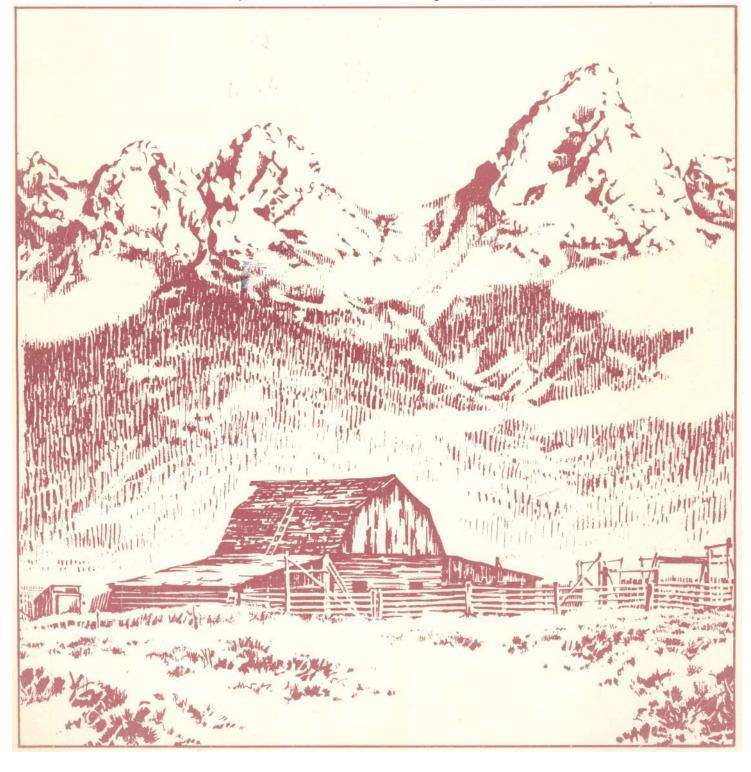


Forest Service

Pacific Southwest Forest and Range Experiment Station


Berkeley, California 94701

General Technical Report PSW-35 **Proceedings of**

OUR NATIONAL LANDSCAPE

A Conference on Applied Techniques for Analysis and Management of the Visual Resource

April 23-25, 1979, Incline Village, Nevada

Note

We intentionally sought to process and deliver the Conference Proceedings to the potential user as soon as possible. To do this, we decided to have each author assume full responsibility for submitting manuscripts in photoready format within 2 weeks after the Conference. The manuscripts did not receive full, conventional Forest Service editorial processing and, consequently, you may find typographical errors and differences in format. The views expressed in each paper are those of the author and not necessarily those of the sponsoring organizations. Trade names are used solely for information and convenience of the reader and do not imply official endorsement by the sponsoring organizations. There will be other products in conjunction with the Conference, and the material contained within this Proceedings will appear in different forms with appropriate degrees of polish.

Co-Chairmen and Technical Coordinators:

GARY H. ELSNER is in charge of land use and landscape planning methodology research at the Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Berkeley, California. **RICHARD C. SMARDON** is a post-graduate research landscape architect with the Department of Landscape Architecture, University of California, Berkeley, and a cooperator with the Research Unit.

Proceedings of

OUR NATIONAL LANDSCAPE

A Conference on Applied Techniques for Analysis and Management of the Visual Resource

April 23-25, 1979, Incline Village, Nevada

Gary H. Elsner Richard C. Smardon

Technical Coordinators

CONTENTS

Pag	ϵ
Introduction	
Opening Remarks, by Robert Z. Callaham	
Conference Orientation for Our National Landscape: An Experiment	
in Creative Conference Programming, by Richard C. Smardon,	
Gary H. Elsner, and George C. Coombes4	
Conserving the Magnitude of Uselessness: A Philosophical Perspective,	
by Alan Gussow6	
Resource Policy and Esthetics: The Legal Landscape, by M. Rupert Cutler	
Managing the Forest Landscape for Public Expectations, by John R. McGuire	
Major Challenges in Landscape Planning: Simulated Field Trips	
Surface Mining, by Robert Leopold, Bruce Rowland, and Reed Stalder	
Visual Impacts in the Urban-Wildland Interface, by Arthur W. Magill,	
Rowan A. Rowntree, and Robert O. Brush25	
Simulated Field Trip on Ski Area Development, by John J. Lindsay	
and Hubertus J. Mittmann31	
Timber Management Simulated Field Trip, by Ronald M. Walters,	
Warren R. Bacon, and Asa D. Twombly36	
Highway Development, by Peter M. Harvard and Bernard L. Chaplin	
The Countryside Visual Resource, by Sally Schauman	
Linear Utility Corridors—A Simulated Visual Field Trip,	
by Robert W. Ross, Jr	
Range Management Visual Impacts, by Bruce R. Brown and David Kissel	
A Simulated Field Trip: "The Visual Aspects of Power Plant Sitings,"	
by Bill Bottomly and Alex Young63	
Dams and Water Developments, by Robert H. Schueneman	
The Off-Road Recreation Vehicle—Visual Impacts, by Stephen F. McCool	
Tech logy Available to Solve Landscape Problems	
Descriptive Approaches to Landscape Analysis, by R. Burton Litton, Jr	
Computers and the Landscape, by Gary H. Elsner	
Setting Technical Standards for Visual Assessment Procedures,	
by Kenneth H. Craik and Nickolaus R. Feimer	

Pacific Southwest Forest and Range Experiment Station P.O. Box 245 Berkeley, California 94701

Technology Available to Solve Landscape Problems—Session A:	
Descriptive Approaches	
Seeing Desert as Wilderness and as Landscape—An Exercise in	
Visual Thinking, by John Opie	101
Conducting a Wildland Visual Resources Inventory, by James F. Palmer	109
Visual Unit Analysis: A Descriptive Approach to Landscape Assessment,	
by R. J. Tetlow and S. R. J. Sheppard	117
Enviroplan—A Summary Methodology for Comprehensive Environmental	
Planning and Design, by Robert Allen, Jr., George Nez,	
Fred Nicholson, and Larry Sutphin	125
The Mt. Mitchell Scenery Assessment, by Robert F. Scheele	
and Gary W. Johnson	129
Landscape Maps as an Aid to Management of Scenic Mountain Areas,	
by Roland Baumgartner	136
Technology Available to Solve Landscape Problems—Session B:	
Computerized and Quantitative Approaches	
Policy Capturing as a Method of Quantifying the Determinants of Landscape	
Preference, by Dennis B. Propst	142
A Computerized System for Portrayal of Landscape Alterations,	
by A. E. Stevenson, J. A. Conley, and J. B. Carey	151
Analysis of Landscape Character for Visual Resource Management,	
by Paul F. Anderson	157
Visual Absorption Capability,	
by Lee Anderson, Jerry Mosier, and Geoffrey Chandler	164
A Proposed Biophysical Approach to Visual Absorption Capability (VAC),	
by W. C. Yeomans	172
The Visual Information System, by Merlyn J. Paulson	182
Visual Management Support System, by Lee Anderson, Jerry Mosier,	
and Geoffrey Chandler	189
A Systematic Approach for Locating Optimum Sites, by Angel Ramos	
and Isabel Otero	196
The Use of VIEWIT and Perspective Plot to Assist in Determining	
the Landscape's Visual Absorption Capability, by Wayne Tlusty	201
Technology Available to Solve Landscape Problems—Session C:	
Psychometric and Social Science Approaches	
Visual Resources and the Public: An Empirical Approach, by Rachel Kaplan	209
Measuring Familiarity for Natural Environments Through Visual Images,	
by William E. Hammitt	217
The Q-Sort Method: Use in Landscape Assessment Research and Landscape	
Planning, by David G. Pitt and Ervin H. Zube	227
Complexity and Valued Landscapes, by Michael M. McCarthy	235
Perception and Landscape: Conceptions and Misconceptions,	
by Stephen Kaplan	
The Social Value of English Landscapes, by Edmund C. Penning-Rowsell	249
Dimensions of Landscape Preferences from Pairwise Comparisons,	
by F. González Bernaldez and F. Parra	256
Numerical Modeling of Eastern Connecticut's Visual Resources,	
by Daniel L. Civco	263
The Derivation of Scenic Utility Functions and Surfaces and Their Role	
in Landscape Management, by John W. Hamilton, Gregory J. Buhyoff	
and J. Douglas Wellman	271
Visual Perception of Landscape: Sex and Personality Differences,	
by A. Macia	279

Technology Available to Solve Landscape Problems—Session D:	
Evaluation of Visual Assessment Methods	
Appraising the Reliability of Visual Impact Assessment Methods,	
by Nickolaus R. Feimer, Kenneth H. Craik, Richard C. Smardon	
and Stephen R.J. Sheppard	286
Evaluation and Recommendations Concerning the Visual Resource	
Inventory and Evaluation Systems Used Within the Forest Service	
and the Bureau of Land Management, by Blaise George Grden	296
The Generation of Criteria for Selecting Analytical Tools for Landscape Management,	
by Marilyn Duffey-Armstrong	305
Appropriate Combinations of Technology for Solving Landscape Management	
Problems—Session E: Surface Mining and Reclamation	
Texas Lignite and the Visual Resource: An Objective Approach	
to Visual Resource Evaluation and Management,	
by Harlow C. Landphair	312
Computer-Aided Visual Assessment in Mine Planning and Design,	
by Michael A. Hatfield, J. LeRoy Balzer, and Roger E. Nelson	323
Opportunities for Visual Resource Management in the Southern Appalachian	
Coal Basin, by John W. Simpson	328
Visual Analysis as a Design and Decision-Making Tool in the Development	
of a Quarry, by Randall Boyd Fitzgerald	335
A Case Study: Death Valley National Monument California-Nevada,	
by Daniel Hamson and Toni Ristau	340
Appropriate Combinations of Technology for Solving Landscape Management	5 10
Problems—Session F: Urbanization; Highway Development	
Assessing the Visual Resource and Visual Development Suitability Values	
in Metropolitanizing Landscapes,	
by Charles B. Yuill and Spencer A. Joyner, Jr	3/18
Measuring the Impact of Urbanization on Scenic Quality: Land Use	540
Change in the Northeast, by Robert O. Brush and James F. Palmer	
Change in the Northeast, by Robert O. Brush and James F. I aimer	250
A Comprehensive Approach to Visual Resource Management for Highway	550
	265
Agencies, by William G. E. Blair, Larry Isaacson, and Grant R. Jones	303
Highway Attitudes and Levels of Roadside Maintenance,	272
by Gary D. Hampe and F. P. Noe	3/3
A Method for Improved Visual Landscape Compatibility of Mobile Home Parks,	200
by Daniel R. Jones	380
Appropriate Combinations of Technology for Solving Landscape	
Management Problems—Session G: Recreational Development	
Does the Public Notice Visual Resource Problems on the Federal Estate?,	
by John D. Peine	
Landscape Assessment for Tourism, by Clare A. Gunn	409
Assessment of Visual Resources Desirable for Tourism and Recreational	
Uses Along the Site of Lake Choon-Chon in Korea, by Won-Woo Suh	415
Projecting the Visual Carrying Capacity of Recreation Areas,	
by Thomas J. Nieman and Jane L. Futrell	420
Visual Resource Inventory and Imnaha Valley Study: Hells Canyon	
National Recreation Area,	
by David H. Blau, Michael C. Bowie, and Frank Hunsaker	428
The Use of Computer Graphics in the Visual Analysis of the Proposed Sunshine	
Ski Area Expansion, by Mark Angelo	439

Appropriate Combinations of Technology for Solving Landscape Management	
Problems—Session H: Rural and Agricultural Development	
Managing for Naturalness in Wildland and Agricultural Landscapes,	4.47
by Joan Nassauer	. 44/
Visual Resources of the New Jersey Pine Barrens: Integrating Visual	454
Resources into the Planning Process, by John W. Sinton	
Toward a State Landscape Policy: Incremental Planning and Management in Vermont,	
by Mark B. Lapping	. 462
Appropriate Combinations of Technology for Solving Landscape Management	
Problems—Session I: Utility Corridors; Siting of Power Plants Northwest Mantage North Lights Transmission Committee Study A Committee Assisted	
Northwest Montana/North Idaho Transmission Corridor Study: A Computer-Assisted	
Corridor Location and Impact Evaluation Assessment,	470
by Timothy J. Murray, Daniel J. Bisenius, and Jay G. Marcotte	.470
Aesthetic Impact of a Proposed Power Plant on an Historic Wilderness Landscape, by Carl H. Petrich	477
Simulation of the Visual Effects of Power Plant Plumes, by Evelyn F. Treiman,	.4//
David B. Champion, Mona J. Wecksung, Glenn H. Moore,	
Andrew Ford, and Michael D. Williams	105
Evolution of a Visual Impact Model to Evaluate Nuclear Plant Siting	. 463
and Design Option, by Brian A. Gray, John Ady, and Grant R. Jones	401
Visual Sensitivity of River Recreation to Power Plants, by David H. Blau	. 471
and Michael C. Bowie	100
Classification of the Visual Landscape for Transmission Planning,	. 422
by Curtis Miller, Nargis Jetha, and Rod MacDonald	507
Appropriate Combinations of Technology for Solving Landscape Management	. 507
Problems—Session J: Timber Management	
Scenic Beauty Estimation Model: Predicting Perceived Beauty of Forest Landscapes,	
by Terry C. Daniel and Herbert Schroeder	514
The Semantic Differential in Landscape Research, by H. E. Echelberger	
Identification of Scenically Preferred Forest Landscapes,	. 521
by Roberta C. Patey and Richard M. Evans	. 532
Visual Management System and Timber Management Application,	
by Warren R. Bacon and Asa D. (Bud) Twombly	. 539
The Role of the Landscape Architect in Applied Forest Landscape	
Management: A Case Study on Process, by Wayne Tlusty	. 548
A System to Program Projects to Meet Visual Quality Objectives,	
by Fred L. Henley and Frank L. Hunsaker	. 557
Project Visual Analysis for the Allegheny National Forest,	
by Gary W. Kell	. 565
Appropriate Combinations of Technology for Solving Landscape Management	
Problems—Session K: Water Resource Development	
Landscape Preference Assessment of Louisiana River Landscapes:	
a Methodological Study, by Michael S. Lee	. 572
Management of the Lower St. Croix Riverway: the Application	
of Cognitive visual Mapping and Social and Resource Assessment	
of Cognitive Visual Mapping and Social and Resource Assessment Methods, by Robert Becker, William Gates, and Bernard J. Niemann, Jr	. 581
Methods, by Robert Becker, William Gates, and Bernard J. Niemann, Jr	. 581
	. 581

Predicting the Visual Quality Impacts of Development:	
A Simulation of Alternative Policies for Implementing the Massachusetts	
Scenic and Recreational Rivers Act, by Carl Steinitz	
Combining Computer and Manual Overlays—Willamette River	
Greenway Study, by Asa Hanamoto and Lucille Biesbroeck	610
VIEWIT Uses on the Wild and Scenic Upper Missouri River,	
by Dwight K. Araki	618
Appropriate Combinations of Technology for Solving Landscape Managemen	
Problems—Session L: Outer Continental Shelf and Coastal Energy Developm	
Managing the Visual Effects of Outer Continental Shelf and	
Other Petroleum-Related Coastal Development,	
by Philip A. Marcus and Ethan T. Smith	627
Visual Simulation of Offshore Liquefied Natural Gas (LNG)	
Terminals in a Decision-Making Context,	
by Brian E. Baird, Stephen R. J. Sheppard, and Richard C. Smardon	636
Visual Impact Assessment in British Oil and Gas Developments,	
by Dennis F. Gillespie and Brian D. Clark	645
A Technique for the Assessment of the Visual Impact of Nearshore	
Confined Dredged Materials and Other Built Islands, by Roy Mann	654
Landscape Management Systems	
The Visual Management System of the Forest Service, USDA,	
by Warren R. Bacon	660
The Bureau of Land Management and Visual Resource Management—	
An Overview, by Robert W. Ross, Jr	666
Soil Conservation Service Landscape Resource Management,	
by Sally Schauman and Carolyn Adams	671
Legal and Policy Tools Available to Use in Solving	
Landscape Management Problems	
Litigation and Landscape Esthetics, by Michael McCloskey	
The Interface of Legal and Esthetic Considerations, by Richard C. Smardon	
Landscape Values in Public Decisions, by Richard N. L. Andrews	686
Visual Quality Testimony in an Adversary Setting, by Bruce H. Murray	
and Bernard J. Niemann, Jr	693
New Dimensions of Visual Landscape Assessment	
Wildlands Management for Wildlife Viewing, by Tamsie Cooper	
and William W. Shaw	700
Potential Future Impacts on Visual Air Quality for Class I Areas,	
by David Nochumson, Flavio Gurule, and Mona J. Wecksung	
Visual Resource Management of the Sea, by Louis V. Mills, Jr	717
Designing Future Landscapes from Principles of Form and Function,	
by Larry D. Harris and Patrick Kangas	
People, Planners and Policy: Is There an Interface?, by Susan Kopka	730
Future Direction for Research and Management	
Human Habitat at the Fringe of the Forest: The Character of the Place,	-
by Richard L. Meier and William Ewald	
Research Needs for Our National Landscapes, by Elwood L. Shafer	
The Energy Crisis and the American Landscape, by Stuart Udall	748

Acknowledgments

We especially acknowledge our Technical Planning Committee, which included R. Burton Litton, Jr., Arthur W. Magill, Alex Young, and J. Alan Wagar, for their early conceptual contributions to the Conference. This Committee met weekly for more than 12 months to make the substantive contributions necessary for perfecting the Conference program. We also acknowledge the contributions of the Program Advisory Committee. Participating on this Committee were: Edward H. Stone II, Elwood L. Shafer, Ronald E. Stewart, Robert O. Brush, Sanford O. Silver, Herbert Echelberger, Gordon D. Lewis, Pieter E. Hoekstra, Benjamin Spada, Lane Marshall, F. Brian Clark, Robert J. Tetlow, George C. Coombes, Larry Isaacson, and William P. Gregg. Shirley I. Ramacher did a superb job as Conference Administrator. Several individuals were particularly helpful in providing administrative support for the Conference at critical times. These include George C. Coombes of University of California Extension, Elwood L. Shafer, Edward H. Stone II, Robert E. Buckman, and Robert Z. Callaham of the Forest Service, U.S. Department of Agriculture. Sally Schauman and Robert E. Leopold were particularly helpful in facilitating interagency coordination and support with the Soil Conservation Service and the Bureau of Land Management, respectively.

We also thank all exhibitors who prepared poster sessions, or who supplied models, films, slide shows and other visual presentations. And special thanks go to the session moderators who did a skillful job in moderating sessions and reviewing session papers. These moderators, in order of appearance, include: Robert Z. Callaham, Edward H. Stone II, Jim Mertes, Edward C. Thor, Donald Appleyard, Carl Steinitz, Rachel Kaplan, Terry C. Daniel, Edwin R. Browning, J. Alan Wagar, Ronald W. Hodgson, Robert E. Leopold, David Davies, Herbert E. Echelberger, David W. Lime, and Jens Sorensen.

The bus tours of landscape planning projects were well-organized and conducted by Wayne D. Iverson and Glenn S. Smith, with the assistance of Jon Hoefer, Frank Magary, Daid Stoms, Katherine Snow, and Charles Lowrie.

This Conference could not have been possible without the generous support of the major sponsors and organizers: Forest Service, Soil Conservation Service, and Bureau of Land Management. Other cosponsors include: The American Society of Landscape Architects, Washington, D.C.; the Bonneville Power Administration, Department of Energy, Portland, Oregon; The Cooperative Extension, University of California, Berkeley; the Department of Landscape Architecture, University of California, Berkeley; the Federal Highway Administration, Department of Transportation, Washington, D.C.; the Geological Survey, RALI Program, Department of the Interior, Washington, D.C.; The International Union of Forestry Research Organizations, Vienna, Austria; the National Park Service; the Society of American Foresters, Bethesda, Maryland; the Surface Environment and Mining Program (SEAM), Forest Service; the Heritage Conservation and Recreation Service, Washington, D.C.; and the Tennessee Valley Authority, Norris, Tennessee.