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Introduction

The western pine beetle, Dendroctonus brevicomis LeC-

onte (Coleoptera: Curculionidae, Scolytinae), is a

major cause of ponderosa pine, Pinus ponderosa

Dougl. ex Laws., mortality in much of western North

America (Furniss and Carolin 1977). Dendroctonus

brevicomis prefers large diameter (>50 cm at 1.37 m)

trees, but under certain conditions can aggressively

attack and kill apparently healthy trees of all ages

and size classes (Miller and Keen 1960). Currently,

tactics for managing D. brevicomis infestations are
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Abstract

A blend of eight nonhost angiosperm volatiles (benzyl alcohol,

benzaldehyde, guaiacol, nonanal, salicylaldehyde, (E)-2-hexenal, (E)-2-

hexen-1-ol and (Z)-2-hexen-1-ol) without [NAV] and with [NAVV] (–)-

verbenone (4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one) were tested at

low (L), medium (M) and high (H) release rates for their ability to

reduce attraction of western pine beetle, Dendroctonus brevicomis LeConte,

to attractant-baited (exo-brevicomin [racemic, 3 mg/d], frontalin [race-

mic, 3 mg/d] and myrcene [18 mg/d]) multiple funnel traps. NAV-L

(40 mg/d) had no significant effect. Verbenone alone (50 mg/d) and

NAV-M (240 mg/d) both significantly reduced attraction, but no signifi-

cant difference was observed between the two treatment means. NAV-H

(430 mg/d) significantly reduced catches by �60% and 78% compared

to verbenone alone and the baited control, respectively. In a second

experiment, combining (–)-verbenone with NAV (NAVV) increased the

effects observed in Experiment 1. NAVV-M (240 mg/d) resulted in an

�69% and 83% reduction in trap catch compared to verbenone alone

and the baited control, respectively. Significantly fewer D. brevicomis

were captured in NAVV-H (430 mg/d) than any other treatment result-

ing in an �93% reduction in trap catch compared to the baited control.

In a third experiment, NAVV was tested at three release rates for its abil-

ity to protect individual ponderosa pines, Pinus ponderosa Dougl. ex

Laws., from attack by D. brevicomis. Cumulative release rates varied in

direct proportion to tree diameter, but represented quarter, half and full

NAVV rates. NAVV significantly reduced the density of D. brevicomis

attacks, D. brevicomis successful attacks, and levels of tree mortality on

attractant-baited trees. Only three of 15 NAVV-treated trees died from

D. brevicomis attack while �93% mortality (14/15) was observed in the

untreated, baited control. Quarter and half rates were ineffective for

reducing tree mortality.
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limited to tree removals (thinning) that reduce stand

density and presumably host susceptibility (Fettig

et al. 2007) and applications of insecticides to protect

individual trees (Fettig et al. 2006a).

Research on host selection by bark beetles has lar-

gely concentrated on behaviour during flight. Semio-

chemicals are frequently placed in attractant-baited

traps to elucidate behavioural responses for the pur-

pose of identifying and defining compounds or

groups of compounds that reduce attraction, which

therefore may be useful in preventing bark beetle

attacks on live trees. Several nonhost angiosperm

volatiles and verbenone (4,6,6-trimethylbicy-

clo[3.1.1]hept-3-en-2-one) have been the focus of

considerable study in this regard (reviewed exten-

sively by Zhang and Schlyter 2004). Verbenone was

first identified in male D. brevicomis by Renwick

(1967) and was later demonstrated to reduce attrac-

tion of tethered, flying D. brevicomis females (Hughes

and Pitman 1970). Bedard et al. (1980a) showed

that verbenone reduced the number of D. brevicomis

trapped at a baited source. Trap catches were further

reduced by higher release rates of verbenone (Be-

dard et al. 1980a,b; Tilden and Bedard 1988; Ber-

tram and Paine 1994a), and by combining

verbenone with ipsdienol (Paine and Hanlon 1991),

the later of which is produced by male D. brevicomis

(Byers 1982) among other bark beetle species. It is

assumed that verbenone reduces intraspecific com-

petition by reducing crowding of developing brood

within the host (Byers and Wood 1980; Byers et al.

1984).

Studies have shown that insects tend to focus host

searching in patches of high host concentrations

(Root 1973; Andow 1990), which increases the

probability of encounters with suitable hosts. Many

bark beetles use a combination of host kairomones

and aggregation pheromones to locate suitable hosts

(Borden 1985; Byers 1995; Zhang and Schlyter

2004). Rejection of non-hosts may occur on the

basis of absence of host cues or presence of non-host

cues such as green leaf volatiles or angiosperm bark

volatiles, collectively termed non-host angiosperm

volatiles (Borden 1997). Poland et al. (1998) were

first to examine the disruptive effect of non-host

angiosperm volatiles on D. brevicomis attraction, but

their study was limited in scope to green leaf vola-

tiles only and was conducted at the periphery of the

beetle’s native range in British Columbia, Canada

(Wood 1982). Fettig et al. (2005) examined the

effects of several nonhost blends on D. brevicomis

attraction in California, USA. Combinations of

six bark volatiles (benzyl alcohol, benzaldehyde,

(E)-conophthorin, guaiacol, nonanal and salicylalde-

hyde), three green leaf volatiles [(E)-2-hexenal, (E)-

2-hexen-1-ol, and (Z)-2-hexen-1-ol], and the nine

compounds combined did not affect the response of

D. brevicomis to traps baited with exo-brevicomin,

frontalin and myrcene. However, a significant effect

was observed when bark and green leaf volatiles

were combined with verbenone reducing trap

catches to levels significantly below that of verbe-

none alone. (E)-Conophthorin, a compound

reported to have significant behavioural activity in a

number of other bark beetles (Huber et al. 2000),

was not critical to the efficacy of the overall blend.

A revised blend [benzyl alcohol, benzaldehyde,

guaiacol, nonanal, salicylaldehyde, (E)-2-hexenal,

(E)-2-hexen-1-ol, (Z)-2-hexen-1-ol and verbenone

82%-(–); abbreviated as NAVV] was shown to

reduce trap catch by �87% compared to the attrac-

tant-baited control (Fettig et al. 2005).

Few publications are available on development of

semiochemical-based tools for protecting P. ponderosa

from D. brevicomis infestations. Bertram and Paine

(1994b) reported applications of verbenone and ips-

dienol significantly reduced both numbers of D. brev-

icomis landing on P. ponderosa and densities of

attacking beetles. In their study, paired treated and

untreated trees were baited with aggregation phero-

mones to stimulate mass attack, but tree mortality

rates were not determined. Verbenone alone appears

ineffective for individual tree (Gillette et al. 2006) or

small-scale stand protection (Fettig 2005). Shepherd

et al. (2007) speculated that in many cases synthetic

verbenone, deployed without other beetle-derived or

non-host cues that more accurately reflect the com-

plexity of the olfactory environment, may not be

effective for protecting trees from bark beetle attack.

Fettig et al. (2008) were first to demonstrate the suc-

cessful application of a semiochemical-based tech-

nique for protecting individual P. ponderosa from D.

brevicomis attack and resulting levels of D. brevicomis-

caused tree mortality. The NAVV blend significantly

reduced the density of D. brevicomis attacks and D.

brevicomis successful attacks on attractant-baited

trees. A significantly higher percentage of pitchouts

(unsuccessful D. brevicomis attacks) occurred on

NAVV-treated trees during two of three sample

dates. The application of NAVV to individual P. pon-

derosa significantly reduced tree mortality compared

to the untreated, baited control with only four of 30

NAVV-treated trees dying from bark beetle attack.

While the above results are encouraging, additional

studies are required to determine the minimum

release rate necessary to achieve adequate levels of
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efficacy; to determine the effect of D. brevicomis pop-

ulations on treatment efficacy; and to confirm effects

observed in the previous study (Fettig et al. 2008).

The objectives of the present study were to deter-

mine the effect of release rate on the response

of D. brevicomis to nonhost angiosperm volatiles and

(–)-verbenone in attractant-baited traps and to

attractant-baited P. ponderosa. The tree protection

study was conducted in an area characterized by

high D. brevicomis populations as many authors have

speculated that population density affects the effi-

cacy of semiochemical-based management tech-

niques (Progar 2003, 2005; Bentz et al. 2005).

Materials and Methods

Trapping bioassays

Two trapping bioassays were conducted at McCloud

Flats, Shasta-Trinity National Forest, Siskiyou Co.,

California, USA (41.30�N, 122.00�W; 1186 m eleva-

tion) during 12 July 2005 to 29 July 2005. The stand

was dominated by P. ponderosa (mean diameter at

1.37 m (d.b.h.) � SEM = 39.0 � 3.7 cm) growing on

soils of volcanic origin. Mean stand density was

34.8 m2 of basal area per ha of which �99% was

P. ponderosa with the remainder represented by

incense cedar, Calocedrus decurrens (Torr.) Florin.

Other tree species represented in adjacent stands

included white fir, Abies concolor (Gond. and Glend.)

Hildebr, Douglas-fir, Pseudotsuga menziesii (Mirb.)

Franco, California black oak, Quercus kelloggii Newb.,

and quaking aspen, Populus tremuloides Michx. Mean

crown cover was �40%. The topography was mainly

flat (<2% slope). Pinus ponderosa was the only host

of D. brevicomis present in these stands (Miller and

Keen 1960).

In both experiments, 30 16-unit multiple funnel

traps (Lindgren 1983) (Pherotech International Inc.,

Delta, BC, Canada) were deployed adjacent to a for-

est road. Traps were separated by >30 m to avoid

interference among adjacent treatments and each

was randomly assigned one of six treatments during

each experiment. Traps were hung on 3-m metal

poles with collection cups 80–100 cm above the

ground. A 3-cm · 3-cm time-released insecticidal

Prozap Pest Strip (2,2-dichlorovinyl dimethyl phos-

phate, Loveland Industries Inc., Greely, CO, USA)

was placed in the collection cup to kill arriving

insects and reduce damage or loss to predacious

insects. Samples were collected and each treatment

was re-randomized (5 replicates/treatment/day) daily

between 06:30 and 10:00 h to avoid disturbing traps

during periods of peak flight activity (Fettig et al.

2004a). Catches were immediately transported to

the laboratory for storage and later analysis. Speci-

mens were tallied and identified using voucher

specimens and available keys (Wood 1982). Voucher

specimens have been deposited in the USDA Forest

Service Bark Beetle and Common Associates Collec-

tion housed in Placerville, California, USA.

Test compounds were selected based on perfor-

mance in previous studies (Fettig et al. 2005, 2008)

and were found to be antennally-active and present

in nonhost trees sympatric with the distribution of

D. brevicomis in California, USA (Shepherd et al.

2007). Semiochemicals were loaded into individual

Eppendorf vials, polyvinyl chloride bubblecaps and

polyethylene bottles to achieve three release rates

(Pherotech International Inc.). Details concerning

the source, purity, and enantiomeric purity (if chi-

ral) of each semiochemical are provided in Fettig

et al. (2005, 2008). Release devices were hung in

traps in funnels seven through nine in such a man-

ner to ensure that funnels were not obstructed.

Experiment 1 was conducted to compare the effects

of (–)-verbenone to three different release rates of

the eight non-host angiosperm volatiles (NAV) on

D. brevicomis response to attractant-baited traps.

Treatments included: (1) unbaited control, (2) wes-

tern pine beetle attractant [WPB; frontalin (racemic,

3 mg/d at 24�C), exo-brevicomin (racemic, 3 mg/d at

24�C), and myrcene (18 mg/d at 24�C)], (3) verbe-

none [V; 82%-(–); 50 mg/d at 30�C] + WPB, (4)

benzyl alcohol, benzylaldehyde, guaiacol, nonanal,

salicylaldehyde, (E)-2-hexenal, (E)-2-hexen-1-ol and

(Z)-2-hexen-1-ol [NAV-L; 40 mg/d at 30�C] + WPB,

(5) NAV-M (240 mg/d at 30�C) + WPB, and (6)

NAV-H (430 mg/d at 30�C) + WPB. The experimen-

tal design was completely randomized with six treat-

ments and 40 replicates per treatment (Fettig et al.

2006b).

Experiment 2 was conducted to compare the

effects of (–)-verbenone to three different release

rates of NAV + verbenone (NAVV) on D. brevicomis

response to attractant-baited traps. Treatments

included: (1) unbaited control, (2) WPB, (3) V +

WPB, (4) NAV-L + V (NAVV-L) + WPB, (5) NAV-M +

V (NAVV-M) + WPB, and (6) NAV-H + V (NAVV-

H) + WPB. The experimental design was completely

randomized with six treatments and 40 replicates

per treatment.

Trap catches from unbaited controls were excluded

from statistical analyses because of the heteroscedas-

ticity among treatments that they caused (Reeve

and Strom 2004). For each experiment, a test of
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normality was performed and appropriate transfor-

mations were used when data deviated significantly

from a normal distribution (square root; Sokal and

Rohlf 1995). A two-way analysis of variance (treat-

ment and sex) was performed on the number of

D. brevicomis caught per trap per day using a = 0.05

(SigmaStat Version 2.0, SPSS Inc., Chicago, IL,

USA). If a significant treatment effect was detected,

the Tukey’s multiple comparison test (Tukey’s HSD)

was used for separation of treatment means. Cohen’s

d was used to calculate effect size between two

means (e.g. WPB and NAVV-H + WPB) among

results reported in similar studies examining the

effects of semiochemicals on D. brevicomis attraction

(Cohen 1988).

Individual tree protection study

This study was conducted adjacent to Hog Flat Reser-

voir, Eagle Lake Ranger District, Lassen National For-

est, Lassen Co., California, USA (40.43�N, 120.90�W;

1676 m elevation) from July 2006–July 2007. The

forest cover type was Ponderosa-Jeffrey (Yellowpine)

series (mean d.b.h. � SEM = 35.4 � 1.58 cm, all tree

species) (Smith 1994). The stand was dominated by

P. ponderosa (mean d.b.h. � SEM = 32.6 � 1.4 cm)

growing on soils of volcanic origin. Mean stand den-

sity was 32.2 m2 of basal area per ha of which �69%

was P. ponderosa, �17% A. concolor, �12% Jeffrey

pine, P. jeffreyi Grev. & Balf, and �2% lodgepole

pine, P. contorta Dougl. ex Loud. Other tree species

represented in adjacent stands included C. decurrens

and P. tremuloides. Mean crown cover was �45%.

The topography was mainly flat (<4% slope). Site

selection was based on reports that D. brevicomis was

causing substantial tree mortality in this area (USDA

Forest Service 2006) and subsequent surveys by field

crews indicating D. brevicomis was actively colonizing

trees in 2006.

NAVV components were formulated in four sepa-

rate bubblecap bands based on similarity in chemical

structure [i.e. alcohols, aldehydes, guaiacol (a phe-

nol), and (–)-verbenone (a ketone)]. The full-rate

NAVV treatment was applied at a rate of one bubble-

cap per 10 cm circumference around the bole of

each tree beginning at 3 m in height with verbenone

and followed by aldehydes, guaiacol and alcohols

bands each of which was separated by �20 cm (Fet-

tig et al. 2008). The quarter and half rates [NAVV(1/

4), NAVV(1/2)] were applied at one unit per 40 or

20 cm of circumference, respectively. Cumulative

release rates for NAVV components therefore varied

in proportion to tree diameter. For example, a

38.2 cm diameter (measured at �3 m in height) full

rate NAVV-treated tree received 12 bubblecap units

per tree (22.8, 97.2, 61.2, 39.6 mg/d cumulative

release rate for alcohol, aldehyde, guaiacol and ver-

benone bands, respectively).

The experimental design was completely random-

ized with four treatments and 15 replicates (trees)

per treatment. Treatments included: (1) untreated

P. ponderosa (mean d.b.h. � SEM = 39.8 � 0.6 cm),

(2) 1/4 rate NAVV-treated P. ponderosa (mean

d.b.h. � SEM = 39.9 � 0.5 cm), (3) 1/2 rate NAVV-

treated P. ponderosa (mean d.b.h. � SEM = 39.1 �
0.5 cm), and (4) full rate NAVV-treated P. ponderosa

(mean d.b.h. � SEM = 39.1 � 0.9 cm). There were

no significant differences in tree d.b.h. among treat-

ments (F3, 56 = 0.8; P = 0.53), which is thought

to influence the susceptibility of P. ponderosa to

D. brevicomis attack (Person 1928).

To rigorously test the efficacy of these treatments,

the spacing between adjacent experimental trees was

>100 m to increase the likelihood that sufficient

numbers of D. brevicomis would be in the vicinity of

each tree. All trees were baited with one D. brevicomis

tree bait (Pherotech International Inc.) at �3.5 m in

height on the northern aspect between second (alde-

hydes) and third (guaiacol) bubblecap bands, and

were checked biweekly for evidence of D. brevicomis

attack. Baits were removed from all trees after

28 days when significant numbers of attacks

(>100 m2) were recorded on untreated control

trees, and when natural pheromone production

was likely occurring on trees under mass attack

(Bedard et al. 1969; Kinzer et al. 1969; Wood et al.

1976).

For each tree (n = 60), we nondestructively sam-

pled, using head lamps and hand lenses, the number

of D. brevicomis successful attacks (i.e., oxidized

phloem material present in pitch tubes or points of

attack containing phloem boring dust and/or dry

frass) and unsuccessful attacks (i.e. pitch tubes with-

out oxidized phloem material) in 625 cm2

(25 cm · 25 cm) sample windows at �1.5 and 4 m in

height at northern and southern aspects. These loca-

tions corresponded to bole regions directly above and

below NAVV bands. Removal of bark to determine the

success of egg laying and brood production was not

possible without compromising the experiment.

Therefore, we define ‘successful attacks’ as those

indicative of the phloem being reached by colonizing

D. brevicomis, which is where egg laying and early

instar larval feeding occur (Miller and Keen 1960).

Bark beetle colonization in the case of living hosts

requires overcoming tree defences that consist of
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anatomical and chemical components that are both

constitutive and inducible (Franceschi et al. 2005).

This can only be accomplished by recruitment of a

critical minimum number of beetles, which varies

with changes in host vigour (Fettig et al. 2007). A sig-

nificant proportion of beetles that initiate host selec-

tion are ‘pitched-out’ by drowning or immobilization

in resin prior to reaching or feeding on the phloem

(Vité and Wood 1961). Such attacks were classified as

‘unsuccessful attacks’. In addition, the total number

of red turpentine beetle, D. valens LeConte, attacks

that occurred below 1.5 m in height was recorded for

each tree. Data were collected at 14 (1 August 2006),

28 (15 August 2006), and 42 days (29 August 2006)

after baits were applied. A test of normality was per-

formed and appropriate transformations were used

when data deviated significantly from a normal distri-

bution (square root [attacks] and arcsine square root

[% pitchouts]; Sokal and Rohlf 1995). A one-way

analysis of variance (treatment) was performed on the

number of D. brevicomis attacks, number of D. brevic-

omis successful attacks, percentage of pitchouts and

number of D. valens attacks using a = 0.05 for each

sample period (SigmaStat Version 2.0, SPSS Inc.).

Final assessments of tree mortality were conducted

18–19 July 2007. This period of time (>11 months)

was sufficient for crowns to ‘fade’, an irreversible

symptom of tree mortality. Data on proportions of

experimental trees that died from D. brevicomis attack

were analysed by chi-square tests for comparisons

between multiple proportions (Jones 1984; Huber

and Borden 2001).

Results

Trapping bioassays

A total of 16 906 D. brevicomis were captured in

multiple funnel traps during Experiment 1. Overall,

the ratio of males to females was 0.55. Significantly

more female than male D. brevicomis were collected

(paired T-test, P < 0.001). There was no significant

treatment · sex interaction (F4, 390 = 0.71;

P = 0.59), and therefore results pertain equally to

both male and female responses. A significant treat-

ment effect was observed (F4,195 = 17.42;

P < 0.0001). NAV-L did not affect the response of

D. brevicomis to attractant-baited traps (fig. 1). V sig-

nificantly reduced D. brevicomis attraction by �44%

compared to WPB, but no significant difference was

observed between V + WPB and NAV-L + WPB

(fig. 1). NAV-M + WPB caught significantly fewer

D. brevicomis than WPB and NAV-L + WPB, but was

not significantly different from V + WPB (fig. 1).

Fig. 1 Disruption of western pine beetle, Dendroctonus brevicomis LeConte, attraction to baited multiple funnel traps by the addition of nonhost

angiosperm volatiles at three release rates and verbenone, Shasta-Trinity National Forest, California, USA (41.30�N, 122.00�W; 1186 m elevation)

12–29 July 2005. A total of 16 906 beetles were collected. WPB = attractant [exo-brevicomin (racemic, 3 mg/d), frontalin (racemic, 3 mg/d), and

myrcene (18 mg/d)]; NAV-L = benzyl alcohol, benzaldehyde, guaiacol, nonanal, salicylaldehyde, (E)-2-hexenal, (E)-2-hexen-1-ol and (Z)-2-hexen-1-ol

(40 mg/d); NAV-M = same (240 mg/d); NAV-H = same (430 mg/d); and V = verbenone 82%-(–) (50 mg/d). Bars followed by the same letter are not

significantly different (n = 40; Tukey’s HSD; P > 0.05).
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NAV-H + WPB significantly reduced trap catches by

�60% and 78% compared to V + WPB and WPB,

respectively (fig. 1). Few beetles (5) were collected

in unbaited traps.

A total of 11 710 D. brevicomis were captured in

multiple funnel traps during Experiment 2. Overall,

the ratio of males to females was 0.56. Significantly

more female than male D. brevicomis were collected

(paired T-test, P < 0.001). There was no significant

treatment X sex interaction (F4, 390 = 0.80; P = 0.52),

and therefore results pertain equally to both male

and female responses. A significant treatment effect

was observed (F4,195 = 56.91; P < 0.0001). V

significantly reduced D. brevicomis attraction to

attractant-baited traps by �44%, but no significant

difference was observed between V + WPB and

NAVV-L + WPB (fig. 2). NAVV-M + WPB resulted in

an �69% reduction in trap catch compared to

V + WPB, and an �83% reduction compared to

WPB (fig. 2). Significantly fewer D. brevicomis were

captured in NAVV-H + WPB than any other

treatment. NAVV-H + WPB resulted in an �58%

reduction in trap catch compared to NAVV-

M + WPB, and an �93% reduction compared to

WPB (fig. 2). Few beetles (8) were collected in un-

baited traps.

Individual tree protection study

Dendroctonus brevicomis attacks were initially concen-

trated in close proximity to the tree bait and then

progressed up and down the tree bole during the

second and third sample periods. All experimental

trees, except one NAVV-treated, were attacked by

D. brevicomis. Attack densities, based on individual

sample windows, ranged from 0 to 416 attacks/m2.

The density of D. brevicomis attacks was significantly

lower for NAVV at 14 days (F3,56 = 3.91; P = 0.013),

28 days (F3,56 = 3.45; P = 0.023) and 42 days

(F3,56 = 3.87; P = 0.015) than the untreated, baited

control. No other significant differences were

observed among treatment means for this variable

(fig. 3a). The density of successful attacks was also

significantly lower for NAVV at 14 days

(F3,56 = 4.21; P = 0.009), 28 days (F3,56 = 3.82;

P = 0.015) and 42 days (F3,56 = 4.30; P = 0.008)

than the untreated, baited control. No other signifi-

cant differences were observed among treatment

means for this variable at 14 days and 28 days

(fig. 3b), however at 42 days significantly higher

densities of successful attacks was observed for

NAVV(¼) than NAVV (fig. 3b). At 42 days, the

application of NAVV resulted in an �51% reduction

Fig. 2 Disruption of western pine beetle, Dendroctonus brevicomis LeConte, attraction to baited multiple funnel traps by the addition of nonhost

angiosperm volatiles at three release rates with verbenone and verbenone alone, Shasta-Trinity National Forest, California, USA (41.30�N,

122.00�W; 1186 m elevation) 12–29 July 2005. A total of 11 710 beetles were collected. WPB = attractant [exo-brevicomin (racemic, 3 mg/d), front-

alin (racemic, 3 mg/d), and myrcene (18 mg/d)]; NAVV-L = benzyl alcohol, benzaldehyde, guaiacol, nonanal, salicylaldehyde, (E)-2-hexenal, (E)-2-hex-

en-1-ol, and (Z)-2-hexen-1-ol (40 mg/d) and verbenone; NAVV-M = same (240 mg/d); NAVV-H = same (430 mg/d); and V = verbenone 82%-(–)

(50 mg/d). Bars followed by the same letter are not significantly different (n = 40; Tukey’s HSD; P > 0.05).
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in the density of successful attacks compared to the

untreated, baited control. The percentage of pitch-

outs (unsuccessful D. brevicomis attacks) was signifi-

cantly greater for NAVV at 42 days compared to the

untreated, baited control (F3,55 = 2.8; P = 0.048). No

other significant differences were observed among

treatment means on this date (fig. 3c). No significant

treatment effects were observed at 14 days

(F3,55 = 2.4; P = 0.075) or 28 days (F3,55 = 1.4;

P = 0.258) for this variable (fig. 3c). Fewer D. valens

attacks were observed on NAVV-treated trees than

untreated, baited controls at 14 days (F3,56 = 3.6;

P = 0.019; mean number of attacks per

tree � SEM = 2.5 � 0.6 and 0.5 � 0.03, respec-

tively). No other significant differences were

observed among treatment means on this date. No

significant treatment effect was observed at 28 days

(F3,56 = 1.4; P = 0.251) or 42 days (F3,56 = 1.9;

P = 0.143) for this variable.

The application of NAVV to individual P. ponderosa

significantly increased tree survival (P < 0.01; fig. 4).

Only three of 15 NAVV-treated trees died from

D. brevicomis attack while �93% mortality (14/15)

was observed in the untreated, baited control.

NAVV(¼) and NAVV(½) were ineffective in reducing

tree mortality as their means were not significantly

different from the untreated, baited control (fig. 4).

Discussion

Generally, nonhost angiosperm volatiles have been

most effective for reducing bark beetle attraction

when presented in combinations of two or more

compounds (Zhang and Schlyter 2004). Fettig et al.
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(2005) reported blends of several bark volatiles (ben-

zyl alcohol, benzaldehyde, (E)-conophthorin, guaia-

col, nonanal and salicylaldehyde), green leaf volatiles

[(E)-2-hexenal, (E)-2-hexen-1-ol and (Z)-2-hexen-1-

ol] and the nine nonhost angiosperm volatiles com-

bined were ineffective for reducing D. brevicomis

attraction in the absence of verbenone. Poland et al.

(1998) reported the green leaf aldehyde, (E)-2-hexe-

nal, and two green leaf alcohols, (E)-2-hexen-1-ol

and (Z)-2-hexen-1-ol, significantly reduced numbers

of male D. brevicomis caught in attractant-baited traps.

(Z)-2-Hexen-1-ol also reduced numbers of females

captured (Poland et al. 1998). The greatest effect

observed in their study was an �47% reduction in

trap catch compared to the attractant-baited control

(Cohen’s effect size, d = 0.8), which was greater than

reported by Fettig et al. (2005) for their nonhost

blends (d = 0.5). While it is possible that differences

in D. brevicomis behavioral responses occur due to

population level differences, the (E)-2-hexenal tested

by Poland et al. (1998) was released at an �3.7 ·
higher rate than by Fettig et al. (2005), and thus

release rate is a likely cause of this particular differ-

ence. Generally, the response of bark beetles to

inhibitory semiochemicals in the presence of aggrega-

tion pheromones and host kairomones depends on

the ratio of inhibitory semiochemicals to attractants

(Raffa and Berryman 1983; Byers et al. 1984; Tilden

and Bedard 1988; Miller et al. 1995; Pureswaran

et al. 2000). We therefore hypothesized that our

NAV blend could be enhanced if release rates were

increased. To that end, we observed a significant

reduction in trap catch for NAV-M + WPB compared

to WPB (fig. 1). When the release rate of NAV was

further increased �1.7 · (NAV-H), the efficacy of

the blend was significantly increased compared to

verbenone alone (fig. 1). These data demonstrate that

our NAV blend has the ability to disrupt D. brevicomis

attraction in the absence of verbenone, but that

higher release rates are required than previously con-

sidered (Fettig et al. 2005). Both male and female

portions of the population are equally responsive to

nonhost angiosperm volatiles (Fettig et al. 2005),

which is of practical importance as females initiate

host colonization (Miller and Keen 1960).

The diverse mixture of trees encountered by most

bark beetles during foraging, combined with the

high costs associated with landing on nonhosts

(Atkins 1966), implies that bark beetles should be

able to detect and respond to olfactory cues from

potential hosts and nonhosts in order to successfully

and efficiently locate new hosts. Shepherd et al.

(2007) identified 64 compounds present in P. ponder-

osa and nine nonhost trees sympatric with the distri-

bution of D. brevicomis, 42 of which elicited antennal

responses in D. brevicomis generally in both sexes.

Only one compound (geraniol) was unique to its

host. The number of nonhost volatile chemicals that

D. brevicomis encounters and is capable of detecting,

and the diversity of sources from which they ema-

nate, highlight the complexity of the olfactory envi-

ronment in which D. brevicomis forages. Since the

mortality of D. brevicomis is generally great during

dispersal flight, due primarily to increased predation

and unfavorable abiotic conditions (Miller and Keen

1960), there are clear advantages for D. brevicomis to

discriminate between hosts and nonhosts from a dis-

tance.

In Experiment 2, combining (–)-verbenone with

NAV (NAVV) increased the effects observed in

Experiment 1. To that end, an �83% and a 93%

reduction in trap catch was observed for NAVV-M

and NAVV-H, respectively, compared to the

untreated control. In an analogous manner to that

seen in D. brevicomis, others have demonstrated that

green leaf volatiles and verbenone significantly

reduced spruce bark beetle, Ips typographus (L.),

attraction beyond that of either compound alone

(Zhang 2003; Zhang and Schlyter 2003). A diverse

array of chemical cues and signals may disrupt bark

beetle searching more than high doses of a single

semiochemical (e.g. verbenone) or even mixtures of

semiochemicals intended to mimic one type of sig-

nal (e.g. antiaggregation pheromones) because they

represent heterogeneous stand conditions to forag-

ing insects (Borden 1997; Zhang and Schlyter 2004;

Shepherd et al. 2007). Because the odds of success

for a searching beetle in a diverse stand are lower

than in a more homogeneous stand of similar over-

all density (Jactel et al. 2002), a foraging beetle

encountering a variety of inhibitory semiochemicals

may be induced to leave the area instead of landing

on and testing candidate trees by taste or close

range olfaction. Jactel and Brockerhoff (2007) con-

ducted a meta-analysis of data from 119 compara-

tive studies of 47 different insect-tree interactions to

compare herbivory between single-species and

mixed-species forests. A significant reduction in her-

bivory occurred in more diverse forests, and diver-

sity effects were greater when mixed forests

comprised taxonomically distant tree species (e.g.

angiosperms and gymnosperms). For species like

D. brevicomis that feed on relatively few hosts there

was a larger effect size. Interestingly, nonhost vola-

tiles have also recently been shown to have strong

antifeedant effects on I. typographus in laboratory
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assays (Faccoli et al. 2005; Faccoli and Schlyter

2007).

In this study, NAVV-H reduced mean trap catches

compared to attractant-baited traps by levels higher

(d = 2.6) than previously reported in most trapping

bioassays (e.g. Bedard et al. 1980a; b; Paine and

Hanlon 1991; Bertram and Paine 1994a; Fettig et al.

2005; Erbilgen et al. 2007). For example, Fettig et al.

(2005) reported that verbenone (4 mg/d) signifi-

cantly reduced D. brevicomis attraction by �47%

(d = 0.7). In a second experiment, trap catches were

reduced by �36% (d = 0.7) and �48% (d = 1.0) by

4 and 50 mg/d of verbenone, respectively. In

another recent study, verbenone (�4.9 mg/d)

reduced trap catch by <50% (d = 0.7; Erbilgen et al.

2007). Acetophenone, recently shown to reduce

attraction in southern pine beetle, D. frontalis Zim-

mermann (Sullivan 2005), significantly reduced

D. brevicomis trap catch by �60% (d = 0.9; Erbilgen

et al. 2007). Combining verbenone with other

semiochemicals, such as ipsdienol (Paine and Hanlon

1991; Bertram and Paine 1994a; Strom et al. 2001)

or nonhost volatiles (Fettig et al. 2005), generally

results in higher reductions in trap catch, but typi-

cally by <90%. One exception is a study by Tilden

and Bedard (1988) in which very high release rates

of verbenone (�614 mg/d) resulted in a reduction in

median trap catch of 99% compared to attractant-

baited traps. It must be acknowledged that such

comparisons are somewhat confounded by differ-

ences in the strength of the attractant used in bark

beetle trapping bioassays (e.g. Hayes and Strom 1994

for D. brevicomis).

Some authors have reported that the effectiveness

of verbenone for tree protection varies with

changes in the population density of bark beetles.

For example, Progar (2003, 2005) examined the

ability of verbenone to deter mass attack of moun-

tain pine beetle, D. ponderosae Hopkins, on P. con-

torta. Initially, verbenone was very effective in

reducing attacks, but efficacy declined in later eval-

uations. The author hypothesized that the reduction

in response to verbenone over time was at least

partially related to increasing D. ponderosae popula-

tions. In our study, the density of D. brevicomis

attacks and D. brevicomis successful attacks on

untreated, baited controls were higher during each

sample period than reported by Fettig et al. (2008)

(fig. 3). For example, at 14 days the density of total

attacks and successful attacks were �1.3 · and

3.1 · higher, respectively. Similarly, levels of pitch-

outs (i.e. a measure of the interaction between host

tree vigour and attack density) were lower during

each sample period in the current study than previ-

ously reported by Fettig et al. (2008). Despite this,

the application of NAVV significantly reduced levels

of tree mortality compared to the other treatments.

It is plausible that NAVV(¼) or NAVV(½) could

provide adequate levels of tree protection if D. brev-

icomis populations were lower.

The effects on D. valens observed here may simply

be an artefact of the reduction in D. brevicomis attack

densities on NAVV-treated trees. Dendroctonus valens

attacks often occur on trees colonized by D. brevic-

omis. It is thought that D. valens responds to monot-

erpenes released from host trees (Hobson et al.

1993) upon attack by D. brevicomis and presumably

other congeners (Fettig et al. 2004b). While we

observed significantly fewer D. valens attacks on

NAVV-treated trees at 14 days, no significant treat-

ment effects were observed at 28 and 42 days. Since

no other bark beetle species were found colonizing

experimental trees, tree mortality in our experiment

was directly attributed to D. brevicomis. Furthermore,

the D. brevicomis attack densities observed in this

study were quite high (fig. 3a; Miller and Keen

1960).

Bark beetle outbreaks and associated tree mortality

not only affect watershed, timber and wildlife

resources, but also cultural and recreational values.

Furthermore, tree losses due to bark beetle infestation

in residential, recreational, or administrative sites gen-

erally result in undesirable impacts such as reduced

shade, screening, and aesthetics (Helm and Johnson

1995). Dead trees pose potential hazards to public

safety while costs associated with their removal can

be substantial (Johnson 1981). Property values may

be severely reduced by mortality of adjacent shade

and ornamental trees (McGregor and Cole 1985).

Trees growing in progeny tests, seed orchards, or

those genetically resistant to forest diseases are also of

increased value. In recent years, the amount of tree

mortality attributed to D. brevicomis reached unprece-

dented levels in southern California, USA (USDA For-

est Service 2002) and California is most highly ranked

(�1.45 million ha) among all USA states for risk

(defined as >25% of stand density will die due to bark

beetle infestation in the next 15 years) of bark beetle-

caused tree mortality (Krist et al. 2007). These and

other situations emphasize the need for developing

effective treatments that protect individual P. ponder-

osa from D. brevicomis attack. In this study, we demon-

strated the release rate of both NAV and NAVV

significantly affected the response of D. brevicomis to

attractant-baited traps. In general, higher release rates

resulted in greater reductions in trap catch. More
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importantly, we demonstrated the ability of NAVV to

significantly reduce the density of D. brevicomis

attacks, D. brevicomis successful attacks, and levels of

tree mortality on attractant-baited trees, and identi-

fied a release rate suitable for individual tree protec-

tion during high D. brevicomis populations. The

potential use of NAVV for tree protection will likely be

most significant in settings in which insecticides are

used (Fettig et al. 2006a) or in small, ecologically-

unique or sensitive areas where applications of insec-

ticides are not permissible (Fettig et al. 2008). Further

investigations will allow us to improve and refine our

NAVV blend and explore its effectiveness for other

uses, such as small-scale (5 ha) stand protection, and

bark beetle-host complexes.
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