Postfire Restoration Framework for National Forests in California
In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: program.intake@usda.gov.

USDA is an equal opportunity provider, employer, and lender.

Editors

Marc D. Meyer is an ecologist, U.S. Department of Agriculture, Forest Service, Southern Sierra Province, Inyo National Forest, 351 Pacu Lane, Bishop, CA 93514; Jonathan W. Long is a research ecologist, Pacific Southwest Research Station, 1731 Research Park Drive, Davis, CA 95618; Hugh D. Safford is the regional ecologist, Pacific Southwest Region, 1323 Club Drive, Vallejo, CA 94592.

Cover Photos: Upper (panoramic): Burned forest landscape one year following the 2015 Rough Fire showing a mixture of fire effects. Giant Sequoia National Monument, Sequoia National Forest. Photo by Marc Meyer. Lower Left: Resprouting manzanita (Arctostaphylos glandulosa) six months after the 2017 Thomas Fire. Dry Lakes Ridge Botanical Special Interest Areas, Los Padres National Forest. Photo by Nicole Molinari. Lower middle: Monarch giant sequoia (Sequoiadendron giganteum) that burned at low to moderate severity two years after the 2015 Rough Fire in Grant Grove, Kings Canyon National Park. Photo by Marc Meyer. Lower Right: Big sagebrush (Artemisia tridentata) and bitterbrush (Purshia tridentata) before (top, 2010) and after (bottom, 201) the 2016 Owens River Fire, Mono County, CA. Photo by Michele Slaton.
Contributors

Becky L. Estes is an ecologist, U.S. Department of Agriculture, Forest Service, Central Sierra Province, Eldorado National Forest, 100 Forni Road, Placerville, CA 95667; Kyle E. Merriam is an ecologist, U.S. Department of Agriculture, Forest Service, Sierra Cascade Province, Plumas National Forest, 159 Lawrence Street, Quincy, CA 95971; Nicole A. Molinari is an ecologist, U.S. Department of Agriculture, Forest Service, Southern California Province, Los Padres National Forest, 6755 Navigator Way, Suite 150, Goleta, CA 93117; Shana E. Gross is an ecologist, U.S. Department of Agriculture, Forest Service, Central Sierra Province, Lake Tahoe Basin Management Unit, 35 College Drive, South Lake Tahoe, CA 96151; Michelle Coppoletta is an ecologist, U.S. Department of Agriculture, Forest Service, Sierra Cascade Province, Plumas National Forest, 159 Lawrence Street, Quincy, CA 95971; Sarah C. Sawyer is the regional wildlife ecologist, U.S. Department of Agriculture, Forest Service, Pacific Southwest Region, 1323 Club Drive, Vallejo, CA 94592; Ramona J. Butz is an ecologist, U.S. Department of Agriculture, Forest Service, Northern Province, Six Rivers National Forest, 1330 Bayshore Way, Eureka, CA 95501; Amarina Wuenschel is an ecologist, U.S. Department of Agriculture, Forest Service, Southern Sierra Province, Sierra National Forest, 57003 Road 225, North Fork, CA 93643; Angela M. White is a research ecologist, Brandon M. Collins is a research fire ecologist and Malcolm P. North is a research plant ecologist, U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, 1731 Research Park Drive, Davis, CA 95618; Jens T. Stevens is a former postdoctoral scholar and Zachary L. Steel is a postdoctoral scholar, University of California–Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720; Jamie M. Lydersen is a climate and fire specialist, California Department of Forestry and Fire Protection, Sacramento, CA 94244; Scott Conway is a former ecologist and Michele Slaton is an ecologist, U.S. Department of Agriculture, Forest Service, Pacific Southwest Region Remote Sensing Laboratory, 3237 Peacekeeper Way, Suite 201, McClellan, CA 95652; Clint Isbell is a fire ecologist, U.S. Department of Agriculture, Forest Service, Klamath National Forest, 1711 South Main Street, Yreka, CA 96097; Alex Koltunov is a project scientist, University of California–Davis, Department of Land, Air, and Water Resources, Davis, CA 95616; Emma C. Underwood is a research scientist, University of California–Davis, Department of Environmental Science and Policy, One Shields Avenue, Davis, CA 95616; Dana Walsh is a silviculturist, U.S. Department of Agriculture, Forest Service, Eldorado National Forest, 7600 Wentworth Springs Road, Georgetown, CA 95634; Dave Young is a soil scientist, U.S. Department of Agriculture, Forest Service, Shasta-Trinity National Forest, 3644 Avtech Parkway, Redding, CA 96002; Steven M. Ostoja is a director, U.S. Department of Agriculture, California Regional Climate Hub, One Shields Avenue, University of California–Davis, Davis, CA 95616.
Postfire Restoration Framework for National Forests in California

Marc D. Meyer, Jonathan W. Long, and Hugh D. Safford, Editors

U.S. Department of Agriculture
Forest Service
Pacific Southwest Research Station
Albany, California
General Technical Report PSW-GTR-270
February 2021
Abstract

Increasing frequency and extent of high-severity wildfires pose a significant threat to California’s ecosystems. This is evident in both tree- and shrub-dominated landscapes, where novel, human-driven fire regimes may result in large-scale alteration of terrestrial ecosystems and decline in the services they provide. Based on these trends and a broader consideration of sustainability, there is a growing need for a well-supported, science-based approach to postfire management. This report presents a framework to guide the development of postfire restoration on national forests in California. The framework is founded on a set of guiding principles and a five-step process that leads to the development of a restoration portfolio that can inform project planning and monitoring. We discuss the application of this approach to California’s forest, chaparral, and sagebrush-steppe ecosystems. The restoration framework can inform future postfire management, monitoring, and research in California’s diverse ecosystems.

Keywords: Ecological restoration, ecosystem resilience, ecological integrity, fire regimes, fire management, natural range of variation, wildfire, climate change, California.
Executive Summary

We propose a science-based framework for ecological restoration interventions after major wildfires on USDA Forest Service lands in California. Changing fire regimes, interacting with other ecological disturbances and stressors, are threatening the ecological integrity and ecosystem services of California’s forests, woodlands, and shrublands. The postfire restoration framework is guided by principles of ecological restoration and includes a landscape assessment process and tools, as well as a framework for decisionmaking to plan and implement restoration projects. Three case studies are included that focus on the following:

- Potential failure of conifer forests to regenerate following uncharacteristically large and severe wildfires
- Loss of key ecosystem services in chaparral ecosystems affected by repeated burning
- Invasion of sagebrush steppe landscapes by nonnative annual grasses following fire

Increased fuel loading and shifts in forest composition in forest or woodland landscapes following wildfires are other major concerns considered in the report. However, changes in fuel loads and shifts in species composition also arise from other causes of extensive mortality, including extended droughts, bark beetle outbreaks, and sudden oak death. As such, all these agents of change represent a growing concern.

The postfire restoration framework is rooted in six science-based guiding principles:

- Restore key ecological processes
- Consider landscape context
- Promote regional native biodiversity
- Sustain diverse ecosystem services
- Establish a prioritization approach for management interventions
- Incorporate adaptation to agents of change
The framework includes five steps that connect restoration goals, opportunities, and potential actions that serve as the foundation for future project planning, monitoring, and adaptive management:

- An interdisciplinary team of specialists identifies priority resources, desired conditions, and restoration goals.
- The team gathers and analyzes relevant spatial data and other information to evaluate current and potential future landscape conditions.
- The team uses a postfire flowchart to identify restoration opportunities.
- The team develops a list of potential management actions that are linked to these opportunities.
- The team builds a suite of potential restoration actions that support landscape restoration goals ("restoration portfolio") by prioritizing actions based on feasibility and constraints.

Numerous analytical tools, approaches, and datasets are available to assist in evaluating landscape condition and trends in the postfire flowchart and restoration portfolio. Some of these tools and data may be broadly applied, but many are specific to individual ecosystem types or landscapes. For example, the postfire regeneration tools in appendix 3 are appropriate only for certain conifer-dominated ecosystems.

This report proposes a framework for developing landscape-scale postfire (and related) restoration plans on Forest Service lands in California. Selected restoration approaches are described in this report for illustrative purposes. The effectiveness of specific tactics are addressed in other publications, but continued long-term research and monitoring efforts are needed to evaluate the extent to which they effectively restore ecological integrity and sustain ecosystem services.
Contents

1 Chapter 1: Principles of Postfire Restoration

 1 Introduction
 1 Objectives for Postfire Interventions
 2 Shifts in Fire Regimes and Rationales for Restorative Interventions
 10 Need for New Framework
 11 Purpose of Framework
 12 Applicability to Other Disturbances
 12 Guiding Restoration Principles
 12 Restoration Focuses on the Reestablishment of Key Ecological Processes to Provide for Long-Term Ecosystem Integrity and Function
 15 Restoration Is Planned on a Landscape Scale With Locally Implemented Restoration Projects Contributing to Landscape Restoration Goals
 16 Restoration Supports Regional Native Biodiversity and Habitat Connectivity
 16 Restoration Employs a Pragmatic and Balanced Approach to Sustain Diverse Ecosystem Services
 17 Restoration Is Based on Prioritization
 17 Restoration Recognizes and Adapts to Agents of Change, Including Climate Change
 18 Elements of This Report
 20 References

31 Chapter 2: Postfire Restoration Framework
 Kyle E. Merriam, Michelle Coppoletta, Angela M. White, Brandon M. Collins, and Shana E. Gross

 31 Introduction
 32 Step 1: Assemble a Team and Identify Priority Resources, Desired Conditions, and Restoration Goals
 33 Step 2: Gather and Analyze Relevant Spatial Data
 33 Step 3: Use the Postfire Flowchart to Identify Restoration Opportunities
 35 Question A: Where Did Fire Improve or Maintain Ecological Conditions, and Are Fire Effects Within Desired Conditions or the Natural Range of Variation?
 36 Question B: Where Do Other Factors Threaten Long-Term Ecological Resilience and Sustainability?
 37 Question C: Where Are Management Approaches Feasible for the Restoration of Desired Conditions Given Current and Anticipated Future Conditions?
 40 Step 4: Develop and Integrate Restoration Opportunities Into Potential Restoration Actions
 41 Step 5: Build a Restoration Portfolio by Prioritizing Actions
Chapter 5: California Chaparral Case Study
Nicole A. Molinari, Emma C. Underwood, Sarah C. Sawyer, and Ramona J. Butz

Background
California Chaparral Ecosystems
Sand Fire

Postfire Restoration Framework
Step 1: Identify Priority Resources, Desired Conditions, and Restoration Goals
Step 2: Gather and Review Relevant Spatial Data
Step 3: Use the Postfire Flowchart to Identify Restoration Opportunities
Step 4: Develop and Integrate Restoration Opportunities Into Potential Restoration Actions
Step 5: Build a Restoration Portfolio by Prioritizing Actions

Conclusions

References

Chapter 6: Sagebrush Steppe Case Study
Marc D. Meyer, Michèle Slaton, Amarina Wuenschel, and Kyle E. Merriam

Background
Sagebrush Steppe Ecosystems
Owens River Fire

Postfire Restoration Framework
Step 1: Identifying Priority Resources, Desired Conditions, and Restoration Goals
Step 2: Gather and Review Relevant Spatial Data
Step 3: Use the Postfire Flowchart to Identify Restoration Opportunities
Step 4: Develop and Integrate Restoration Opportunities Into Potential Restoration Actions
Step 5: Build a Restoration Portfolio by Prioritizing Actions

Conclusions

References

Chapter 7: Key Lessons and Caveats
Jonathan W. Long, Hugh D. Safford, and Marc D. Meyer

Acknowledgments

Appendix 1: Legislation, Regulations, Policy, and Direction Pertaining to Ecological Restoration

References