogeneity between the fuel-size classes but did not permit 
categorical subanalyses. 

All of the models confirmed that fuel reduction was significant for each fuel-
size class, suggesting that our analysis was robust to the choice of model with 
respect to the overall effect. The mixed-effects models may be intuitively more 
appropriate for the analysis of ecological data owing to their incorporation of ran-
dom variation, but in the process of stabilizing variance, the mixed-effects models 
bypassed the potentially informative processes of the categorical meta-analyses 
performed in the fixed-effects models. Although the use of multiple models pro-
duced consistent results with respect to the overall effect in our study, we recognize 
how the use of multiple models could enable the selective interpretation of results. 
We suggest that the data and the research questions of interest should inform not 
only the choice of sampling design and the standardization of data collection, but 
also the choice of effect-size metrics and analytical methods. 
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Introduction
An observant hiker, naturalist, or outdoor enthusiast is bound to encounter tree tags, 
duff pins, or plot stakes in the forest owing to the large number of forest research 
plots that have been installed by scientists over the past several decades. Although 
many of the methods used to collect and analyze fire effects data have been refined 
over the years, the information from each individual study is still unique and poten-
tially valuable. Meta-analysis is a statistical technique for synthesizing data from 
multiple studies, and is robust to data sets of different sizes and formats. However, 
meta-analysis has only recently been applied to natural resources data (e.g., Johnson 
and Curtis 2001), and appropriate techniques for its application are still being tested 
by biologists and statisticians.

Analogous to analysis of variance (ANOVA), treatments in meta-analysis 
are compared to a control via the testing of a “null” hypothesis. Replicates in the 
ANOVA correspond to individual studies in meta-analysis. The magnitude of the 
treatment effect is expressed by the effect size, a dimensionless measure of the 
difference between a control and treatment group used to express the combined 
results from multiple studies in meta-analysis (Cohen 1969). The advantage of the 
effect size is that it is usually standardized and relatively scale-free, and therefore 
independent of the size or units of the individual studies that are combined (Cohen 
1969, Glass et al. 1981, Hedges and Olkin 1985). There are three general categories 
of effect-size metrics: difference-based, ratio-based, and correlation-based indices 
(Rosnow and Rosenthal 2003). Each type can be used in raw form (generally not an 
option in meta-analysis), standardized, or transformed (e.g., logarithmically).

Interpretations of heterogeneous groupings of ecological data sets have until 
recently been based on expert opinion and other forms of qualitative analyses 
such as omnibus tests or vote-counting procedures that do not provide quantifiable 
measurements of effect (Gurevitch and Hedges 2001). Furthermore, the assump-
tions of statistical tests such as ANOVA and regression analyses are often violated 
when these techniques are used for research synthesis, in which multiple studies 
with substantial heterogeneity of variance and sample size are the norm (Hedges 
and Olkin 1985).

Modern meta-analysis originated in the medical and behavioral sciences in  
the 1970s (Glass 1976, Rosenthal 1976) as a means to synthesize the results of  
up to several hundred studies (Glass et al. 1981). New meta-analytic procedures 
have developed in response to the often more heterogeneous experimental environ-
ments of the social sciences and behavioral research compared to those of classical 
biomedical studies (Glass et al. 1981, Hedges and Olkin 1985, Rosenthal 1984). For 
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example, besides calculating the significance of the effect size, Hedges (1982) pro-
posed the use of chi-square tests of homogeneity to measure the degree of heteroge-
neity in the model, thereby also gauging the appropriateness of combining groups 
within or among study sets (Hunter and Schmidt 1990). Tests for homogeneity are 
now recognized as powerful tools to evaluate the efficacy of meta-analytic designs 
in the social and medical fields (Cook et al. 1992, Hardy and Thompson 1998). 

The potential usefulness of meta-analysis in natural resources has been recog-
nized only relatively recently. There are 33 meta-analyses in ecology listed in the 
AGRICOLA searchable database (National Agricultural Library 2008) between the 
years 1992 and 2006, with the majority published since 2001. Much of the interest 
was generated after a landmark meta-analysis of biological communities (Gurevitch 
et al. 1992) quantified the magnitude of interspecific competition, differentiating 
treatment effects on the biomass of 93 species of various trophic levels, and inhabit-
ing environments ranging from terrestrial to aquatic. 

At that time, meta-analysis used only a fixed-effects model, which assumes 
that the treatment effect does not differ across studies. More recently, however, as 
the potential usefulness of meta-analysis in natural resources has been recognized, 
random-effects and mixed-effects models, which characterize mean effect size 
as a random variable, have been adapted for meta-analyses (Cooper and Hedges 
1994, Gurevitch and Hedges 1993, Hedges 1982, Stram 1996). Gurevitch and 
Hedges (1999) suggested that the mixed-effects model may be especially useful for 
meta-analyses in the field of ecology, considering the random variation inherent 
in biological systems. However, the appropriate use of meta-analysis techniques 
to interpret highly variable biological systems remains a point of debate among 
ecologists and statisticians (Fernandez-Duque and Valeggia 1994, Gurevitch and 
Hedges 1999, Osenberg et al. 1997). The pioneering meta-analysis by Gurevitch et 
al. (1992) found a significant overall effect of competition on biomass coupled with 
high heterogeneity using the fixed-effects model. With the diversity of ecological 
processes now under investigation, the appropriate statistical model and the choice 
of metrics used to calculate effect size are both subject to further review. 

Using a fixed-effects model with the lnR metric of effect size, Wan et al. (2001) 
performed the only previous meta-analysis of fire effects. This meta-analysis mea-
sured change in concentrations of nitrogen (N), ammonium, and nitrate in soils and 
fuels after fire, comparing prescribed burning, slash burning, wildfire effects, and 
time since fire. Fire was found to significantly reduce the amount of N and increase 
soil ammonium and nitrate pools in fuels, but did not have a significant influence 
on N concentrations in fuels or on soil properties. Inconsistency of sampling depth 
was considered to be an underlying factor in the heterogeneous influence of fire on 
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soil N pools. Other factors not addressed in the meta-analysis were also thought to 
influence postfire N properties in soils; these included soil moisture, plant uptake,  
N deposition, leaching, and erosion (Wan et al. 2001). 

Fire exclusion is one of the primary causes of hazardous fuel accumulations 
in many ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests in western 
North America (Agee 1993). In response to decades of fire exclusion, managers are 
now using prescribed fire and thinning treatments to reduce fuels in these forests. 
Accurate quantification of fuel-load reduction after prescribed burning is essential 
for evaluating the success of fuel treatments. 

In this study, we test for significant fuel-load reduction after prescribed fire with 
meta-analysis of published literature, and check the robustness of our results by using 
two common metrics of effect size (Hedges’ d and the log-response ratio) in com-
bination with two statistical models (fixed effects and mixed effects). Meta-analysis 
was limited a priori to ponderosa pine under the assumption that including additional 
forest types would increase the variability in fuel loading, thereby reducing our abil-
ity to identify differences among our models as effectively. There is also a relatively 
large volume of literature on fire effects in ponderosa pine. Response variables were 
limited to five types of surface fuels because these are the most commonly reported 
and we needed adequate replication given that we expected substantial heterogeneity 
among studies.

Methods
The effect-size metrics used for social and medical research syntheses are often 
modified for use in the field of ecology, but the general principles of meta-analysis 
remain the same. The standard procedure begins with a comprehensive literature 
search (literature on fuel reduction in this case) and the extraction of summary 
statistics from each individual study. Summary statistics are then used to derive the 
effect size and variance of each individual study (summary statistics are in app. 1). 
The statistical significance of effect size measures the degree of departure from the 
null hypothesis (Cohen 1969). The grand mean effect (E) and variance (s 2

E ) of the 
treatments are derived from a weighted average of the individual effect sizes and 
their variances, respectively, where studies with larger sample sizes are given more 
weight. 

A significance test of the homogeneity of the individual effect sizes is performed 
using a Chi-squared test (similar to the test for homogeneous variance in ANOVA). 
If the null hypothesis of homogeneity is not rejected, indicating that there is little 
heterogeneity of the effect sizes of the individual studies, then the meta-analysis is 
complete and the results of the effect size measurement are considered “conclusive.” 
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On the other hand, if there is significant heterogeneity of the effect sizes, then 
the individual studies are separated into groups according to shared properties 
determined by the analyst, and a “categorical” meta-analysis is performed. The 
categorical meta-analysis is a powerful method of comparing the effect of the 
treatment on various arrangements of individuals grouped with respect to physi-
ological, spatial, temporal, or environmental differences. For example, we expected 
prescribed fire might have different effects on fuels in ponderosa pine systems of 
the very arid Southwest versus the moderately arid inland Pacific Northwest. 

The iterative process of classification into homogeneous subsets continues 
until there is no longer a significant difference between groups, in which case the 
meta-analysis proper is conducted within groups, with a test of significance of the 
within-class effect size (Wan et al. 2001). If there are not sufficient data available to 
perform the categorical analyses, then the results of the meta-analysis, including the 
effect sizes, are considered “inconclusive.” 

Literature Search
A comprehensive search of the journal articles that provided summary statistics on 
fuel-load reduction in ponderosa pine ecosystems of the Western United States was 
performed through keyword searches (fire, pine, fuel) in the Agricultural Online 
Access database (AGRICOLA©, SilverPlatter Information, Inc., Norwood, MA) 
of published research. Five selection criteria were imposed sequentially: (1) all 
published reports with a sample size greater than one, (2) a documented control or 
pretreatment fuel loading, (3) a postburn or percentage reduction of fuel measured 
within 1 year of prescribed fire, (4) size classes that could be matched to lag-time 
fuel classes, and (5) adequate information to derive summary statistics. Although 
more than 40 journal articles specifically addressed fuel reduction in ponderosa 
pine forests, only 8 published articles (table 1) contained adequate statistical sum-
mary information for meta-analysis of the reduction of organic (combined litter and 
duff) or downed woody fuels. Another eight studies addressing organic or woody 
fuel reduction in ponderosa pine forests could not be used for the meta-analysis 
because they do not report sample size or any measure of variability (confidence 
intervals, standard deviation, or standard error). 

Analysis of fuel reduction was not the primary purpose of many of the studies 
used in this meta-analysis, but was often reported in conjunction with analysis of 
soil nutrient properties (Kovacic et al. 1986, Landsberg et al. 1984), as a measure 
of comparison between various fire management techniques (e.g., Kalabokidis and 
Wakimoto 1992), or as background information regarding other prescribed fire 
effects (e.g., Busse et al. 2000).
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1 The use of trade or firm names in this publication is for reader information and does not 
imply endorsement by the U.S. Department of Agriculture of any product or service.

Table 1—Summary of information contained in articles used in the meta-analysis

    Treatments 
Source of study Forest type (location) Preburn site conditions Fuel variablesa  (replicates)b

Busse et al. (2000)  Ponderosa pine (Fremont 53 to 83 years old,   Organic, 100-hr, ≥1,000-hr 1 (14) 
   National Forest, Oregon)  second growth  fuels; spring burn
Davis et al. (1964)  Ponderosa pine (Coconino Pole-size trees with Organic; fall burn 1 (2) 
   National Forest, Arizona)  scattered old growth
Kalabokidis and Ponderosa pine/Douglas- Multiaged selection cut Organic, 1-hr, 10-hr,  2 (30) 
 Wakimoto (1992)  fir (western Montana)      100-hr fuels; fall burn
Kauffman and Mixed conifer (Blodgett Blodgett: 70 years old   Organic, 1-hr, 10-hr, fuels;  8 (5) 
 Martin (1989)  Forest Research Station;   Challenge: 110 years old  100-hr, ≥1,000-hr 
   Challenge Experimental     fall and spring burns 
   Forest, Plumas National 
   Forest; both in California)
Kovacic et al.  Ponderosa pine (Jemez Multiaged  Organic; winter burn 3 (5) 
 (1986)  Springs, New Mexico)
Landsberg et al.  Ponderosa pine (Deschutes Precommercial thin 18  Organic; spring burns 2 (2) 
 (1984)  National Forest, Oregon)  years earlier, slash  of varied intensity 
     remaining
Sackett and Haase Ponderosa pine (Fort Valley Multiaged, fire suppressed  Organic, 1-hr, 10-hr, 100-hr,  2 (3c)
 (1998)  Experimental Forest,      ≥1,000-hr fuels; fall burn 
   northern Arizona)
Sweeney and Ponderosa pine with black Open stand, prescribed Organic; spring burn 1 (4) 
 Biswell (1961)  oak/Douglas-fir (Lake  fire 3 to 8 years earlier  
   County, California)
a Fuel variables are described in the text.
b Each treatment is a discrete burn within which there were two or more replicate sites where data were collected.
c Three replicates for all except the organic, which has 18 replicates.

Although all studies used in the meta-analysis reported fuel reduction after 
prescribed fire, the season of burns differed and the preburn status of the study 
areas differed by density of trees and ratio of ponderosa pine to other conifer 
species. The most commonly reported statistic was organic layer (combined litter 
and duff) reduction. A brief summary of the characteristics of the studies included 
in the sample is presented in table 1. 

Summary Statistics
Summary statistics were extracted from the studies and recorded on Microsoft 
Excel1 spreadsheets. All of the meta-analysis calculations other than summary 
statistic extraction were performed with MetaWin 2000 statistical software 
designed specifically for meta-analysis (Rosenberg et al. 2000). 
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The summary statistics required for both Hedges’ d and the log response ratio 
lnR are the sample size, mean, and standard deviation. The extraction of summary 
statistics for effect-size calculations was the most time-consuming process in 
the performance of this meta-analysis. The calculations used for this process are 
consistent with basic statistical principles for deriving standard deviations, means, 
and sample sizes (Glass et al. 1981) (see appendix). Meta-analysts should maintain 
spreadsheets and include summary statistics used when reporting results, not only 
for the benefit of the meta-analyst, but to allow for reanalysis and interpretation by 
others (Gurevitch et al. 1992, Wan et al. 2001). 

The number of studies (N) and distinct treatment units (n) used as summary 
statistics in the meta-analysis were the number of independent prescribed burns 
(N) and the number of independent transects or replicates (n). These values were 
inferred from the methodology section of the journal articles and did not always 
concur with the sample sizes reported by the authors. The numbers of individual 
samples along transects or within plots were used to verify the number of replicates 
and derive missing error terms. In several instances the individual samples along 
transects were not reported, and other reports were suspect of pseudo-replication.

Calculation of fuel loads was broken down into several size classes for the 
meta-analysis, because we expected that prescribed fire would have different 
effects on different sizes of surface fuel. The size classes representing the diameter 
of the fuel are defined according to the U.S. National Fire Danger Rating System 
(Deeming et al. 1977) into time-lag classes of 1 hr (0 to 0.25 in [0 to 0.64 cm]), 
10 hr (0.25 to 1 in [0.64 to 2.54 cm]), 100 hour (1 to 3 in [2.54 to 7.62 cm]), and 
1,000 hr and greater (≥3 in [≥7.62 cm]). The time lag indicates the amount of time 
required for the moisture content of a fuel of a given size class to move about 
two-thirds of the way to a new equilibrium moisture content. The 1,000-hr time-lag 
class is stratified into rotten (1,000r) and sound (1,000s) wood categories.

Maintaining independent summary statistics and studies is a dilemma for 
meta-analysts. If independence in the response variable is violated, it will inflate 
the significance levels for statistical tests (Wan et al. 2001). Nonindependence arises 
through the collection of multiple measurements on the same sample (Gurevitch 
et al. 1992) or the inclusion of more than one result from a single study (Wan et al. 
2001). The sampling techniques used to measure the litter (or O1 horizon) and duff 
(or Oe and Oa horizons) often have the potential to violate independence. When the 
planar intercept technique is used to sample litter and duff, the surveyor estimates 
the division between these two layers at the same sample point. This delineation 
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is subjective enough to create the potential for substantial error between the pre- 
and posttreatment values designated as litter or duff.2 Therefore, measurements 
reported for litter and duff were consolidated into one value (organic) to maintain 
independence. 

The sampling techniques used in ground-fuel analysis complicate the process 
of extracting the summary statistics in other ways. For example, the values for the 
total fuel (organic and woody debris) and total woody debris could not be included 
in this analysis because only a few studies provided these statistics as a combined 
total. The individual values reported in the majority of the studies could not be 
combined because they did not share a common sample size. Instead, downed 
woody debris was measured along a transect as a continuous predictor, and litter 
and duff were measured at individual points using the planar intersect technique 
(Brown 1974) or within various-sized units. 

Conversion factors were sometimes required to report the summary statistics of 
the organic (litter and duff) layer, despite the dimensionless quality of Hedges’ d or 
lnR. Typically, the litter and duff components are both recorded as measurements of 
depth, allowing the sample size and standard deviation of each to be combined and 
used as summary statistics directly. In some instances, however, duff was reported 
in units of mass, and litter was recorded in units of depth. We used a conversion 
factor from Brown (1974) where necessary to combine the two categories. 

Metrics of Effect Size
There are several metrics that have been thoroughly examined for use in meta-
analysis (Rosenberg et al. 2000). We chose the two that are most widely used in 
ecology: Hedges’ d, a standardized difference-based method, and the log response 
ratio, lnR, a transformed ratio-based method (Rosnow and Rosenthal 2003).

Hedges’ d
Hedges’ d (eq. 1) estimates the standardized mean difference in a manner similar 
to Glass’s (1976) original effect size measurement, and is the most widely accepted 
measure of effect size used in the social sciences (Hedges and Olkin 1985). 

 d = [(Ye – Yc) /s] J(m) (1)

where Ye and Yc are the means of the treatment (e) and control (c) groups, s is 
the pooled standard deviation, and J(m) is a correction factor to remove small-
sample bias. 

2 Kopper, K.E. 2007. Personal communication. Fire ecologist, North Cascades National 
Park Service Complex, 7280 Ranger Station Road, Marblemount, WA 98267.
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The difference between the mean of the treatment group (Ye) and the mean of 
the control group (Yc) is divided by the pooled standard deviation s, providing effect 
size, a dimensionless statistic. As a rule of thumb, 0.2 is a “small” effect, 0.5 is a 
“medium” effect, 0.8 is a “large” effect, and any effect greater than 1.0 is “very 
large” (Cohen 1969). The variance of Hedges’ d permits the calculation of confi-
dence intervals around the effect size. 

Equation 2 is the variance of Hedges’ d, 

 Variance of d = s2 (d) = [(Nc + Ne )/Nc Ne]+ d 2/ 2(Nc + Ne ) (2)

where Nc and Ne are the total number of samples (Σnij ) in the control and treatment 
group, respectively (Hedges and Olkin 1985).

Equations 3 and 4 are for the pooled standard deviation and correction factor, 
respectively:

 s = [(Ne – 1)(se )2 + (Nc – 1)(sc)2] /(Ne + Nc – 2) (3) 

where se and sc are the standard deviations of the individual samples, and

 J(m) = 1 – (3/(4m – 1))  (4)

where m ≈ Nc + Ne – 2 (Rosenberg et al. 2000).

There are potential problems with Hedges’ d. Osenberg et al. (1997) pointed 
out that d is sensitive to the differences in sample standard deviations, rather than 
the actual strength of the process. For example, in two studies measuring the effect 
of different predators on the same prey, one predator may appear to have a larger 
effect size, but in reality d is larger because the studies compiled for that predator 
had smaller s values than studies compiled for the other.

Log Response Ratio
Although no single metric of effect size is optimal for all cases, the use of the 
log response ratio and its variance (eqs. 5 and 6) is currently favored in the meta-
analyses of ecological data (Hedges et al. 1999, Suding 2001, Wan et al. 2001). 

 InR = In (Ye/Yc)  (5)

 Variance of InR = [(se)2/Ne (Ye)2] + [(sc )2/Nc (Yc)2] (6)

where the notation is consistent with that used for Hedges’ d.
The log response ratio estimates the proportional change between the treatment 

and control groups (Rosenberg et al. 2000), thus allowing the fuel reduction effect 
to be derived from the back-transformed log response ratio. Hedges et al. (1999) 
presented the statistical properties of the log response ratio and exemplified its 
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appropriate usage in meta-analysis. The log response ratio can only be used for data 
that can be expressed as a ratio, and where the denominator (mean of the control 
group) is not zero or opposite of the overall effect (e.g., if the fuel load increased 
instead of decreased in this study, then this metric could not be used). 

Natural logarithmic transformations of the response variable are commonly 
used in ordinary regression models for biological systems to stabilize variance. 
Heterogeneous variance is likely in most ecological studies evaluating response over 
large geographic areas. lnR is also appropriate when the change agent acts exponen-
tially (Suding 2001), which is, however, not generally the case for fire effects.

Models for Meta-Analysis
A fixed-effects model carries the assumption that all of the variation in effect sizes 
is due to sampling error (Gurevitch and Hedges 2001). In contrast, a mixed-effects 
model partitions the heterogeneity within and among groups into that from fixed 
and random effects, respectively (e.g., treatment and site).

The mixed-effects model is often more appropriate for ecological studies in 
which it is not assumed that a population of responses, such as fuel size classes, 
share a common true effect size across studies (Gurevitch and Hedges 2001). In a 
fixed-effects model, all the differences within the size classes would be assumed 
to be due to sampling error, whereas in a mixed-effects model, random variation 
among studies is expected. In this meta-analysis, the individual studies differed 
geographically and ecologically, suggesting that a mixed-effects model might be 
more appropriate. We wanted to test the sensitivity of our results to model type, 
however, so fixed-effects models were also employed.

Homogeneity Tests 
The equality of the individual effect sizes from each study is measured with the 
homogeneity Q test statistic. This statistic has an approximate χ2 distribution with 
n–1 degrees of freedom, and tests the null hypothesis that all of the effect sizes 
are equal (Gurevitch and Hedges 2001). The larger a Q value is, the greater the 
heterogeneity. In categorical studies (multiple classes), total heterogeneity QT can be 
partitioned into between-class heterogeneity QB and within-class heterogeneity QW 
in a manner analogous to ANOVA. The former test statistic measures the variation 
in effect sizes explained by the model, and the latter measures the residual error 
variance that is not explained by the model (Rosenberg et al. 2000). The within-
class heterogeneity is not quantified for mixed-effects models owing to the inherent 
variation within them. If the effect sizes are not too large and there are at least 10 
samples per class, then the homogeneity test is fairly robust (Hedges and Olkin 
1985).

 In this meta-analysis, 
the individual studies 
differed geographically 
and ecologically, 
suggesting that a 
mixed-effects model 
might be more 
appropriate. 
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Results
Fixed-Effects Model With Hedges’ d
The effect sizes for each time-lag class are significant (fig. 1), although the 100-hr 
size class was barely so. Differences between the classes are also significant (QB = 
36.46, P(Χ2) < 0.001). Interestingly, the fuel-reduction effect appears to be greater 
(in absolute) for the 1,000-hr time-lag class than for the smaller diameter 10-hr 
and 100-hr time-lag classes. One explanation for the higher consumption of large 
downed logs (≥1,000-hr fuels) is that small-diameter fuels and organic material that 
had accumulated around them were smoldering, thus promoting their combustion. 
This interpretation is consistent with the even greater reduction in organic and 1-hr 
fuels, which could also have provided continuity between the piles and accumulated 
at the bases of standing trees. 

There is significant heterogeneity within the individual fuel time-lag classes 
(QW = 204.06, P (Χ2) < 0.001). To explain these differences in treatment effects 
within a time-lag class, the ≥1,000-hr fuels were partitioned into “solid” and 
“rotten” to determine whether there is a relationship to fuel compactness (table 
2). This partitioning reduced heterogeneity within and between the studies 
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Figure 1—Fixed-effect model using Hedges’ d as the metric of effect size with 95-percent confidence 
interval. Total heterogeneity QT = 240.52 (P(Χ 2) < 0.001), between-class heterogeneity QB = 36.46 
(P(Χ 2) < 0.001), and within-class heterogeneity QW = 204.06 (P(Χ2) < 0.001) are all significant. 
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Table 3—Summary results of heterogeneity tests using the fixed-effects model 
with Hedges’ d for the categorical analysis of burning season (spring versus fall) 
on fuel reduction

 Test results (Q)

Fuel class Between Within Total Resulta

Organic 10.92 63.99 74.92 Inconclusive
 P(Χ2 ) = 0.004 P(Χ2 ) < 0.001 P(Χ2) < 0.001

1-hr  0.22 19.17 19.39 Terminated

 P(Χ2 ) = 0.642 P(Χ2) = 0.024 P(Χ2) = 0.036

10-hr  7.66 45.15 52.81 Inconclusive

 P(Χ2) = 0.006 P(Χ2) < 0.001 P(Χ2) < 0.001

100-hr  1.57 29.05 30.62 Terminated

 P(Χ2) = 0.210 P(Χ2) = 0.002 P(Χ2) = 0.002

≥1,000-hr 0.002 26.32 26.33 Terminated
 P(Χ2) = 0.961 P(Χ2) = 0.006 P(Χ2) = 0.010
a See text for explanations of “inconclusive” and “terminated.” 

to nonsignificant levels 
simultaneously, yet the total 
heterogeneity of the model 
remained significant. This 
indicates that the differences 
between solid and rotten fuels 
do not influence the degree of 
fuel reduction expressed in the 
analysis, although other sources 
of variation may exist. 

The only other source of 
variation that could be explored 
further, given the small number 
of samples for all other factors, 
was the potential influence of 
season on fuel-load reduction. 

The categorical analysis of fuel reduction comparing spring and fall prescribed 
burns (table 3) did not successfully reduce the total heterogeneity in any of the 
individual fuel-class categories. Instead, the analyses were either terminated or 
inconclusive. The meta-analysis is “terminated” if there are not significant differ-
ences between the categories (spring and fall, in this case) but the total heterogene-
ity remains significant. The meta-analysis is “inconclusive” when between-class 

Table 2—Heterogeneity tests and mean 
effect sizes using a fixed-effects model with 
Hedges’ d to partition the >1,000-hr fuel 
class into categories of solid (1,000s) and 
rotten (1,000r) 

 Heterogeneity

Model	 df	 Q	 P	Χ2

Between 1 2.02 0.16
Within 18 28.84 0.05

     Total 19 30.85 0.04

 Mean effect size
Size class N E df 95% CI

1,000s 10 -0.22 9 -0.65 to 0.21
1,000r 10 -0.60 9 -1.03 to -0.17

     Total 20 -0.41 18 -0.69 to -0.13
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Figure 2—Mixed-effects model using Hedges’ d as the metric of effect size with 95-percent 
confidence interval. Total heterogeneity QT = 118.48 (P(Χ2) < 0.001) is significant; however, 
between-class heterogeneity QB = 7.841, (P(Χ2) = 0.098) is not.
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heterogeneity is significant (as well as the total heterogeneity), because this indi-
cates that the variance of the mean effect might be stabilized if the studies could  
be partitioned further within the categories. 

Mixed-Effects Model With Hedges’ d
The mixed-effects model using Hedges’ d yields significant effects for each indi-
vidual fuel size class (fig. 2). Interestingly, the effect size of each time-lag class 
is larger than it was in the fixed- effects model. This suggests that Hedges‘ d may 
be sensitive to the amount of variation that is incorporated into the mixed-effects 
model, and unassigned in the fixed-effects model, just as it is sensitive to the stan-
dard deviation of the samples. In the case of the mixed-effects model, only QT and 
QB are available as measures of homogeneity because of the underlying assumption 
that there is significant heterogeneity within the model caused by random effects 
(Gurevitch and Hedges 2001). 

The between-study heterogeneity (QB = 7.841, P (Χ2) = 0.098) is not significant, 
indicating that the effect of prescribed fire is homogeneous at the level of fuel-size 
class and that comparisons between their effect sizes are not relevant. However, the 
total heterogeneity (QT = 118.48, P (Χ2) < 0.001) is significant, presumably from 

Hedges‘ d may be 
sensitive to the amount 
of variation that is 
incorporated into the 
mixed-effects model.
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Figure 3—Fixed-effects model using the log response ratio lnR as the metric of effect size with 
95-percent confidence interval. Total heterogeneity QT = 785.96 (P(Χ2) < 0.001), between-class 
heterogeneity QB = 29.63 (P(Χ2) < 0.001), and within-class heterogeneity QW = 756.32 (P(Χ2) < 
0.001) are all significant.
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random variation in the effects of prescribed fire across the range of ecosystems 
represented in the meta-analysis. Although the total heterogeneity expressed in 
the mixed-effects model is noticeably smaller than that of the fixed-effects model, 
without significant between-class heterogeneity the analysis is terminated rather 
than being partitioned further (e.g., into fire season or sound vs. rotten wood as in 
the fixed-effects model). 

Fixed-Effects Model With Log Response Ratio
The lnR effect sizes of the fuel classes are all significant (fig. 3), and the homogene-
ity test expresses significant heterogeneity between the fuel classes (QB = 29.63, P 
(Χ2) < 0.001). The 100-hr time-lag class still has the smallest mean effect size, but 
the ranking of the effect sizes of the other fuels classes has changed. Notably, the 
organic and 10-hr fuel classes are in opposite positions relative to the fixed-effects 
model with Hedges’ d; organic fuel has the second smallest mean effect size, and 
the 10-hr fuel class has the largest mean effect size, although it is not as large as the 
organic effect size is in the first model. These results are less conclusive than those 
of the first model owing to the larger amount of within-class heterogeneity.
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Significant heterogeneity within the fuel classes (QW = 756.32, P (Χ2) < 0.001) 
suggests that the classes could be broken down into smaller groups. Therefore, the 
≥1,000-hr fuel classes were partitioned into solid and rotten components as in the 
fixed-effects model using Hedges’ d (table 4). Unlike the Hedges’ d model, both 
between-class heterogeneity and within-class heterogeneity of individual effect 
sizes were significant. In this 
case, categorical analysis within 
the solid and rotten fuel classes 
is inconclusive because further 
partitioning is justified, but the 
sample sizes would have become 
too small.

A categorical analysis of 
seasonal effects on fuel reduction 
(table 5), using the fixed-effects 
model with lnR, was executed in 
the same manner as with Hedges’ 
d. In contrast to the Hedges’ d 
analysis, in which most of the 
results were terminated, the lnR 
results are inconclusive for all  
but the 100-hr fuel class. 

Table 4—Heterogeneity tests and mean 
effect sizes using a fixed-effects model with 
the log response ratio lnR to partition the 
>1,000-hr fuel class into categories of solid 
(1,000s) and rotten (1,000r) 

 Heterogeneity

Model	 df	 Q	 P	Χ2

Between 1 4.71 0.030
Within 17 71.82 < 0.001

     Total 18 76.53 < 0.001

 Mean effect size
Size class N E df 95% CI

1,000s 10 -0.27 9 -0.53 to -0.01
1,000r 9 -0.81 8 -1.31 to -0.30

     Total 19 -0.39 17 -0.60 to -0.17

Table 5—Summary results of heterogeneity tests using the fixed-effects model 
with lnR for the categorical analysis of burning season (spring versus fall) on 
fuel reduction

 Heterogeneity tests

Fuel class Between Within Total Resulta

Organic 40.52 305.13 345.64 Inconclusive
 P(Χ2) < 0.001 P(Χ2) < 0.001 P(Χ2) < 0.001
1-hr 19.48      130.36 149.84 Inconclusive
 P(Χ2) < 0.001 P(Χ2) < 0.001 P(Χ2) < 0.001

10-hr   4.86   89.05   93.90 Inconclusive
 P(Χ2) = 0.028 P(Χ2) < 0.001 P(Χ2) < 0.001

100-hr   0.47        90.95   91.42 Terminated
 P(Χ2) = 0.495 P(Χ2) < 0.001 P(Χ2) < 0.001

≥1,000-hr   4.33   71.19   75.52 Inconclusive
 P(Χ2)  = 0.038 P(Χ2) < 0.001 P(Χ2) < 0.001
a See text for explanations of “inconclusive” and “terminated.” 
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Mixed-Effects Model With Log Response Ratio
To examine sensitivity to the assumptions of a fixed-effects model, we fit mixed-
effects models with lnR (fig. 4). When random effects are incorporated into the 
analysis through the use of the mixed-effects model, between-class heterogeneity 
and total heterogeneity are not significant (QB = 2.07, P (Χ2) = 0.722; and QT = 
74.93, P (Χ2) = 0.211, respectively). 

Figure 4—Mixed-effects model using the log response ratio lnR as the metric of effect size with 
95-percent confidence interval. Total heterogeneity QT = 74.93 (P(Χ2) = 0.211) and between-class 
heterogeneity QB = 2.07 (P(Χ2) = 0.722) are not significant.
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The confidence intervals around the mean effect of each fuel class do not 
include zero, which confirms the significance of these effect-sizes, although the 
confidence intervals have increased substantially over those from the fixed-effects 
model. The changes in the mean effect sizes using the mixed-effects model rather 
than the fixed-effects model (table 6) suggest that the explicit incorporation of ran-
dom effects has a significant effect on results. The mixed-effects model increased 
the estimated effect size of the 100-hour fuels markedly, such that it is no longer 
clearly smaller than the effect sizes of the other fuel classes. There would be 
little profit in comparing effect sizes among the individual size classes given the 
increased confidence intervals around them. 

The confidence 
intervals have 
increased substantially 
over those from the 
fixed-effects model.
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Discussion
Meta-analysis has the potential to be a powerful tool for both scientists and manag-
ers. The results of our meta-analyses verify that fuel consumption was significant, 
and provide the mean quantity of fuels reduced per fuel time-lag class. These effect 
sizes, if they pertained to a set of fires prescribed for fuel reduction, would enable 
fire managers to evaluate whether objectives were met, and to document their 
effectiveness. Meta-analyses of this type of fire data can also serve as a means of 
comparing heterogeneous treatments or fire effects on individual time-lag classes.

Meta-analysis is relatively new to natural resources. A better understanding is 
needed regarding the pitfalls in the process when applied to ecological data. The 
mixed-effects model incorporates random variation, thus making it intuitively 
appealing for ecological applications, wherein systems are known to be hetero-
geneous (Gurevitch and Hedges 1999). It does have its drawbacks, however. The 
mixed-effects model successfully stabilized variance by characterizing the response 
among “categories” (heterogeneous groups) as a random variable, but in doing so, 
bypassed the iterative process of “categorical” meta-analysis that may be superior 
when prior ecological knowledge informs the choice of categories. As discussed 
previously, it is the categorical analysis that allows the investigator to identify other 
environmental factors that may be directly associated with ecological mechanisms. 
The lack of significant heterogeneity between the classes also precludes their 
comparison, which can be a useful tool to explore treatment effects as shown in the 
fixed-effects analyses.

On the other hand, it could be misleading to ignore sources of random variation 
that are clearly present, because one could come away with a false sense of signifi-
cance. The large confidence intervals around the mean effect sizes of individual 
fuel time-lag classes in the mixed-effects lnR model belie the apparent significance 
of differences among prescribed fire effects on individual classes. It is probable that 
the failure to detect significant differences is due to inherent random variation in 
true effect size among sites, a factor identifiable only with the mixed-effects model. 

Table 6—Mean effect size E for each time-lag fuel 
class using the mixed-effects model with lnR  

Fuel class N E df 95% CI

Organic 19 -1.19 18 -1.67 to -0.71
1-hr 11 -0.86 10 -1.51 to -0.21
10-hr 11 -1.03 10 -1.66 to -0.41
100-hr 13 -0.72 12 -1.27 to -0.16
>1,000-hr 13 -0.98 12 -1.56 to -0.41
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Despite the random component inherent in biological systems, it is important 
to identify all of the potential sources of variation (e.g., season, forest type, treat-
ment) within the bounds of the meta-analysis and partition accordingly. Two or 
more replicates are required to test each variable that is identified. Although the 
categorical analyses of the fixed-effects models were executed to the point where 
further analysis was not possible, it is not clear if the inclusion of studies with 
more ecological variability, such as forest types other than ponderosa pine, might 
have increased the sample size enough to overcome the drawbacks of new sources 
of random variation.

Meta-analysis provides distinct advantages over ANOVA for studies with 
heterogeneous sampling designs, such as those from literature reviews. Simple 
ANOVA is not appropriate for combining the results of individual studies, because 
it will almost surely violate the assumption of equal variances across sites. Like 
simple ANOVA, the categorical meta-analysis partitions the variance of the effect, 
but it is not prone to Type 2 errors if the constraints of homogeneous sample sizes 
and variances are not met (Hedges and Olkin 1985). 

The problem of heterogeneous variance by itself does not have to be resolved 
by using meta-analysis. The data analyst may incorporate an explicit model of 
variance, at least in a mixed-effects model (Davidian and Giltinan 1995, Pinheiro 
and Bates 2000). If the mixed-effects approach is selected a priori, then explicit 
variance modeling can be analogous to meta-analysis, although the methodology 
of the former is less intuitive and the mathematical details are more daunting. 

We explored four alternative approaches to meta-analysis of heterogeneous 
ecological data. The generally equivalent results (figs. 1 through 4) illustrate the 
robustness of the meta-analytic paradigm to the choice of statistical details. Each 
outcome confirms that prescribed fire significantly reduces fuels, although the 
different models do not agree on the relative rankings of mean effect sizes for dif-
ferent fuel categories. It would be premature to conclude, based on the outcome of 
this study, that one of the four methods is superior. (Indeed, a favorable outcome 
of just one approach could be misleading). Instead, we suggest that subject-matter 
considerations, where possible, should drive the choice of models and metrics of 
effect size. 

Osenberg et al. (1999) showed how meta-analysis can be adapted to a variety 
of effect-size metrics, some quite complex nonlinear functions of observed 
variables. In cases where results may be less robust than ours to such choices, 
considerable care should be taken to identify a model that is ecologically 
interpretable. In our case, the effect sizes from both metrics increased slightly 
when the fixed-effects model was replaced with the mixed-effects model, 

The generally 
equivalent results 
illustrate the 
robustness of 
the meta-analytic 
paradigm to the 
choice of statistical 
details.
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suggesting that both metrics are sensitive to variation in the model, and neither  
is clearly superior. 

Some inconclusive results in the fixed-effects models (mainly in the analyses 
using lnR), when what appeared to be essential divisions of data into season of 
burning and sound versus rotten fuels halted the iterative meta-analysis procedure, 
indicate the advantages of planning meta-analyses before data collection, as 
opposed to meta-analyses derived from literature reviews. In planning a meta-
analysis of fire effects, the researcher would have control over measurement 
techniques and sample sizes. Furthermore, potential response variables are 
not limited to those identified in literature reviews. Broad-scale experiments 
such as the fire and fire surrogates (FFS) study (McIver et al. 2009) provide an 
opportunity to extend our results using more homogeneous (controlled) data 
with greater replication (Waldrop et al. 2004). The large sample size and planned 
design of the FFS study make it well suited to categorical meta-analyses of 
variables such as seasonality, regional patterns, and environmental and ecological 
differences between sites. Meta-analyses from planned studies can also prevent 
pseudoreplication, and other issues involving dependent data that can arise from  
the use of unfamiliar and inconsistent summary statistics. 

More generally, standardized methodology and collaborative efforts in fire 
research and other areas of natural resource science will lead to more robust synthe-
sis and interpretation across study sites. Fire science topics for which meta-analysis 
may be particularly effective include comparisons of timing, fire intensity, and fuel 
moisture on tree mortality or vegetative response. This fire information is typically 
documented in association with prescribed and wildland fires regardless of land-
owner, and these response variables are often monitored in association with pre-
scribed fire, or can be evaluated postfire. In the broader context of natural resource 
management, meta-analysis is applicable to inventories and monitoring projects 
such as wildlife surveys, restoration planting survivorship, and other projects in 
which there is a large quantity of data collected. 

Individual authors can facilitate the performance of meta-analyses by reporting 
both significant and insignificant results to avoid journalism bias (and editors could 
be more receptive to the latter), and by providing all summary statistics in pub-
lished reports. To expedite the synthesis of large data sets in natural resources, we 
emphasize the need for collaboration between researchers and resource managers in 
the development and use of multiagency storage sites for metadata and summaries. 
Examples of these types of databases include FIREHouse (USDA Forest Service et 
al. 2006) and the National Biological Information Infrastructure (U.S. Geological 
Survey 2006).
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Appendix
Table 7—Summary of the fuel-treatment data sets used in the meta-analysis
 Control Treatment

     Fuel  Mean Standard Mean Standard 
Source of study State Burn Site classa nb fuel load deviation fuel load deviation

Busse et al. (2000) Oregon Spring Fremont 100-hr 14 6.40 2.99 5.20 2.62 
     1988  1,000-hr 14 26.40 16.46 1.20 17.39 
       Organic 14 21.70 10.85 16.60 10.10

Davis et al. (1964) Arizona Fall 1964 Beavercreek Organic 2 2.35 2.21 0.66 2.43

Kalabokidis and Montana Fall 1982 Champion 1-hr 30 0.22 0.14 0.06 0.06 
 Wakimoto (1992)      10-hr 30 2.16 2.14 1.96 2.01 
       100-hr 30 2.54 2.85 1.70 1.65 
       1,000-hr 30 3.39 5.75 1.24 2.93 
       Duff 30 4.73 3.45 3.59 3.07 
       Litter 30 4.60 3.61 1.29 1.73 
       Organic 30 9.33 3.53 4.88 2.49

      Lubrecht 1-hr 30 0.46 0.28 0.16 0.17 
       10-hr 30 2.73 2.12 1.54 1.73 
       100-hr 30 3.67 2.45 3.82 3.55 
       1,000-hr 30 6.49 10.13 0.82 1.27 
       Duff 30 18.56 6.40 13.56 11.52 
       Litter 30 4.67 5.39 1.89 2.52 
       Organic 30 23.23 5.92 15.45 8.34

Kauffman and California Fall 1984 Blodgett (a) 1-hr 5 0.30 0.22 0.20 0.00 
 Martin (1989)      10-hr 5 5.70 1.79 0.70 0.67 
       100-hr 5 4.00 1.79 0.70 0.45  
       1,000s 5 9.90 3.13 5.90 2.91  
       1,000r 5 14.00 12.97 0.50 0.89  
       1,000 5 23.90 9.43 6.40 2.15  
       Organic 5 118.10 20.35 7.70 2.91 

      Blodgett (b) 1-hr 5 0.20 0.22 0.10 0.22  
       10-hr 5 4.00 2.68 3.50 2.91  
       100-hr 5 2.50 1.34 2.70 1.57  
       1,000s 5 56.70 29.74 5.00 4.25  
       1,000r 5 7.90 12.75 7.60 10.96  
       1,000-hr 5 64.60 22.88 12.60 8.31 
       Organic 5 105.80 23.26 37.80 8.72

    Spring Blodgett (c) 1-hr 5 0.70 0.67 0.10 0.22 
     1984  10-hr 5 6.00 2.91 2.50 1.34 
       100-hr 5 6.10 6.04 4.60 3.80 
       1,000s 5 33.10 33.32 20.80 28.18 
       1,000r 5 11.30 20.13 15.00 20.35 
       1,000-hr 5 44.40 27.52 35.80 24.58 
       Organic 5 97.50 5.37 86.40 10.73

      Blodgett (d) 1-hr 5 0.70 0.67 0.10 0.00 
       10-hr 5 4.70 1.79 0.80 0.67 
       100-hr 5 1.80 1.12 1.00 0.67 
       1,000s 5 9.30 8.05 17.50 10.06 
       1,000r 5 31.10 44.50 11.60 22.58 
       1,000 5 40.40 31.47 29.10 17.48 
       Organic 5 83.30 8.50 20.10 9.84
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Table 7—Summary of the fuel-treatment data sets used in the meta-analysis (continued)
 Control Treatment

     Fuel  Mean Standard Mean Standard 
Source of study State Burn Site classa nb fuel load deviation fuel load deviation

    Fall 1984 Challenge (a) 1-hr 5 0.90 0.45 0.20 0.22 
       10-hr 5 4.70 1.79 0.50 0.22 
       100-hr 5 6.30 2.46 1.00 0.67 
       1,000s 5 19.20 15.21 4.10 3.80 
       1,000r 5 7.70 7.16 0.00 0.00 
       1,000-hr 5 26.90 11.88 4.10 2.69 
       Organic 5 118.30 29.07 7.10 15.88

      Challenge (b) 1-hr 5 0.80 0.22 0.20 0.22 
       10-hr 5 3.40 1.79 1.20 1.12 
       100-hr 5 3.80 2.46 2.50 2.01 
       1,000s 5 10.70 9.39 8.90 4.47 
       1,000r 5 6.20 4.92 0.80 1.79 
       1,000-hr 5 16.90 7.50 9.70 3.41 
       Organic 5 125.80 23.93 20.00 8.27

    Spring Challenge (c) 1-hr 5 1.10 0.45 0.40 0.22 
     1984  10-hr 5 4.50 2.68 2.20 0.67 
       100-hr 5 3.70 1.34 2.50 2.68 
       1,000s 5 4.80 2.68 6.50 9.62 
       1,000r 5 7.20 11.63 9.70 18.78 
       1,000-hr 5 12.00 8.44 16.20 14.92 
       Organic 5 103.90 14.31 30.90 9.17

      Challenge (d) 1-hr 5 0.70 0.45 0.10 0.00 
       10-hr 5 4.40 0.22 0.20 0.22 
       100-hr 5 4.00 4.03 0.30 0.22 
       1,000s 5 22.20 14.31 13.40 8.72 
       1,000r 5 12.60 9.17 4.70 7.83 
       1,000-hr 5 34.80 12.02 18.10 8.29 
       Organic 5 120.70 35.78 9.50 4.92

Kovacic et al. New Winter Jemez Springs (a) Organic 5 0.35 1.07 0.20 1.12 
 (1986)  Mexico   1981 Jemez Springs (b) Organic 5 0.38 1.07 0.11 1.12
      Jemez Springs (c) Organic 5 0.41 1.05 0.18 1.01

Landsberg et al.  Oregon Spring Deschutes (a) Organic 2 2.50 0.70 1.28 0.36 
 (1984)    1979 Deschutes (b) Organic 2 3.90 1.60 0.47 0.19

Sackett and Haase  Arizona Fall 1976 Chimney 100-hr 3 1.82 0.51 2.58 1.61 
 (1998)      1,000s 3 4.68 3.18 5.94 1.87 
       1,000r 3 9.55 9.26 6.19 4.18 
       1,000-hr 3 14.23 6.92 12.13 3.24

    Fall 1977 Limestone 1-hr 3 1.08 0.54 24.17 9.38 
       10-hr 3 4.73 3.09 12.71 2.29 
       100-hr 3 4.91 1.46 0.83 0.44 
       1,000s 3 11.70 10.34 4.01 3.17 
       1,000r 3 20.51 9.19 0.09 0.19 
       1,000-hr 3 32.21 9.78 4.10 2.25 
       Organic 18 24.86 2.56 14.72 5.25

Sweeney and California Spring Lake County Organic 4 11.17 11.54 6.89 4.26 
 Biswell (1961)    1959
1 Fuel variables are described in the text.
2 n = number of replicates, same for the treatment (postburn) and control (preburn) groups.
3 The fuel load units vary by source, and are not reported here because the effect size metric is a unitless measure.
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