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Abstract 
The National Fire Danger Rating System (NFDRS) indices deduced from the monthly to 

seasonal predictions of a meteorological climate model at 50-km grid space from January 

1998 through December 2003 were used in conjunction with a probability model to predict 

the expected number of fire occurrences and large fires over the U.S. West. The short-term 

climate forecasts are ongoing experimental products from the Experimental Climate 

Prediction Center at the Scripps Institution of Oceanography. The probability model uses non-

parametric logistic regression with spline functions for evaluating relationships between 

covariates and probabilities of fires. The 2-meter relative humidity and the Forsberg fire 

weather index, along with NFDRS indices of the Keetch-Byram drought index and energy 

release, were previously found to produce more significant information for the observed big 

fire events than all the other stand-alone fire weather variables.  

Utilizing this previously determined regression relationship between historical fire 

information and the nowcast fire indices, these predicted indices were skillful in generating 

fire severity forecasts at monthly and seasonal time-scales. However, certain meteorological 

model biases, due to a known drying-up defect of the climate model, needed to be removed 

from the predicted indices before being used as input to the probability model. It was shown 

that the probability model using the bias-corrected fire danger indices outperformed the one 

with historic information only. The inter-annual fire frequency variability was predicted 

particularly well. This dynamical-statistical hybrid climate forecast application demonstrates a 

potential predictive capability (with specified precision) for the resulting economic impacts 

with a lead-time varying from a month to a season. 
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Introduction 
Wildland fire has been a major worldwide problem affecting million of hectares 
forest shrub lands. In the U.S.A. alone, 2.5 million hectares of wildland has been 
affected per year between 2000 and 2004 with an annual average suppression cost of 
$1.2 billion, more than twice that of the previous 5 years (González-Cabán 2005). 
Part of the cost increase might be due to the increased interface between wildlands 
and urban areas in today’s community (Shafran 2006), but part of it might be the 
increase of wildland fire frequency and hence the burned area.  While the level of 
affected burned area and associated suppression costs are challenging the national 
capability to confront the problem, ineffective use of the suppression costs could 
potentially impede society’s willingness to maintain financial support for wildfire 
management programs. 

Therefore, if a management system with the ability to project potential losses 
due to the impact of wildfires can be developed, it would represent a direct benefit to 
society and to those agencies with fire suppression responsibility. However, such a 
management system would require quantified predictions for fire severity and a 
prediction for the number of fires of different size classes with specific precision, not 
just fire danger.  

Currently there is no operational objective long-range forecast for fire severity. 
The outlooks for national fire weather and fire danger at weekly to seasonal time 
scales are provided by the National Interagency Coordination Center (NICC), which 
is the nation’s support center and home to seven federal agencies including the Forest 
Service, for wildland firefighting. The outlook and assessment are currently done by 
considering standard National Weather Service seasonal forecast products of 
temperature and precipitation (see Brown et al. 2003) along with other indicators, and 
carefully exercised human judgment. Therefore the current decision-making support 
for wildfire management is rather inadequate. Even the support for long-range fire 
danger forecast, which requires skillful climate prediction, is at best qualitative. 

However, with the constant improvement of knowledge and understanding of 
climate variations, various numerical climate models have demonstrated their 
potential capability to offer required fire danger and fire weather predictions to the 
fire science community. For example, Roads et al. (2005) evaluated experimental 
forecasts of National Fire Danger Rating System (NFDRS) indices at weekly to 
seasonal scale using a meteorological model as weather input. They showed that 
these indices could be well predicted at weekly time scales when appraised against 
the validation indices deduced from the model 1-day forecasts. Some indices have 
skill even at seasonal scales, especially over summertime seasons in the western U.S. 
However, despite the high skill in predicting NFDRS indices, Roads et al. (2005) 
showed that there was only a weak relationship between their validation indices and 
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the observed fire counts/acres burned.  
Preisler et al. (2004, 2007), took a statistical approach to reevaluate the 

relationship between the model derived NFDRS indices and the observed fire 
characteristics. They adopted a probability model using non-parametric logistic 
regression with spline functions to evaluate relationships between fire indices and 
probabilities of fire occurrence and size. They showed that the probability model 
outperformed the persistence model based on historic averages alone, and the 
geographical maps of wildland fire probability were reasonably well matched to the 
actual fire events. This method paves a feasible way to use climate forecast output 
from a dynamical meteorological model with a statistical model to forecast the 
probability of wildland fire severity with specified precisions. 

In this study, we will adopt this hybrid-model concept to examine the 
predictability of fire severity using climate model predicted fire danger indices in 
Roads et al. (2007) as the input to the statistical probability model proposed in 
Preisler et al. (2007). The climate model predicted fire danger variables as well as the 
fire occurrence data will be given in the next section, followed by the description of 
the statistical probability model, the evaluation result, and discussions.  

Data 
Predicted fire danger variables 
The fire danger variables in this study were adapted from Roads et al. (2005), in 
which a global to regional meteorological forecasting system developed at the 
Experimental Climate Prediction Center (ECPC) (Roads et al. 2003) was used. The 
modeling system consists of a global spectral model (GSM) and a regional spectral 
model (RSM). The RSM, originally developed at National Centers for Environmental 
Prediction (NCEP) (Juang and Kanamitsu 1994; see also Juang et al. 1997), is a 
regional extension of the GSM (Kalnay et al 1996). In particular, the RSM provides 
an almost seamless transition from the GSM to the higher resolution region of 
interest (Chen et al. 1999) and thus avoids a common regional model problem when 
using incompatible physics between the driving global model and the nested regional 
model (Chen 2001). The GSM is a frozen version of the operational NCEP global 
model. Descriptions of the GSM and RSM and the model setup used in this study can 
be found in Roads et al. (2003).  

The model system used operational 00 UTC analyses from the NCEP Global 
Data Assimilation as initial conditions. The forecast evaluation period was from 
January 1, 1998 through December 31, 2003 with a 16-week forecast launched on 
each Saturday initialized by 00UTC analysis. The initial sea-surface-temperature and 
sea ice anomalies were persisted throughout each integration. The 4 times daily 
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output of the GSM was subsequently used as initial and lateral boundary conditions 
for the RSM. Horizontal grid spacing of RSM was 60 km. The forecasted surface 
weather variables, including temperature, two-meter relative humidity (R2M), wind 
speed from the model, and top 10-cm soil moisture content along with the 
precipitation, fuels and slope, were the input for the NFDRS indices computation 
(Burgan 1988) and Fosberg fire weather index (FFWI; Fosberg 1978; Fujioka and 
Tsou 1985). The major difference of our NFDRS calculation from the standard one is 
the use of the meteorological model forecast output, instead of weather station 
observations. Not all fire danger indices are useful to us in this study. Preisler et al. 
(2007) concluded that only FFWI, R2M, and two indices from NFDRS, i.e. energy 
release component (ER) and Keetch-Byram (KB) drought component, were 
important for the statistical model to be described later. Adding other indices 
increased only negligible skill. Therefore throughout this study, we use these four 
variables as input fire danger variables for the statistical model. 

To initially evaluate the skill of the meteorological model in producing these fire 
danger indices, a set of model deduced indices from 1-day GSM/RSM forecasts was 
produced, and is called ‘validating’ indices. Similar to Roads et al (2005), these 
monthly mean indices are used as surrogates for ‘observed’ values, since 1-day 
forecasts have been found to be very skillful when compared to observations. 
Interested readers should refer to Roads et al. (2005) for detailed descriptions and a 
comparison of these indices. 

All 16-week forecasts were arranged into monthly mean according to their 
respective calendar month. For example, outputs of the 16-week forecast starting 
from June 27, 1998 were grouped and averaged into monthly forecasts of lag 0 of 
July 1998, lag 5 of August 1998, and lag 9 of September 1998. Therefore for each 
target month, there are independent monthly forecasts with lead-times from 0 to 11 
weeks. These monthly forecasts were further averaged into seasonal forecasts with 3 
possible lags, i.e. 0, 1, and 2 weeks. These long-range forecasted indices do possess 
prediction skills as seen in the temporal correlation maps (fig. 1) for the 1-week lag 
seasonal forecast against those “observed”. As described in Roads (2005), these 
“observed” indices were actually calculated from a series of 1-day forecasts of the 
modeling system. Since 1-day forecasts have been found to be very skillful when 
compared to observations, these validating indices were used as surrogates for the 
“observations.” This evaluation was done over the entire fire season from May 
through October of each year. Therefore a total of 36 independent forecasts were 
used. It can be seen that all 3 indices and R2M are highly skillful at seasonal scale 
over the U.S. West region with the highest correlation of FFWI over the Great Basin 
and California area. However, the forecast skills of these variables are somewhat 
deteriorated over the northern boundary of the U.S Northwest and the eastern portion 
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of the U.S. Southwest. Since precipitation has been recognized as the most difficult 

meteorological variable to predict (e.g. Chen et al. 1993), it is not surprising to see 
that the model fire danger prediction is skillful over the climatologically dry regions. 
Figure 1. —Seasonal correlations for the input fire indices (ER, FFWI and KB) and 2-
meter relative humidity (R2M).  “Observed” and 1-week lag forecasts for May through 
October from 1998 to 200 3 are used. Grid poi nts with correlation  coefficients larger 
than 0.32 passed 95% confidence level student t-test.  
 
Fire Occurrence Data 

This work relied on fire history datasets over the western U.S. Westerling et al. (2003) 
compiled a gridded one-degree latitude/longitude (317 grid cells) dataset of monthly 
fire starts and acres burned from approximately 300,000 fires reported by the USDA 
Forest Service, the USDI’s Bureaus of Land Management and Indian Affairs, and the 
National Park Service for 1980-2003.  However, we only used the data from January 
1998 through December 2003 to match the period of the meteorological model-
derived fire danger indices. As in Preisler et al. (2007), the fire starts and acres 
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burned have been merged into a set of data with large fire events (area burned > 400 
ha ≈ 1000 acres). Throughout this study, all model derived fire danger variables (fig. 
1) were interpolated to the same one-degree latitude/longitude grids as the fire data. 

Statistical Methods 
Adopting a semi-parametric logistic regression approach (Hastie et al. 2001, Preisler 
and Westerling 2007), a probability model of fire has been developed using historic 
monthly fire occurrence data as the dependent variable and meteorological model 
output derived fire danger indices as the explanatory (or independent) variables. The 
regression model estimates two fire danger probabilities: probability of fire 
occurrence and conditional probability of large fire event. Probability of fire 
occurrence was defined as the probability of at least one fire of any size occurring in 
a given one-degree grid cell during a given month of a year. The probability of a 
large fire event was defined as the probability of the occurrence of a burn area greater 
than 400 ha (≈ 1000 acres) given at least one fire occurrence in the one-degree cell 
during a given month of a year. The product of the above two probabilities was used 
as a measure of danger for a big fire event. The 400 ha cut-off for large fires, 
although arbitrary, aligns with size class F fires. The same methods might be used to 
estimate probability spectrum of area burned, if the historic dependent as well as 
explanatory variables were sufficient. 

The explanatory variables used in the regression model were the modeled fire 
danger indices described above in addition to a purely temporal variable (month-in-
year) and a geo-spatial vector variable (latitude and longitude of the one-degree grid 
cell). The temporal variable (month) was included in the model as a proxy for annual 
cyclical patterns of fire occurrence and large fire events that may not have been 
properly captured by the indices. The geo-spatial vector (latitude, longitude) was 
included in the regression as a surrogate for variables with spatial patterns (e.g. 
vegetation type, elevation or human activities) that do not change over time. 
Interested readers should refer to, e.g., Brillinger et al. (2003), Preisler et al. (2004), 
and Preisler et al. (2007) for details.  

Two probability models from Preisler et al. (2007) were used in this study. The 
first one is the historic (climatologic) model (or H-model). There are no fire danger 
variables used in this model, except month-in-year and location (latitude, longitude). 
With this model each grid has a different probability for each month of the year, but 
the probabilities do not change from year to year. The H-model is in fact a spatially 
and temporally smoothed function of the observed large fire frequency at each grid 
cell. The second probability model is the combined indices model (or C-model). The 
explanatory variables in this model were spatial location, month and a combination of 
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four fire danger variables, i.e. FFWI, ER, KB and R2M. Therefore, by feeding the C-
model with a set of predicted monthly fire danger variables, a map of predicted 
probability of large fire events over the U.S. West will be created. 

Results 
Since we trained the C-model using ‘validating’ meteorological 1-day forecasted fire 
danger variables (Preisler et al. 2007), some care had to be taken when the monthly 
forecasts described above were to be used as input to the C-model. Numerical 
meteorological models are never perfect, and are prone to having defects, such as a 
tendency to drift to a biased state when they are integrated for a long period of time. 
The meteorological model we used in this study is no exception. It had a dry bias 
such that the model soil moisture was depleted somewhat and the precipitation 
reduced as the integration continued (Roads and Chen 2000; Chen and Roads 2005). 
To partially counter this bias and perhaps other not-so-obvious defects, we first 
constructed the monthly mean of each forecasted fire danger variable at each 
corresponding lag. The differences of these monthly mean climatologies of the 12 lag 
forecasts and the corresponding monthly mean 1-day “validating” fire danger 
variables were subsequently removed from the original forecasted fire danger 
variables before feeding them to the C-model.  

Although the forecast evaluation period covered only 6 years, meaning there 
were only 6 monthly maps to compute a respective monthly climatology, this 
correction appeared to be quite effective in removing the known dry bias of the 
weather input as suggested by the goodness-of-fit of the reliability diagrams (fig. 2). 
These were done by grouping together all cells from the monthly forecasts with 
similar predicted probabilities within a certain bin for each lag forecast, and the 
fraction of how many of these cells were observed with fires were computed over the 
entire space and time. If a forecast was perfect, the observed fraction of cells with fire 
to the total cell number would be identical to the predicted probability of fires, and 
thus a point would be on the diagonal line. The ranges of 95 percentiles from the 
binomial distribution with respective probability and size of sample were represented 
with two dashed curves. The wider ranges at high probability resulted from fewer cell 
numbers. As can be seen, the scattered points for the un-corrected C-model are 
mostly under the diagonal line, indicating over-predicted fire danger, presumably a 
response to fire danger indices from a dry environment. This over-predicted fire 
danger is not only true for cases at extreme probability; the over-prediction becomes 
severe even at lower probability at larger forecast lags. The bias-corrected C-model, 
on the other hand, effectively removed most of the over-prediction, especially at 
lower fire probability. 
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Figure 2 . — Reliability diagra ms fo r t he forecaste d proba bility C-m odel wi th the  
respective forecast lags. Left side panels are those from bias-corrected indices, and 
right side panels are those us ing uncorrected outp uts. Reliability diagram shows the 
observed fraction of large fire events plotted against predicted probability from the C-
model. The two da shed curves mark the 95 per centiles for binomial distribution with 
respective size (number of cells) and probability. 
 

 To better compare the goodness-of-fit, we computed χ2 for the bias-corrected 
and un-corrected C-models alongside that of the H-model (fig. 3). Smaller χ2 
indicates better fit to the diagonal line in the reliability diagram; larger χ2 
demonstrates either worse prediction or cases when the temporal and spatial 
distributions of cells with fire were off from observed, again presumably caused by 
the dry biased weather prediction. For forecasts at short lags, there are small 
differences between corrected and un-corrected C-models. Both models predicted 
fires with statistical distribution no different from that observed and were better than 
the H-model (the constant thin solid line) at 95% confidence level. But at longer lags, 
with increasing χ2, the uncorrected C-model apparently diverged statistically from 
the corrected one, or most importantly from the observation.   

Although we can pretty much draw a preliminary conclusion that we should use 
the corrected C-model based on the reliability diagram and its χ2, the analysis so far  
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Figure 3. —χ2 of the observed and pred icted fire cells as a function of forecast lags.  
Solid thin line is the Hist oric mo del, d ot-dashed lin e and soli d heavy lines are for 
uncorrected and corrected C-models.  95% and higher confidence levels are shaded. 

Figure 4 . —3-month (seasonal) sum o f the total (to p) and anom alous (bottom) time 
series. Th e observed 3-month ru nning su ms a re in heavy red lin es, while the  
predicted fire numbers are in thin solid, dotted, and dash ed lines for forecasts with 0, 
1, and 2-week lags with respective temporal correlations (d.o.f 70) of 0.46, 0.61, and 
0.52. The ensemble mean forecasts are in green lines with a correlation of 0.64.     
 
only demonstrated that the predicted fire severity possessed similar statistical 
properties to those of observed fire events. They revealed little information regarding 
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how skillful the predictions were. To examine the prediction skill, we constructed 
some time series of the predicted number of fires and displayed them with the 
observations (fig. 4). The predicted number of fires was done by taking the area sum 
of the probability of each predicted map produced from the C-model. The observed 
number of fires was simply the sum of cells with fire. The top panel shows the total 
fire number over the entire evaluation domain from January 1998 through December 
2003, the bottom panel is the anomalous time series for the same period with their 
respective climatology removed. Each seasonal sum was made by taking the sum of 3 
consecutive monthly predictions from the same forecast, and was plotted at the center 
of the 3 months. Three possible forecast time series could be made with forecast lags 
of 0, 1 and 2 weeks. Since these three sets of forecasts were cast with initial 
conditions 1 or 2 weeks apart, they practically formed a “poor-man” 3-member 
ensemble forecast and the ensemble mean was given in green curve.  As shown in the 
top panel, the observation shows intense annual cycles for the total number of fires, 
with a peak around July. There was also a slight increasing trend for the summertime 
peaks. All 3 sets of forecasts, including the ensemble mean, in general, followed the 
observed annual cycle quite well. They even reproduced the slight upward trend as 
observed.  However, the true forecast skill of this hybrid model can only be tested 
with the anomalous plot in the bottom panel. Except for the high positive anomaly in 
the summer of 2000, all three forecasts and the ensemble mean fairly predicted the 
peaks and valleys in summertime with temporal correlations exceeding the 95% 
confidence student-t test ( 70 d.o.f.). There was even one forecast that somewhat 
caught the extreme positive anomaly at summer of 2000. These are skillful forecasts, 
and are obviously much better than forecasts made with climatology (H-model), 
which would have been a constant zero in the bottom panel. 

Summary and Discussion 
A statistical method of estimating probabilities of large wildland fire events has been 
applied to the monthly to seasonal fire danger indices forecasts produced by the 
numerical climate prediction model from the ECPC. Specifically, following Preisler 
et al. (2007), the predicted monthly mean fire danger indices, FFWI, KBDI, ER, and 
R2M, were used as input variables for the statistical probability model to estimate 
monthly probabilities of large fire events over the western United States. The 
predicted probabilities were then compared with observed frequencies of large events 
in order to assess the skill of this dynamical-statistical hybrid modeling system. The 
evaluation period was from January 1998 through December 2003. Despite the use of 
persistent sea-surface-temperature and sea ice anomalies for the climate model, it is 
encouraging to see that the prediction of the fire danger indices from the climate 
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model was quite useful in generating the projected wildland fire severity.   
From this preliminary study, we found that special attention to the prediction 

data was needed to counter the drift or bias of the climate prediction model. This was 
simply done by removing the differences between the forecast and validating (1-day 
forecast) climatologies from the predicted fire danger indices before feeding them to 
the probability model. The procedure was straightforward but the apparent dry bias 
and hence the over-estimated fire severity prediction was effectively corrected. This 
is particularly true when compared to the observed fire events. The resulting 
statistical characteristics of fire probability prediction were not only improved over 
the bias un-corrected set, they were also superior to using the fire climatology only.  
Thus the inter-annual variability of the predicted fire frequency was predicted fairly 
well. Furthermore, the prediction seemed to be particularly useful if ensemble 
forecast mean was taken.  

While the fire severity prediction over the U.S. West might be useful in 
quantifying fire danger to fire managers, a more useful application might be the 
ability to forecast monthly or seasonal fire frequency over a region in a probabilistic 
manner. For example, a fire severity forecast over the juridical area of a regional 
operation center of the Geographic Area Coordination Center (GACC; 
http://gacc.nifc.gov/). However, to evaluate the skill of the forecast over such a small 
area is not an easy task using the prediction data presently available to us. In this 
study, since we have only 6 years of prediction and validating analysis, we had to 
compensate the shortage of temporal points with the abundant spatial points for the 
statistics to be meaningful. Future study should address the use of longer periods of 
climate forecast data (e.g. Roads et al. 2007) and fire data (e.g. Westerling et al. 2003) 
to examine the predictability of fire severity. Using such datasets, not only could we 
focus our analysis on a smaller GACC region, we would also not be limited to only 
two classes of fire, i.e. no fire or large fire, as in the analysis of this study. Instead, a 
probability spectrum (sizes of fires) could be readily produced. 

Probability models, such as the one described here, are not only practical in 
producing maps of fire danger, they are also useful in assessing the skill of each fire 
danger in estimating and/or forecasting frequencies of wildland fire events. However, 
the indices in NFDRS were probably originally designed to support firefighting 
tactics on a daily basis. Some of the indices, such as SC, BI and IC, are sensitive to 
short-term variations of weather components, especially wind speed. These indices, 
therefore, might lose their high frequency characteristics when a long-term (e.g. 
monthly) average is taken, as was the case in this study. Thus a future extensive re-
evaluation of those indices excluded from Preisler et al. (2007) and this study is 
needed. In particular, we will focus on how to best accumulate the daily information 
given in these wind-sensitive indices into monthly or even seasonal variables.  
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