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Glossary
Acidification The process by which soil pH is reduced,

potentially causing release of toxic minerals into the soil,

base cation depletion, losses of plant biodiversity, and

dominance by acid-tolerant species.

Calcareous A soil property of high calcium carbonate

(CaCO3) which buffers the soil against changes in pH.

Critical Load A quantitative estimate of an exposure to a

pollutant below which significant harmful effects on

specified elements of the environment do not occur

according to present knowledge.

Denitrification A biogeochemical process mediated by

soil microbes in which nitrate (NO3
�) is converted to

dinitrogen gas (N2) along with other intermediary

molecules.

Eutrophication The process by which enrichment with

nutrients such as nitrogen stimulates plant growth, often
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leading to losses of plant biodiversity and dominance by

weedy species.

Limiting resource The resource that most limits primary

production in ecosystems (often nitrogen).

Nitrification A biogeochemical process mediated by soil

microbes in which ammonium (NH4
þ ) is converted to

nitrate (NO3
�) along with the release of protons into

the soil.

Nitrogen deposition The process by which reactive forms

of nitrogen are deposited to the earth’s surface through

either wet or dry deposition.

Reactive nitrogen All forms of nitrogen except

atmospheric dinitrogen gas, includes all radiatively,

photochemically, and biologically active inorganic forms

(e.g., NH3, NH4
þ , NOx, HNO3, N2O) and organic

molecules (e.g., proteins, urea, etc.).
Overview of the Issue

Nitrogen deposition, along with habitat losses and climate

change, has been identified as a primary threat to biodiversity

worldwide (Butchart et al., 2010; MEA, 2005; Sala et al., 2000).

The source of this stressor to natural systems is generally two-

fold: burning of fossil fuels and the use of fertilizers in modern

intensive agriculture. Each of these human enterprises leads to

the release of large amounts of biologically reactive nitrogen

(henceforth contracted to ‘‘nitrogen’’) to the atmosphere, which

is later deposited to ecosystems. Because nitrogen is a critical

element to all living things (as a primary building block of

proteins among other biological molecules), nitrogen avail-

ability often limits primary production and is tightly recycled in

many natural ecosystems. This is especially true in temperate

ecosystems, though it may also be true for some areas in the

tropics that are not phosphorus-limited (Adams et al., 2004;

Matson et al., 1999). Thus, the large increase in availability of

this critical nutrient as a result of human activity has profound

impacts on ecosystems and on biodiversity.
Once nitrogen is deposited on terrestrial ecosystems, a

cascade of effects can occur that often leads to overall declines

in biodiversity (Bobbink et al., 2010; Galloway et al.,

2003). For plants, nitrogen deposition can impact biodiversity

generally through four processes: (1) stimulation of growth

often of weedy species that outcompete local neighbors

(termed ‘‘eutrophication’’), (2) acidification of the soil and

consequent imbalances in other key nutrients that favors

acid tolerant species (termed ‘‘acidification’’), (3) enhance-

ment of secondary stressors such as from fire, drought, frost, or

pests triggered by increased nitrogen availability (termed

‘‘secondary stressors’’), and (4) direct damage to leaves

(termed ‘‘direct toxicity’’) (Bobbink, 1998; Bobbink et al.,

2010). For animals, much less is known, but reductions

in plant biodiversity can lead to reductions in diversity of

invertebrate and other animal species, loss of habitat hetero-

geneity and specialist habitats, increased pest populations

and activity, and changes in soil microbial communities

(McKinney and Lockwood, 1999; Throop and Lerdau, 2004;

Treseder, 2004).
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N2 + 8H+ + 8e− + 16 ATP → 2NH3 + H2 + 16 ADP + 16 Pi

Figure 1 Illustration of biological nitrogen fixation (BNF). Clockwise
from the top: Simplified chemical equation of BNF; some common N
fixing plants, soybean, lupine, alder; and a closeup of plant roots and
the root nodules where BNF takes place for leguminous species.
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In total, it is estimated that nearly 16.3 million km2 or

11% of the terrestrial land surface is currently exposed to

high levels of nitrogen deposition that could threaten bio-

diversity (Dentener et al., 2006). Regions vary globally in

the amount of area exposed, ranging from eastern Europe

(80%), to South Asia (60%), east Asia (40%), southeast Asia

(30%), western Europe (30%), and the US (20%), with

the remaining global regions being generally low (o10%).

Thus, nitrogen deposition potentially impacts biodiversity

over much of the globe, from tropics to tundra. Although

the biodiversity of most systems responds negatively to

nitrogen deposition, the magnitude and exact nature of the

effect can vary widely depending on interactions between

nutrient availability and other factors such as climate, dis-

turbance, and plant community composition (Bobbink et al.,

2010; Dise, 2011).

It is unclear to what degree recovery of biodiversity

is possible from long-term nitrogen deposition. Recovery

is anticipated to be enhanced through reduction of soil

nitrogen availability, restoration of soil pH and other

nutrient conditions, and addition of species formerly lost

(Bakker and Berendse, 1999). In practice, it is unresolved to

what degree this process occurs naturally if nitrogen de-

position were reduced through regional, national, or inter-

national regulation. However, over time periods of interest

to decision makers (years to decades) active management

may be necessary to restore biodiversity within affected areas

(Dise, 2011).

Many of the world’s ‘‘hot spots’’ of biodiversity are either

currently exposed, or are expected to be exposed in the near

future, to potentially high levels of nitrogen deposition as

industrialization continues to occur in developing nations of

the Tropics and Asia (Phoenix et al., 2006). Most of our

knowledge on the impacts from nitrogen deposition comes

from Europe and the US – areas that have already experienced

modern industrialization and widespread losses of bio-

diversity – and, using short-term experiments in which high

levels of N in excess of deposition were added. Thus, there is

an urgent need for a greater understanding of the long-term

impacts from low levels of nitrogen deposition in all systems,

with particular emphasis on understudied biomes and geo-

graphic areas such as the Tropics, Asia, and Africa (Bobbink

et al., 2010).
Background on Nitrogen as a Nutrient and Pollutant
in Ecosystems

Nitrogen as a Nutrient and Resource Limitation

Nearly 99% of the nitrogen (N) on the planet is in the

atmosphere as highly stable dinitrogen gas (N2), where

two atoms of N are triple-bonded together. N is the most

abundant element in our atmosphere, making up approxi-

mately 78% by volume, followed by oxygen (B20%) and

Argon (B1%) (Galloway et al., 2003). N is also one of the

most critical elements for life, constituting the elemental basis

for peptide bonds between amino acids, which combine to

form proteins – the basic building blocks for the biochemical

reactions underpinning all life.
Ironically, however, atmospheric nitrogen is unavailable to

approximately 99% of living organisms (Galloway et al.,

2003). The ability to break this triple bond, thereby converting

N2 into more reactive forms, is relatively rare in nature. It

requires significant energy, low oxygen levels, specialized en-

zymes, and is almost entirely the purview of bacteria and

archea (the group capable termed diazotrophs). These or-

ganisms generally live either freely in the soil or in water, or in

close association with plant roots belowground, and are re-

sponsible for this biological nitrogen fixation (BNF, Figure 1).

Lightning can also break the triple bond of N2, though the

importance of lightning to global N supplies is small by

comparison to BNF. Thus, N2 is commonly termed ‘‘non-

reactive N’’ because it is inert to all but a small fraction of

organisms. The remaining 1% of planetary N includes all

biologically, photochemically, and radiatively active com-

pounds in the atmosphere, hydrosphere, geosphere, and bio-

sphere (termed ‘‘reactive N’’ or ‘‘Nr’’). Nr includes dozens of

different molecular forms, including inorganic oxidized N

(e.g., nitric acid (HNO3), nitrogen oxides (NOx), nitrous oxide

(N2O), and nitrate (NO3
�)), inorganic reduced N (e.g., am-

monium (NH4
þ ) and ammonia (NH3)), and organic N (e.g.,

proteins, urea, or amines) (Galloway et al., 2003).

The importance of nitrogen to all biological functioning,

and its relatively restricted supplies, means that its availability

often limits primary production in natural ecosystems

(Vitousek et al., 2002). Other nutrients can also limit pro-

duction, especially phosphorus, though nitrogen limitation or

colimitation is widespread in terrestrial ecosystems (Elser

et al., 2007; LeBauer and Treseder, 2008). Because the ultimate

source of phosphorus is chemical weathering of mineral rocks,

older systems that have not been glaciated for millennia can

develop P limitation, a condition often observed in tropical

regions (Matson et al., 1999). Nonetheless, nitrogen limitation

is also observed in many tropical areas.
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Figure 2 The global nitrogen cycle showing approximate magnitudes of major pools (boxes) and fluxes (arrows) in teragrams per year
(1Tg¼1012 g). The atmosphere contains the vast majority of Earth’s nitrogen, followed by oceanic rocks and sediments and the soil. The amount
of N that cycles in terrestrial and marine systems is much greater than N inputs from BNF (nine-fold and 80-fold respectively). Reproduced with
permission from Chapin FS, Matson PA, and Mooney HA (2002) Principles of Terrestrial Ecosystem Ecology. New York: Springer-Verlag.
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Nitrogen Cycling: Preindustrial and Postindustrial

Prior to the industrial revolution, creation of Nr came from

three sources: BNF, lightning, and preindustrial agriculture.

Together, these processes added Nr to terrestrial ecosystems at

roughly 141 TgN/year (Tg¼1012 g), which was predominantly

natural BNF (BNF: 92%; preindustrial agriculture: 6%; light-

ning: 2%; Galloway et al., 2004). There was some anthropo-

genic-driven BNF through the cultivation of rice paddies, but

this was small by comparison. Most of these nitrogen inputs

were transferred to the ocean, denitrified to the atmosphere, or

accumulated slowly as organic material in soils. All these

processes are part of the global nitrogen cycle (Figure 2).

Human activity began to substantially impact the global

nitrogen cycle following the industrial revolution from the

burning of fossil fuels for energy and the advent of modern

agriculture. When fossil fuels are burned at high temperatures

in the presence of atmospheric oxygen, many oxidized forms

of Nr are produced (e.g., nitrogen oxides such as NOx). These
molecular forms of Nr disperse and react with the atmospheric

constituents, eventually being deposited through either wet or

dry nitrogen deposition.

The advent of modern agriculture also had a major impact

on the global nitrogen cycle (Smil, 2001). In the late nine-

teenth and early twentieth centuries, nitrogen for fertilizer and

explosives came mainly from nitrate salts mined in the Ata-

cama desert of Chile and from animal droppings on islands

off the coasts of Chile and Peru. There was a global shortage

developing for these resources, provoking a search for substi-

tutes. Soon thereafter, German scientists Fritz Haber and

Carl Bosch invented a process for synthesizing NH3 from N2

using high temperature, pressure, catalysts, and an abundant

hydrogen source. This abundant and affordable Nr source was

a major driver for increases in global food supply as a primary

constituent of fertilizer. Some fertilizer N volatilizes into the

atmosphere, leading to wet or dry deposition of reduced N to

terrestrial ecosystems, though much of it leaches to aquatic

ecosystems. Vitousek (1997) estimated that sometime in
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the past few decades, human additions to the nitrogen cycle

exceeded all natural processes combined (Figure 3). A budget

of the nitrogen cycle in 1890 (Figure 4(a)) and 1990

(Figure 4(b)) highlights the magnitude of these effects.

Nitrogen deposition is expected to continue to increase as

developing nations industrialize (Figure 5). Because most

terrestrial ecosystems developed under conditions of nitrogen

scarcity, enriching global ecosystems with Nr can have dra-

matic effects.
Biodiversity and Nitrogen Deposition

Here the authors define biodiversity or biological diversity

simply as the diversity of life within a particular system,

including genes, species, communities, and ecosystems. Most

research on nitrogen deposition has focused on the number of

species within a particular area, termed species richness. The

authors focus largely on impacts to plants, also because this is

where most research focuses, and note that impacts on other

trophic levels often stem from the impacts on the plant

community. Some impacts that occur on other trophic levels

are elaborated below.
How Nitrogen Deposition Impacts Terrestrial
Biodiversity

Nitrogen deposition, after habitat losses and climate change,

is considered the major threat to biodiversity worldwide,

with increasing stresses on some of Earth’s most diverse

areas (Figure 6, Table 1). For plants, N deposition affects

terrestrial biodiversity through four primary mechanisms: (1)

eutrophication, (2) acidification, (3) exacerbation of second-

ary stress, and (4) direct toxicity (Figure 7). These mechanisms

will not operate – or have equal importance – in all eco-

systems. The strength of each of these four mechanisms

are influenced by other modifying factors discussed in Char-

acteristics Describing Sensitivity to Nitrogen Deposition. Im-

pacts on animals are less well studied, and are presented in
the taxa-specific subsections of the Section Conditions that

Alter the Magnitude of Impacts on Biodiversity (e.g., for

soil biota, insects, mammals, etc.). Here the authors describe

these mechanisms affecting plants and their properties

generally.
Eutrophication

Eutrophication describes the process of N loading increasing

availability of N in the soil to plants, which often leads to a

cascade of effects. Because plant growth in many ecosystems is

limited by the availability of nitrogen (Elser et al., 2007), this

is a direct process where concentrations increase in the soil

and plant growth increases. Over time, a positive feedback can

emerge, where increases in plant tissue N stimulates further

increases in decomposition and liberation of more N. Overall,

this increase in N availability often stimulates the growth of

fast-growing species (termed ‘‘nitrophilous’’ species), resulting

in competitive exclusion of less responsive species. Species

that are rare, slow growing, and native are often lost more than

other species, though this is not always the case (Suding et al.,

2005). Because most species are adapted to low nutrient

availability (the prevailing condition), they are less responsive

than weedy species, and are outcompeted through com-

petition either for light aboveground and/or nutrients

belowground. Eutrophication may result in expansion of ag-

gressive species already in the plant community, or facilitate

invasion by species not originally present. Eventually, eco-

systems become saturated with N, and their productivity be-

comes limiting by other factors such as water or P. Even so,

tissue concentrations of N may further increase, leading to

potential nutrient imbalances, physiological stresses, and/or

increased losses to herbivory (Dise, 2011).
Acidification

Acidification describes the process by which addition of

N decreases soil pH, which can have a variety of direct and

indirect effects on plant growth. Generally during acidifi-

cation, changes in soil pH are mitigated by the release of

carbonates and base cations from the soil (Bowman et al.,

2008). Once these are exhausted, clay minerals in the soil can

breakdown leading to the release of toxic minerals into the

soil (especially aluminum, Al3þ ). N deposition can result

in acidification through a number of mechanisms, including

(1) stimulation of nitrification which yields protons (Hþ ), (2)

roots uptake of NH4
þ releasing Hþ as a counter ion, and (3)

binding of NO3
� with base cations and subsequent loss via

leaching (reduces soil buffering capacity) (Dise, 2011; Ulrich,

1983). Over long time periods, acidification can suppress

nitrification and plant uptake of nitrogen, leading to further

accumulation of acidifying compounds such as NH4
þ and a

buildup of undecomposed material (Roelofs et al., 1985).

Acidification generally reduces biodiversity because there

are fewer plant species adapted to more acidic soils, through

suppression of germination, and through changes in the

concentrations of either toxic minerals (e.g., Al3þ ) or nutri-

ents (e.g., N, P, base cations) in the soil (Horswill et al., 2008;

Stevens et al., 2010a).
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Secondary Abiotic and Biotic Stressors

Secondary stresses may also be exacerbated by N deposition.

For instance, increased winter injury and summer drought

damage has been observed on Calluna vulgaris in heathland and

bog ecosystems (Britton and Fisher, 2007; Sheppard et al.,

2008). The same species has shown increase infection

from Botrytis and Phytophthora pathogens under enhanced N

deposition (Sheppard et al., 2008). The mechanisms causing

winter, drought, and pathogen damage remain unclear, though

greater stress sensitivity of more luxuriant growth, reduced

biomass allocation to roots, lower mycorrhizal infection, shifts

toward more parasitic associations belowground, and loss of

essential nutrient ions such as Ca2þ have all been implicated

(Bobbink et al., 2010). N deposition has also been shown to

lead to greater damage from invertebrate herbivores, which

appears to be driven by greater foliar nutrient quality, reduced

secondary defense compounds, and in some cases, greater
invertebrate herbivore growth rates when feeding on nitrogen

enriched foliage (Power et al., 1998; Throop and Lerdau, 2004).
Direct Foliar Damage

Although direct foliar toxicity is not generally assumed to be a

prominent driver of biodiversity changes, impacts can occur

when atmospheric N compounds are found at high concen-

trations, usually close to emissions sources, and for especially

sensitive taxa that lack protective tissues and structures such as

moss and lichens (Bobbink et al., 2010). For higher plants,

outer tissues are relatively impervious (e.g., cuticle layers of

leaves) to Nr (e.g., NH3), with impacts occurring following

direct entry through the stomata (Krupa, 2003). Following

entry, NHy can have a variety of effects on all plant types in-

cluding inducing stomatal opening, nutrient imbalances, and

disruption of cell membrane integrity, in addition to the
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secondary stresses highlighted above following N assimilation

into plant tissue (Krupa, 2003).
Research Approaches: How Do We Know What We
Know?

Research efforts investigating ecological impacts associated

with chronically elevated N deposition began decades earlier

in Europe than in the rest of the world, in part because these

problems arose earlier and were relatively more widespread.

Most of the research on effects of excess N on terrestrial eco-

systems has focused on biogeochemical responses, with far

less research on effects on biodiversity. Studies examining

biodiversity are heavily skewed toward plants. Even so, ex-

perimental studies examining the effects of N on species di-

versity of plant communities have a long history, with the first

being the Park Grass Experiment in Rothamsted, England, es-

tablished in 1858 (Silvertown et al., 2006). More recent studies

around the world find similar results of this earlier work –

experimentally-added N profoundly alters species composition

often decreasing species diversity of plant communities. In
terms of which ecosystems and regions are studied, most re-

search has been carried out on herb-dominated communities

in temperate areas, and far fewer have been done in forested

ecosystems and in the tropics (Bobbink et al., 2010; Gilliam,

2007). These are significant discrepancies, considering that

temperate forests often occupy areas receiving high rates of

atmospheric deposition of N, and many tropical areas are ex-

pected to experience increased N deposition as development

intensifies in the coming decades (Phoenix et al., 2006).

Research approaches toward determining the response of

plant biodiversity to increasing N deposition can be divided

into three broad categories: observational studies, manipulative

studies, and modeling. Observational studies are divided into

two types, often termed ‘‘gradient’’ and ‘‘resampling’’ studies.

Gradient studies examine biodiversity patterns across N de-

position gradient(s) from areas of low to high N deposition.

Resampling studies measure biodiversity at a particular lo-

cation, comparing patterns when N deposition was low (usu-

ally in the past) with patterns when N deposition is/was high

(usually current). Manipulative, or experimental, approaches

involve controlled addition of N in various forms and amounts

to plots or watersheds (much more rare) and measuring the

MAC_ALT_TEXT Figure 6


Table 1 Percent area of hotspots exposed to N deposition in excess of a commonly cited harmful level (10 kg N ha� 1 per year, Bobbink et al.
(2010) and other hotspot properties

Mid 1990s 2050 # Endemics # Species Predominant biome receiving excess N deposition in 2050

Western Ghats and Sri Lanka (34) 66.6 100 3049 5916 Tropical and subtropical moist broadleaf forest
Indo-Burma (14) 3 34.8 97 7000 13,500 Tropical and subtropical moist broadleaf forest
Atlantic forest (1) 31.7 94.8 8000 20,000 Tropical and subtropical moist broadleaf forest
Mountains of Southwest China (23) 47.9 90.2 3500 12,000 Temperate coniferous forest
Tumbes-Choco’-Magdalena (32) – 82.7 2750 11,000 Tropical and subtropical moist broadleaf forest
Maputaland-Pondoland-Albany (19) – 78.4 1900 8100 Montane grasslands and shrublands
Irano-Anatolian (15) – 78.3 2500 6000 Temperate broadleaf and mixed forest
Madrean Pine-Oak Woodlands (18) 3.8 78.3 3975 5300 Temperate coniferous forest
Guinean forests of West Africa (11) 19.8 75.5 1800 9000 Tropical and subtropical moist broadleaf forest
Mediterranean basin (20) 12.6 68.9 11,700 22,500 Mediterranean Forests, woodlands, and scrub
Cerrado (6) 0.3 68.7 8000 20,000 T & s-t grasslands, savannas, and shrublands
Eastern Afromontane (10) – 68.1 2356 7598 Montane grasslands and shrublands
Himalaya (12) 5.9 59.4 3160 10,000 Temperate broadleaf and mixed forest
Caucasus (5) 18.9 49.7 1600 6400 Temperate broadleaf and mixed forest
Japan (16) 3.2 46.6 1950 5600 Temperate broadleaf and mixed forest
Mesoamerica (21) 1.5 46.1 2941 17,000 Tropical and subtropical dry broadleaf forest
Cape floristic region (3) – 41.7 6210 9000 Mediterranean Forests, woodlands, and scrub
Horn of Africa (13) – 37.1 2750 5000 T & s–t grasslands, savannas, and shrublands
Tropical Andes (31) 2.1 30.4 15,000 30,000 Tropical and subtropical moist broadleaf forest
Succulent Karoo (29) – 18.5 2439 6356 Deserts and xeric shrublands
Sundaland – 15.3 15,000 25,000 Tropical and subtropical moist broadleaf forest
Coastal forests of Eastern Africa (8) – 11 1750 4000 Tropical and subtropical moist broadleaf forest
Caribbean islands (4) – 1 6550 13,000 Tropical and subtropical dry broadleaf forest
Philippines (26) – 0.1 6091 9253 Tropical and subtropical moist broadleaf forest
Chilean winter rainfall-Valdivian forests (7) – o0.1 1957 3892 Temperate broadleaf and mixed forest

Numbering in parentheses refers to the map in Figure 6b and c.

Source: Modified from Table 1 from Phoenix GK, et al. (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing

N deposition impacts. Global Change Biology 12: 470–476.
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biodiversity response. Integrated soil-vegetation models show

much promise in integrating our combined understanding of

the process of N induced changes in biodiversity, though sig-

nificant challenges exist. Most modeling approaches combine

two modeling phases: (1) examination of the impacts of N

deposition on soil solution N, water, and soil pH, and (2) the

impacts of these changes on plant community structure (De

Vries et al., 2010). Models differ in many substantial ways, in-

cluding the use of statistical relationships to derive results, the

degree of resolution for ecological processes, the input par-

ameters and variables computed (De Vries et al., 2010).

Each of these approaches has strengths and weaknesses

with respect to each other, which are often exclusive (Table 2).

As reviewed by Gilliam (2006), modeling studies are much

less prevalent than empirical work, with observational studies

tending to be more common in Europe, and manipulative

studies are generally more common in North America, South

America, and Asia.
Conditions that Alter the Magnitude of Impacts on
Biodiversity

Ecosystem-specific Effects of Nitrogen Deposition on
Biodiversity

The effects of N deposition on ecosystems worldwide can

depend on a variety of abiotic and biotic factors, including

climatic factors, soil properties, preexisting nutrient limitations,
productivity, and history of N deposition (see Bobbink et al.,

2010 for a comprehensive review). In many ecosystems in-

cluding deserts, temperate grasslands, savannahs, shrublands,

and Mediterranean systems, N enrichment can lead to in-

creases in nonnative grasses, at the expense of native forb

abundance and diversity. Many times this leads to an overall

decrease in biodiversity (Bai et al., 2010; Clark and Tilman,

2008, Allen et al., 2009, Zavaleta et al., 2003). Generally

speaking, temperate ecosystems appear more sensitive to

N-induced species declines than tropical systems because the

former are more N-poor (as opposed to the more P-poor

tropics) (Matson et al., 1999). Arctic systems may be particu-

larly sensitive for similar reasons, though low deposition rates

in these areas and short growing seasons may limit responses

in these ecosystems. Reponses in montane systems such as

high alpine meadows may be similarly limited, although

orographic lifting of air masses leads to disproportionately

high levels of N deposition compared with lowlands below

(Weathers et al., 2006). The effects of N deposition on acid

soils such as those found in Europe is predominantly due

to soil acidification, whereas in well-buffered calcareous

soils the major mechanism is eutrophication. Finally, wetter

systems appear more sensitive than drier systems within

a biogeographic region because the latter are more likely to

be colimited by water and therefore less responsive to added N

(Clark et al., 2007).

These generalities above, however, belie complex responses

that can occur for any of these ecosystems and regions.
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Table 2 A survey of the major approaches to studying the impacts of nitrogen deposition on biodiversity

Type of study Brief description Strengths Weaknesses Examples (Figure 8)

Observational-
gradient

Measure biodiversity across a
transect from high to low
nitrogen deposition at one point
in time

• Realistic nitrogen
deposition profile
(amount, form,
timing, etc.)

• Large scale represents
dispersal limitations

• Other factors change along
the gradient that may explain
the biodiversity pattern (e.g.,
soil, land-use, climate, plant
community)

• More difficult to detect pattern
because of low signal to
noise ratio

Maskell et al. (2010),
Stevens et al. (2004,
2010b)

Observational-
resampling

Measure biodiversity at one
location comparing when
deposition was low (e.g., the
past) with when deposition is
high (e.g., current)

• Realistic nitrogen
deposition profile
(amount, form, timing).

• Other factors that change
through time may explain the
biodiversity pattern (e.g.,
land-use, climate)

• More difficult to detect pattern
because of low signal to
noise ratio

Bennie et al. (2006), Dupre
et al. (2010), Smart et al.
(2005)

Manipulative Add controlled amounts of N to
plots or watersheds and
measure biodiversity response

• Greater isolation of the
effect of N, fewer
confounding factors

• Replication allows for
greater statistical strength
and higher signal:noise

• If watersheds are the
experimental unit, large
scale realistically
represents deposition

• Treatments often do not
accurately represent
deposition (one time addition
of often large amounts of N in
solid granular form)

• Usually replicate plots are
small (e.g., from 10 m�
10 m to 1 m� 1 m); or, large
watersheds are unreplicated

Bowman et al. (2006), Clark
and Tilman (2008) Gilliam
(2006), Morecroft et al.
(1994), Suding et al.
(2005)

Modeling Process and/or statistical models
relating deposition to
biodiversity

• Captures the full dynamics
of how nitrogen impacts
biodiversity through
eutrophication and
acidification pathways

• Based on current, often
incomplete knowledge

• Large data input requirements
that are often lacking

• Secondary factors and direct
toxicity not currently modeled

Belyazid et al. (2011), De
Vries et al. (2010),
Sverdrup et al. (2007)

Source: Modified from Table 1 from Phoenix GK, et al. (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing

N deposition impacts. Global Change Biology 12: 470–476.
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For example, although deserts as a whole may be less re-

sponsive than nondeserts, deserts in southern California have

been invaded by fast-growing grasses are very responsive. This

leads to a strong reduction in diversity and increases risk of fire

that may additionally impact diversity (Rao et al., 2010). In

addition, some European heathlands may show little changes

in diversity initially. But, following increases in plant N over

years of N enrichment, pest outbreaks can lead to increased

light levels at the soil and rapid changes in biodiversity in-

cluding increased grass dominance (Strengbom et al., 2002;

Bobbink et al., 2010). In summary, although there is a wide

range of potential responses to N deposition, terrestrial bio-

diversity in most systems is negatively affected through one or

more mechanisms.
Taxa Specific Responses to Nitrogen Deposition

Nonvascular Plants
In general, nonvascular plants are the most sensitive to nitrogen

enrichment, followed by herbaceous plants and shrubs, with

trees being the least sensitive. The unique anatomy of non-

vascular plants (e.g., lichens, bryophytes, liverworts, and mos-

ses) makes them highly sensitive to fluctuations in atmospheric

sources of N. Nonvascular plants lack root structures to access
soil nutrient pools, and instead rely on nutrients directly ab-

sorbed from deposition, throughfall, and leachates from

overstory vegetation. Their lack of a cuticle and vascular struc-

tures allows the passive, rapid absorption of water over their

entire surface. Thus, they are particularly sensitive to deposited

N. These inherent sensitivities causes nonvascular plants

to respond to extremely low deposition levels, for instance,

o3 kg N ha�1 per year for epiphytic lichens in the Sierra

Nevada, CA (Fenn et al., 2008). Degradation of these non-

vascular species communities has far-ranging consequences

that are often overlooked because of their supposed diminutive

role in ecosystem function. For example, Sphagnum bogs are

major carbon sinks in temperate areas, reindeer lichen are

critical forage for these ungulates during the winter months,

and many lichen species are used by birds for nesting material.
Herbaceous Plants
Because herbaceous plants and shrubs have vascular systems

and protective epidermal layers, they access most of their ni-

trogen through the soil and are not as sensitive as nonvascular

species to high concentrations of nitrogenous compounds in

the air. Once deposited, however, large impacts can occur

because of their shallow root systems, short life spans, and

rapid growth rates compared with forest trees. Some plants
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respond negatively to N deposition, declining in occurrence

and/or abundance when N inputs are high, others show

positive responses benefiting from the additional N through

direct or indirect mechanisms. In many temperate grasslands,

savannahs, and shrublands, grasses become more dominant

whereas the cover and biodiversity of forbs and other species

declines. Some species are particularly sensitive, such as slow

growing long-lived species that historically dominated much

of the US great plains, and/or acid-sensitive species from

heathlands and acid grasslands of Europe. In forests, herb-

aceous species (e.g., the understory) have a disproportionate

significance to the biome compared with their abundance

(Gilliam, 2007). Indeed, although they only represent B0.2%

of aboveground biomass, herbaceous understory species make

up 90% of plant biodiversity and produce 415% of the litter

biomass. Thus, their losses may have large effects on many

species that depend on them for forage and habitat.
Trees
Trees have long life spans, deep roots, and lower growth rates,

characteristics that make them less susceptible to rapid chan-

ges in composition from N deposition. Nonetheless, shifts in

relative growth rates among species within the community

(stemming from rapid changes in N availability with N de-

position) may portend to large biodiversity effects in the fu-

ture (Bobbink et al., 2010; Pardo et al., in press; Thomas et al.,

2010). A seminal study by Thomas (2010) documented

changes in forest tree growth rates with N deposition over

much of the northeastern US, reporting that growth of many

coniferous species declined whereas growth of tree species

with arbuscular mycorrhizae increased, suggesting a strong

potential for large-scale changes in forest composition. These

patterns likely occurred because coniferous species are gener-

ally slower growing than broadleaf or deciduous species, and

because trees with arbuscular mycorrhizae are better able to

capitalize on deposited N (because these fungi can produce

enzymes to break down N sources), whereas trees with other

fungal associations such as ectomycorrhizal fungi cannot.

Negative impacts from N enrichment in a tropical forest were

found on a nutrient-poor acidic soil that was dominated by

fast-growing pioneer species, all conditions leading to higher

sensitivity (Siddique et al., 2010).
Soil Microbes
Soil biota are capable of rapid changes in growth due to their

small sizes and intimate association with soil particles and

plant roots. They perform or aid in many critical ecosystem

functions such as decomposition and nutrient uptake of N

and P. Across various ecosystems, research has shown mixed

effects on soil biotic communities, with some taxa increasing

in abundance and diversity and others decreasing with N en-

richment. However, for mycorrhizal fungi, many studies

demonstrate a decline in reproductive output of species

adapted to N-poor environments and their subsequent loss

(Pardo et al., in press). This is often associated with an increase

in parasitic fungal species, declines in microbial diversity, and/

or shifts in the soil community toward more bacterial dom-

inance (Pardo et al., in press). These patterns may be especially

prevalent in systems with P-rich soils (Johnson et al., 2003).
Unfortunately, given the need for additional study, few gen-

eralizations can be made about the response of soil biota.
Other Organisms
Higher trophic levels (hereafter consumers, including herbi-

vores, carnivores, pests, etc.) are primarily affected indirectly

by nitrogen deposition via nitrogen-induced changes in

food quality or quantity (Throop and Lerdau, 2004). N con-

centration of plant tissue often increases with nitrogen en-

richment, which can strongly, and typically positively,

influence the individual performance, feeding behavior, and

population dynamics of herbivores. Individual-level responses

of insect herbivores can drive population-level increases and

increased herbivory may in turn suppress positive impacts

of N on plant biomass (Bertness et al., 2008). These changes

can subsequently alter ecosystem-level patterns of carbon and

nitrogen cycling (Throop et al., 2004). However, reductions in

plant diversity and habitat homogenization has been found to

reduce diversity of insects (Haddad et al., 2000), which may

extend to other trophic levels. Many responses of insect

herbivores to N deposition are species-specific, and differential

responses to N deposition can affect community composition

of herbivorous insects. Considerably, less is known about the

responses to N deposition on noninsect consumers. However,

as highlighted in the European heathlands, elevated N has

been associated with increased fungal pests (Nordin et al.,

2005; Pardo et al., in press). Little work to date has docu-

mented whether N deposition effects on insect herbivores

extend to higher-level consumers in field situations, although

changes in prey quality from N additions may affect predator

feeding behavior (Throop and Lerdau, 2004).
Overview on Vulnerability

The vulnerability of biodiversity to nitrogen deposition has

two components: exposure and sensitivity. Exposure describes

the amount, duration, form, and mechanism of nitrogen de-

position. The sensitivity of the system describes the intrinsic

properties of the ecosystem that may preclude a larger or

smaller impact for a given amount of the stressor. Generally,

this is described by properties related to abiotic and biotic

characteristics of the community.
Characteristics Describing Exposure to Nitrogen Deposition

The exposure characteristics of nitrogen deposition can gen-

erally be described by the amount (rate), duration, timing,

chemical form, and mechanism of deposition. These charac-

teristics, in turn, are affected by regional land use practices

(e.g., agricultural vs urban), industrial activities, climate,

and orographic effects among others. A large number of

experimental N additions and surveys have found a ‘‘dose-

dependent’’ response to N deposition (e.g., Stevens et al.

2004), with larger effects at higher rates of nitrogen addition.

The more nitrogen is added, the greater the total effect. Timing

of inputs also matters, where a greater effect might be expected

if nitrogen is deposited during periods of active plant growth

such as the spring and summer.
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The chemical form of N deposition can also be an im-

portant determinant of impact. Differences have been ob-

served in the impact of reduced and oxidized deposition (NHx

and NOy) (summarized in Stevens et al. (2011)). Some plants

have clear preferences for different N forms, and the form of N

taken up by a plant may affect its health and performance.

Also, the mechanism of deposition, whether deposited as wet

deposition in rain, snow, or fog, on the leaf or soil surface, or

as dry deposition onto leaf surfaces or the soil, may influence

the impact of nitrogen deposition (Dise, 2011).
Characteristics Describing Sensitivity to Nitrogen Deposition

Abiotic Factors Affecting Sensitivity
Many abiotic factors influence the effect of a given amount

of N on terrestrial biodiversity. The relative importance of

each of these factors depends on which of the four dominant

mechanisms (Figure 7) is driving changes in biodiversity.

For systems in which eutrophication and competitive ex-

clusion is the dominant mechanism, abiotic factors include

the presence and strength of nitrogen limitation, the avail-

ability of open spaces for invasion by new species or expan-

sion by existing species, and the availability and timing of

other potentially limiting resources. For example, drier systems

in the western US prairie tend to respond more weakly than

wetter systems in the eastern plains (Clark et al., 2007). Pre-

sumably, this occurs because the western plains are strongly

colimited by nitrogen and water, whereas the eastern plains

are primarily limited by nitrogen and therefore are better able

to respond after N increases. Deserts have also been found to

be less sensitive to N induced species declines in some but not

all cases.

For systems in which acidification dominates, abiotic fac-

tors include soil pH, soil buffering capacity, weathering rates,

as well as the availability and mobility of nutrient cations and

toxic minerals in the soil. For example, systems with an al-

ready low pH and a low soil buffering capacity, might be more

vulnerable to a given amount of nitrogen deposition than a

more buffered soil all else being equal. This has been observed

in grassland studies in Europe, where grasslands on poorly

buffered acidic soils are more sensitive than grasslands on

well-buffered calcareous soils (Maskell et al., 2010). Abiotic

factors may also affect the impact of direct toxicity, such as

climate and base cation availability.

In systems where secondary stress dominates the ecosystem

response to nitrogen deposition (e.g., through drought, frost,

pathogens, herbivores, etc.), many of the same abiotic factors

already mentioned above (e.g., climate and soil influencing the

degree of N limitation affecting leaf palatability to herbivores

and pathogens) operate to influence ecosystem sensitivity.
Biotic Factors Affecting Sensitivity
In addition to abiotic factors described above, several biotic

factors affect sensitivity to N deposition (Dise, 2011; Gilliam,

2006). These biotic controls over the diversity response to N

are in turn associated with the underlying mechanisms that

alter changes in diversity.

Because growth and reproductive rates are linked with

competitive ability, and not identical among competing
species, the differential ability to increase growth with N

deposition affects local extinctions from competitive exclusion

(Suding et al., 2005). This variation in responsiveness to N

is associated with adaptation to soil nutrient conditions

(Aerts and Chapin, 2000). Species characteristic of infertile

soils generally have low growth rates and low tissue nutrient

concentrations, which lowers their demand for nutrients,

and lowers the rate of supply during decomposition of sen-

esced material, thereby promoting their own persistence.

Species characteristic of fertile soils follow opposite patterns,

with high growth rates and nutrient tissue creating conditions

favorable for their persistence. Patterns of biomass allocation

and the ability to form new meristems in response to variation

in N supply is another important determinant of a species

growth response (Bowman and Bilbrough, 2001). Woody

species and forbs generally have a lower capacity to form new

meristems relative to grasses.

These physiological patterns are likely responsible for

reported shifts among functional response types and traits

under N enrichment. For instance, N enrichment tends to

favor grasses, especially annual and tall or shade-tolerant

grasses, nonlegumes (legumes fix atmospheric N), sedges , and

broad-leaved trees (Fynn and O’Connor, 2005; Xia and

Wan, 2008). Conversely, forbs, legumes, and perennials

may be competitively suppressed by N enrichment (Xia and

Wan, 2008). Thus, a first order approximation of the potential

losses of biodiversity is whether there are few or many

sensitive species present. However, a species’ risk of loss is

not solely determined by its individual traits, but also on

how those traits compare with the species around it. For ex-

ample, annuals are expected generally to respond strongly to

nitrogen deposition. However, in communities dominated by

many annual species (e.g., California Mediterranean grass-

land) there is a relatively weak response because species are

generally similar to one another. Contrast this to the strong

response in the perennial-dominated (Leymus chinensis) ma-

ture steppe of China, which experienced a strong increase of

previously rare annual species and reductions in diversity (Bai

et al., 2010).

The type of microbial association also appears to influence

a species’ growth response. Trees in the eastern US with

arbuscular mycorrhizal interactions have a greater capacity

to increase growth in response to N deposition than ecto-

mycorrhizal species (Thomas et al., 2010). Although N en-

richment often suppresses arbuscular mycorrhizae more

strongly than ectomycorrhizae because of reduced C from

plant hosts (Treseder, 2004), this may not have been the case

in Thomas et al. (2010) possibly because of low soil P. The

growth of species with symbiotic N-fixing bacteria are usually

limited by P or micronutrients such as molybdenum, and are

generally more likely to experience local extinction with in-

creases in N availability than species that are N limited

(Suding et al., 2005).

Species also vary in the degree to which N deposition af-

fects their susceptibility to environmental stress and soil

acidification. Generally evergreen species exhibit greater de-

position-induced susceptibility to stress than deciduous spe-

cies (Evans et al., 2001; Sheppard et al., 2008). Species buffer

the soils in the vicinity of their roots through ion exchange,

and regulate tissue nutrient balances through similar ion
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exchanges, each of which may differ among species (Stevens

et al., 2011).

Although globally herbaceous species show a greater bio-

mass response to N enrichment than woody species (Xia

and Wan, 2008), within an ecosystem N enrichment may shift

dominance among plant life forms in the opposite direction.

For instance, in some Arctic tundra communities enhanced

coverage of woody species occurs in response to greater

N availability, leading to declines in herbaceous species

(Bret-Harte et al., 2008). In tropical secondary forest, combined

enrichment with nitrogen and phosphorus (NþP) neutralized

the negative effects of N-only enrichment, associated with dra-

matic grass biomass responses to NþP (Siddique et al., 2010).

Thus, although there are some patterns that appear regularly in

the literature, site-specific responses are dependent on many

interacting processes that can yield a variety of patterns.

Finally, N deposition may influence diversity through

interactions between plants and consumers (Throop and

Lerdau, 2004). Increases in deposition have the potential to

mitigate losses associated with insect herbivory through in-

creased plant production (Throop, 2005), but may also

amplify losses through increased feeding rates and pest

populations associated with increased amount and nutrient

content of foliage (Throop and Lerdau, 2004; Xia and Wan,

2008). Differential responses in phenology may amplify

competitive interactions in some systems. In a Mediterranean

California grassland, N addition delayed the early activity and

flowering of grasses and brought on earlier flowering for forbs

(Cleland et al., 2006), enhancing competition for these two

functional groups. Thus, there can be a greater potential for

interaction through pests, pollinators, and herbivores, as well

as for soil nutrients.
Interactions with Other Factors

Site History
Disturbance and management history may modify a site’s sus-

ceptibility to N deposition by shifting relative resource limi-

tation in relation to N supply or demand, or changing soil pH

(Bobbink et al., 2010; Dise, 2011). Management factors altering

the potential impact of N deposition include the history of N

fertilization, burning, grazing, mowing, and modification of

vegetation and soil properties. In systems that are strictly N

limited, practices that further reduce N availability (e.g., fire,

mowing), might be expected to enhance sensitivity to N de-

position, whereas practices that increase N availability (e.g.,

historical N fertilization) might be expected to reduce sensi-

tivity to additional deposition (Bobbink, 1998). However,

availability of other resources such as light and P are also af-

fected, thus responses may be far more complex. Grazing is an

especially dynamic process, and can increase N availability

(through urine and feces), as well as decrease N availability and

increase light (through biomass removal). Although the former

tends to reduce biodiversity, the latter tends to increase it

(Collins et al., 1998). Historical addition of lime (CaCO3)

would likely reduce sensitivity to acidification and subsequent

cation depletion. In total, there are numerous factors related to

site history that can modify the impact of nitrogen deposition

on the biodiversity of a particular area.
Can Systems Naturally Recover from Nitrogen-
deposition Induced Changes in Biodiversity?

The potential for terrestrial biodiversity to recover following

reductions in N deposition is an active and relatively new area

of research. As described above, few studies have examined the

impacts of added N on biodiversity at levels of N input

comparable to N deposition; and, even fewer have examined

recovery patterns. Nonetheless, a handful of studies globally

are beginning to yield critical information.

For plants, three factors may slow or prevent biodiversity

recovery (Bakker and Berendse, 1999; Clark and Tilman,

2010). First, long term N addition may increase N cycling via

increases in plant and soil N content, and changes in

plant community composition toward more N-rich species

(Figure 7). Thus, merely stopping N deposition may not ef-

fectively reduce N cycling. Second, the availability seeds or

propagules of the original species may be limiting, slowing

their reestablishment. Third, acidification, toxic mineral

buildup, and depletion of base cations could make a region

unsuitable to the original species. In grasslands, accumulated

litter can also inhibit germination through reducing light

levels at the soil surface (Facelli and Pickett, 1991).

A large scale experiment in a Dutch pine forest that reduced

N deposition via shelters found after 6 years that nitrogen

leaching losses decreased, fungal populations increased, and

pine growth and cation balance increased (Boxman et al.,

1998). Some other studies have reported similar trends, al-

though others have not (Dise, 2011). For example, in two

Swedish forest sites, fungal populations and understory vege-

tation were still degraded even though nitrogen fertilizer treat-

ment had ceased for 9 and 47 years (Strengbom et al., 2001).

Other studies from the US and Europe have found that some

important N cycling processes remained elevated 8, 10, 14, and

25 years after treatments ceased to heathland, prairie, short-

grass steppe, and a northeastern forest (reviewed in Clark et al.,

2009). An analysis of recovery in a UK heathland found that

whereas shoot length, soil pH, and lichens had generally re-

covered, plant phenology, soil N, and soil microbial activity

had not (Power et al., 2006). Analyses of soil seed banks suggest

that seeds of many target species (e.g., perennial forbs) do not

survive more than a few years to a decade in the soil, and their

germination can be suppressed after long-term nitrogen de-

position (Thompson et al., 1998). Thus, unless there are refugia

nearby of target populations, once lost from the landscape,

species recovery may be particularly slow.

Much less is known about how species other than plants

and soil biota may or may not recover following reductions in

N deposition. For insects and other animals, it is generally

assumed that recovery of the plant community would pro-

mote recovery in the insect and animal communities. How-

ever, especially for large and/or nonflying animals, recovery

may be additionally impaired by their ability to move to the

recovered habitat. With extensive modification of the land-

scape from agriculture and urbanization, such movement may

be difficult.

It is clear that the recovery potential varies widely among

systems and for different processes within systems. Generally,

recovery strongly depends on the degree of degradation that

has occurred, and the strength of the aforementioned
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processes in maintaining the degraded community. It appears

that fast-cycling processes such as nitrate leaching and plant

nutrient concentrations may recover fairly quickly, whereas

slower cycling processes such as decomposition and plant

populations might recover much more slowly if at all. Thus,

recovery of terrestrial biodiversity over time scales of interest to

land managers (years to a few decades) may require man-

agement intervention (Dise, 2011).
Management Options to Prevent Degradation and
Restore Biodiversity

Monitoring and Modeling

Monitoring networks that measure N deposition rates have

been established within the US through the Environmental

Protection Agency’s (EPA) National Atmospheric Deposition

Program (NADP) and the Clean Air Status and Trends Net-

work (CASTNET), and in Europe through the European

Monitoring and Evaluation Program (EMEP). These networks

provide national scale data on rates of nitrogen deposition.

Similar networks are rare in the rest of the world, with only

scattered monitoring stations available in most other regions.

These networks are critical toward advancing our under-

standing of nitrogen deposition. Nonetheless, they do have

limitations, including: (1) not all nitrogenous species are

measured (e.g., NH3, organic N), (2) not all mechanisms of

deposition are accurately and regularly assessed (esp. dry and

fog deposition), (3) monitoring stations are generally lacking

in remote areas or areas with complex terrain (Pardo et al., in

press; Weathers et al., 2006). Several modeling efforts have

been developed to try and address some of these issues (esp.

the sparse coverage), including the EPA’s Community Multi-

scale Air Quality (CMAQ). These models are complex three-

dimensional atmospheric transport and chemistry models that

simulate deposition from emission sources to deposition sites.

Though these modeling efforts are major contributions, they

are also limited by our own understanding of process and by a

lack of data to calibrate modeling runs.
Critical Loads

In Europe work has been ongoing over the past few decades to

establish critical loads for atmospheric pollution under the

framework of the Convention on Long-range Transboundary

Air pollution (Dise, 2011). Critical loads are defined as ‘‘a

quantitative estimate of an exposure to one or more pollutants

below which significant harmful effects on specified sensitive

elements of the environment do not occur according to pre-

sent knowledge (Nilsson and Grennfelt, 1988). They are used

as a guide to determine when and where ecosystems are vul-

nerable to degradation. Potential end points include enhanced

leaching of soil nitrate, soil acidification, losses of biodiversity,

and changes in species composition. Generally, critical loads

for biodiversity are estimated based on empirical estimate,

using experiments and observations (Bobbink et al., 2010;

Pardo et al., in press). Models have also been employed that

include biogeochemical cycling models and/or vegetation

models (De Vries et al., 2010). Similar efforts in the US have
been much less developed until only recently (Pardo et al.,

2011, in press). A summary of these critical loads for the US

and Europe is shown in Figure 9. For many systems, the

critical loads in the US are estimated to be lower than in

Europe, perhaps because the EU has experienced high N de-

position levels for longer periods, with observed systems al-

ready impacted and changes only being detectable at higher

input rates (Dise, 2011; Pardo et al., in press). In either case,

much of Europe and the Eastern US experience N deposition

at or above suggested critical loads.

Critical loads can be an effective tool for protection of

biodiversity when are used to guide air pollution regulatory

policy. Application of critical loads in Europe has connected

science to policy by providing scientific methodologies to

define pollution limits and to assist in setting reduction targets

within a broad multination policy framework. In the US, ni-

trogen critical loads are only beginning to be developed na-

tionally, and are not currently used as a basis for regulatory

policy. Efforts are underway to set a secondary standard for

SO2 and NO2 concentrations based on ecological effects under

the National Ambient Air Quality Standards in the US.

However, terrestrial biodiversity impacts may not be included

in setting secondary standards, largely because of insufficient

data for setting N deposition thresholds for terrestrial bio-

diversity effects in the US.
Intervention and Policy

Intervention approaches generally aim to either reduce N de-

position or enhance recovery. Reducing N deposition can

occur through many policy approaches, including the estab-

lishment of the aforementioned critical loads, and through

allowing tradable permits for pollution which are slowly re-

moved from the market (thereby reducing pollution). An ex-

ample is the Clean Air Markets Division of the US EPA. In

many countries emissions and deposition of NOx (and espe-

cially SOx) have decreased in the past 20 years as a result of

regulatory policies. However, similar controls for emissions of

ammonia are less prevalent and the proportion of N de-

position occurring in reduced forms (NHx) is increasing in

many areas above levels known to have ecological effects on

sensitive taxa (Clarisse et al., 2009; Fenn et al., 2010). This

highlights that special consideration as to which receptor to

use is required prior to implementing critical loads. Plant and

lichen biodiversity are impacted at lower air pollution levels

than for human health impacts, and nonvascular biodiversity

impacts are generally lower than vascular biodiversity impacts.

Thus, when air pollution standards are determined primarily

or solely by human health impacts, in many cases sensitive

ecosystems and biodiversity will not be effectively protected.

Reduction of N deposition, however, may not be sufficient

after decades of exposure rendering management efforts as

necessary to promote recovery. Recovery can be promoted

generally through two processes: (1) restoring the nitrogen

cycle and other resource conditions to their predeposition

state, and (2) enhancing the growth and productivity of target

species of value. Restoring the nitrogen cycle can be fairly

difficult, because many ecosystems are very efficient at re-

taining this critical nutrient (Chapin et al., 2002; Vitousek
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et al., 2002). However, several approaches have been explored

to decrease nitrogen availability and restore predeposition

conditions including increasing N export through harvesting or

fire, increasing N leaching to the groundwater through flushing

with aqueous solutions, and decreasing N availability through

the addition of carbon (Bakker and Berendse, 1999; Blu-

menthal et al., 2003). The addition of a carbon source to the

soil often triggers soil microbes to take up soil N, thereby de-

creasing N availability to plants. Other soil and ecological

conditions may have to be restored to promote recovery, in-

cluding increasing pH through the addition of lime, or de-

creasing pest pressures through application of pesticides.

However, restoration of nitrogen, soil, and other ecological

conditions has no guarantee that the original species will re-

turn. This is more of a concern for grasslands than for forests,

because forests respond much more slowly and have not

generally experienced large changes in composition (Pardo

et al., in press). Because adults of grassland species may no

longer be present in the regional landscape, and seeds in the

seedbank may no longer be viable, seed addition may be re-

quired. For example, in experimental plots in Minnesota and in

Kansas, seed addition was required to increase the biodiversity

of target species even though individuals in undisturbed areas

were less than a few hundred meters away (Clark and Tilman,

2010; Foster et al., 2007). An experiment in Minnesota that
isolated the effects from several aforementioned mechanisms

found that seed addition and successful germination led to the

greatest recovery of biodiversity; and, studies from Australia

and the Netherlands found that restoration of soil conditions

was not sufficient to induce community recovery.

In total, research suggests that reduction in N deposition is

a necessary, but possibly not sufficient, condition for recovery

of terrestrial biodiversity. Additional intervention to restore

soil conditions and/or plant populations may be necessary

(esp. for nontree species), depending on many plant, soil, and

ecosystem characteristics.
Conclusions and Next Steps

Nitrogen deposition, along with habitat losses and climate

change, is known to be a primary threat to terrestrial biodiversity

worldwide. Plant and animal biodiversity usually decline with

elevated N in most biomes around the world. However, there is

substantial variation in the magnitude of response from system

to system and taxa to taxa, depending on many characteristics

that influence ecosystem exposure and sensitivity to this critical

nutrient. It is unknown to what degree recovery of biodiversity is

likely if policies are put in place (or strengthened) to reduce

deposition. Greater international coordination of research efforts

MAC_ALT_TEXT Figure 9
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and policy design, especially in the area of impacts assessment

and critical loads estimation, could enhance management of the

impacts of nitrogen on terrestrial biodiversity.
Appendix

List of Courses

1. Ecology

2. Global Change Ecology

3. Atmospheric Pollution

See also: Acid and Mercury Deposition Effects on Forest and
Freshwater Aquatic Ecosystems. Air Pollution. Biogeochemical
Cycles. Eutrophication and Oligotrophication. Government Legislation
and Regulations in the United States. Human Impact on Biodiversity,
Overview. Nitrogen, Nitrogen Cycle. Terrestrial Ecosystems
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