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Abstract

Remote sensing of invasive species is a critical component of conservation and management efforts, but reliable methods for the detection of
invaders have not been widely established. In Hawaiian forests, we recently found that invasive trees often have hyperspectral signatures unique
from that of native trees, but mapping based on spectral reflectance properties alone is confounded by issues of canopy senescence and mortality,
intra- and inter-canopy gaps and shadowing, and terrain variability. We deployed a new hybrid airborne system combining the Carnegie Airborne
Observatory (CAO) small-footprint light detection and ranging (LiDAR) system with the Airborne Visible and Infrared Imaging Spectrometer
(AVIRIS) to map the three-dimensional spectral and structural properties of Hawaiian forests. The CAO-AVIRIS systems and data were fully
integrated using in-flight and post-flight fusion techniques, facilitating an analysis of forest canopy properties to determine the presence and
abundance of three highly invasive tree species in Hawaiian rainforests.

The LiDAR sub-system was used to model forest canopy height and top-of-canopy surfaces; these structural data allowed for automated
masking of forest gaps, intra- and inter-canopy shadows, and minimum vegetation height in the AVIRIS images. The remaining sunlit canopy
spectra were analyzed using spatially-constrained spectral mixture analysis. The results of the combined LiDAR-spectroscopic analysis
highlighted the location and fractional abundance of each invasive tree species throughout the rainforest sites. Field validation studies
demonstrated b6.8% and b18.6% error rates in the detection of invasive tree species at ∼7 m2 and ∼2 m2 minimum canopy cover thresholds. Our
results show that full integration of imaging spectroscopy and LiDAR measurements provides enormous flexibility and analytical potential for
studies of terrestrial ecosystems and the species contained within them.
© 2008 Elsevier Inc. All rights reserved.
Keywords: Airborne Visible and Infrared Imaging Spectrometer; AVIRIS; Carnegie Airborne Observatory; CAO; Hawaii; Invasive species; Light detection and
ranging; Tropical forest
1. Introduction

Invasive species can alter the composition, structure, and
functioning of terrestrial ecosystems. We consider a species
invasive when it propagates across landscapes with or without
facilitation by human or natural disturbance. Island ecosystems
are particularly susceptible to biological invasion, owing to the
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evolutionary effects of isolation that cause island flora to lack
many of the competitive plant traits found in continental
systems (Sax et al., 2002; Vitousek et al., 1997). Ecosystems of
the Hawaiian Islands continue to undergo rapid changes
following the introduction and proliferation of alien species
(D'Antonio & Vitousek, 1992; Vitousek & Walker, 1989).

Roughly half of all organisms in Hawaii are non-native, and
approximately 120 plant species are considered highly invasive
(Wagner et al., 1999; www.hear.org). Highly invasive tree species
demonstrate an ability to grow through the native canopy, or in
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gaps, eventually replacing the native canopy (Vitousek &Walker,
1989; Yamashita et al., 2000). Invaders can alter fundamental
ecosystem processes such as nitrogen (N) cycling (Ehrenfeld,
2003; Vitousek & Walker, 1989) and disturbance regimes
(D'Antonio & Vitousek, 1992; Hughes et al., 1991). Recent
work also shows that invasive tree species often express
biochemical and physiological properties unique from those of
native trees (Baruch & Goldstein, 1999; Funk & Vitousek, 2007;
Hughes & Denslow, 2005). Resolving these particular leaf and
canopy characteristics in remotely sensed imagery may provide a
way to map and monitor invaders at the regional scale.

Robust approaches to mapping species are currently lacking
because we have had a limited biophysical understanding of
when remotely sensed signatures indicate the presence of
unique species — native or invasive — within an ecosystem.
Another major limitation has been the lack of appropriate
technologies for isolating and analyzing the spectral properties
of plant canopies. In Hawaii, we recently found that invasive
tree species have unique spectroscopic reflectance signatures
(or hyperspectral signatures) from that of native tree species
(Asner et al., 2008-this issue). In that work, canopy reflectance
properties in the 400–2500 nm wavelength range, collected
from an improved version of the Airborne Visible and Infrared
Imaging Spectrometer (AVIRIS; http://aviris.jpl.nasa.gov),
demonstrated spectral separability of native, introduced and
highly invasive species. Further analysis showed systematic,
wavelength-dependent spectral reflectance differences between
plant functional types, especially nitrogen-fixing and non-fixing
trees. Most importantly, we showed that the spectral separability
of species was tightly linked to their biochemical composition
(Asner et al., 2008-this issue).

Although alien tree species in Hawaii often have unique
spectroscopic reflectance properties linked to their biochemical
traits, we were unable to use this information in a simple
approach to map the species. Our initial study manually isolated
sunlit portions of only the largest tree crowns in order to assess
the spectral separability of species. However, application of this
knowledge to AVIRIS and other imagery was confounded by
issues of canopy senescence and mortality, intra- and inter-
canopy gaps and shadowing, and terrain variability. Further-
more, we could not employ traditional multi-spectral methods
that are often used to dampen shadowing and terrain effects,
such as vegetation indices like the normalized difference
vegetation index (NDVI), because the full spectral signature
was required to separate species on a statistically robust basis
(Asner et al., 2008-this issue).

An expanded approach that simultaneously resolves both the
spectral and structural properties of the canopies is needed to
isolate sunlit portions of tree crowns and to account for changes
in underlying terrain. Whereas the spectral signatures can be
derived from high-fidelity imaging spectrometers (Clark et al.,
2005), the canopy structure and terrain data are often best
resolved using Light Detection and Ranging (LiDAR) (Lefsky
et al., 2002). However, the coordinated use of these two
technologies, especially in the context of very detailed crown-
by-crown mapping of species, requires highly precise co-
location of the spectrometer and LiDAR data.
Wehave developed the CarnegieAirborneObservatory (CAO;
http://cao.stanford.edu) to provide in-flight and post-flight fusion
of imaging spectrometer and LiDAR data. We define data fusion
as “the seamless integration of data from disparate sources, …
integrated across data collection platforms,… and blended so that
the differences in resolution and coverage, … character and
artifacts of data collection methods are eliminated” (http://cee.
uiuc.edu/people/kumar1/). The CAO system is comprised of a
small-footprint waveform LiDAR, an imaging spectrometer, a
high-performance three-dimensional aircraft trajectory system,
and new algorithms that ray trace the precise position of ground
targets with respect to instruments on board the aircraft (Asner
et al., 2007).Herewe integratedAVIRIS as the spectrometer in the
CAO system, allowing for a detailed integration of full-range
(400–2500 nm) imaging spectroscopy and scanning LiDAR.

Using the CAO-AVIRIS system, we developed a method to
detect the presence and extent of invasive tree species in five
Hawaiian rainforest sites. Our automated approach uses the
LiDAR data to quantify and mask sunlit tree crowns of a
minimum prescribed height in the AVIRIS imagery, and then
analyzes the hyperspectral properties of those pre-screened tree
crowns using multi-stage spectral mixture analysis. A first
spectral mixture analysis derives live and dead canopy
fractional cover from shortwave-infrared (SWIR) measure-
ments. A second mixture analysis estimates species-specific
fractional canopy cover from the subset of original image pixels
that pass the illumination, minimum height, and live:dead pre-
screening. Our primary goal was to test the new method for
mapping three highly invasive tree species in Hawaiian forests.
A parallel goal was to continue testing the spectral separability
of native and invasive tree species in Hawaii, as a means to
advance our efforts to map and monitor their spread over time.

2. Materials and methods

2.1. Study sites

Our study was conducted in five rainforest sites spanning a
precipitation range of 2000 to 4000 mm yr−1 on the Island of
Hawaii (Fig. 1; Table 1). The sites varied in size from 330 to
1395 ha, each chosen based on the accessibility of the forests on
the ground as well as our general knowledge of species
composition. All sites were once dominated by native Hawaiian
forest species Metrosideros polymorpha and/or Acacia koa,
with an understory mostly comprised of ferns Cibotium
glaucum and Dicranopteris linearis.

Each study forest now contains a large, sprawling infestation
of one or more highly invasive tree species (Table 1). Fraxinus
uhdei was introduced in the late 19th century from Southern
Mexico and Guatemala as a potential forest plantation species.
It was later abandoned as a timber species due to poor wood
properties, but continued to regenerate and proliferate on
several islands including at a site in the Laupahoehoe Extension
of the Hilo Forest Reserve, Hawaii (Fig. 1) (Carlson & Bryan,
1963; Francis, 1990). Psidium cattleianum was introduced to
Hawaii in 1825 from Brazil, and is among the most highly
invasive trees in the state (Smith, 1985). It is found extensively
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Fig. 1. The Island of Hawaii showing the central location of CAO-AVIRIS study areas (red dots).
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in both mesic and wet forest areas, including two of our study
sites: Olaa Forest Reserve and Wao Kele O Puna Natural Area
Reserve. Finally, the nitrogen-fixing treeMorella faya (formerly
Myrica faya) was introduced from the Azores to Hawaii
Volcanoes National Park about fifty years ago (Fig. 1). It is also
considered highly invasive, enriching the nitrogen content of
otherwise low-fertility soils, while shading out nearly all other
species (Vitousek et al., 1987). The three invasive species thus
provided us with a diverse array of canopy chemistries and
Table 1
Forest descriptions including site name, study area (ha), zone type, most common n
mean annual temperature (MAT; °C), and substrate age (yr)

Site Study area Study zone

Hilo Forest Reserve 1395 Montane Rainforest
Wao Kele O Puna 620 Lowland Rainforest
Olaa Forest Reserve 675 Sub-montane Rainforest
Hawaii Volcanoes National Park–East 330 Montane Rainforest
Hawaii Volcanoes National Park–West 540 Seasonal Sub-montane Forest
structural properties for developing and testing our remote
sensing approach.

2.2. Remote sensing instrumentation

Large-scale analysis of forest three-dimensional structure
and biological composition requires a combination of advanced
airborne imaging technologies that simultaneously resolves the
horizontal and vertical characteristics of the vegetation as well
ative and invasive canopy species, mean annual precipitation (MAP; mm yr−1),

Common native Common invasive MAP MAT Substrate age

M. polymorpha & A. koa F. uhdei 3000 17 5000–65,000
M. polymorpha P. cattleianum 3500 25 200–750
M. polymorpha & A. koa P. cattleianum 4000 18 5000–10,000
M. polymorpha M. faya 2500 20 300–400
M. polymorpha M. faya 2000 22 100–300
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as the type of vegetation, even to the species level. To address
this need, we developed the Carnegie Airborne Observatory
(CAO), a new system designed specifically for mapping the
biochemical, taxonomic and structural properties of vegetation
and ecosystems (http://cao.stanford.edu) (Asner et al., 2007).
The CAO combines three instrument sub-systems into a single
airborne package: (1) High-fidelity Imaging Spectrometer
(HFIS); (2) Waveform Light Detection and Ranging (LiDAR)
scanner; and (3) Global Positioning System-Inertial Measure-
ment Unit (GPS-IMU).

There are two CAO configurations, depending upon the
spectrometer used during flight. The CAO-Alpha configuration
uses a pushbroom HFIS with 1500 cross-track pixels, and
sampling across the 367–1056 nm range at up to 2.4 nm spectral
resolution (Asner et al., 2007). The CAO-Beta system, which
was employed in this study, integrates AVIRIS to provide 10 nm
spectral sampling across the 380–2510 nm range. Both CAO
Fig. 2. The processing stream for in-flight and post-flight fusion of airborne imaging s
species mapping.
configurations use a LiDAR sub-system with an adjustable laser
pulse repetition rate of up to 100 kHz. The GPS-IMU sub-
system provides three-dimensional positioning and attitude data
for the sensor package onboard the aircraft, allowing for highly
precise and accurate projection of hyperspectral and LiDAR
observations to the ground (Asner et al., 2007).

The CAO system provides co-aligned HFIS and LiDAR data
at spatial resolutions of 0.3–3.5 m, depending on instrument
settings on board the aircraft and flying altitude above ground. For
this study, the CAO-Beta system was operated from January to
February 2007 over Hawaii Island at an altitude averaging 3.0 km
above ground level (a.g.l.), thus providing spectroscopic
measurements at 3.0 m spatial resolution (ground sample
distance). The LiDAR sub-system is programmable in-flight,
andwas configured here for laser spot spacing (postings) of 1.5m.
Due to the higher altitude requirements of AVIRIS, we operated
the LiDAR at a pulse repetition frequency of 33 kHz and a scan
pectrometer and LiDAR observations, sunlit-live canopy detection, and invasive
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angle of 36° to match AVIRIS. The LiDAR thus collected four
laser shots per spectrometer pixel, allowing for modeling of
canopy structure and surface shape within each AVIRIS pixel.

2.3. Remote sensing data analysis

Fusion of the imaging spectrometer and LiDAR data requires
a processing stream that maximizes the sharing of information
between data products. Given the enormous data volumes
involved, the processing stream must be highly automated.
Fig. 2 shows the processing stream for this study, in which raw
spectral, laser, and trajectory data were fused and analyzed in a
series of higher-order products and results. The following
sections briefly describe the major steps in the process.

2.3.1. Aircraft positioning
The CAO uses both in-flight and post-flight data fusion

approaches to precisely match hyperspectral and LiDAR data in
three-dimensional space. The in-flight fusion step was achieved
by providing a common mount with measured offsets between
instrument optical centers, as well as time-stamping of spectral
and LiDAR data collection streams with shared position and
trajectory data. The GPS-IMU data form the common link for
the detailed ray tracing of the photons between both aircraft
sensors and the ground, and a detailed model of the spectro-
meter optical system allows precise and accurate ray tracing of
the image pixels to the LiDAR returns. The point-for-point
alignment of the LiDAR and passive image data is complicated
by inherent differences in the scanning geometries of the two
systems and the further distortions of the ground sampling grid
due to topography. The spectrometer pixel centers were used for
rendering of the two data sets into a single, integrated grid of
hyperspectral and LiDAR data for subsequent processing,
analysis and product generation (Asner et al., 2007).

2.3.2. LiDAR data processing
The GPS-IMU data were combined with the laser range data

to determine the 3-D location of the laser returns. From the
LiDAR point cloud data, a physically-based model was used to
estimate top-of-canopy and ground surfaces (digital elevation
models; DEMs) using REALM (Optech Inc., Toronto, Canada)
and Terrascan/Terramatch (Terrasolid Ltd., Jyväskylä, Finland)
software packages. Vegetation height was then estimated by
differencing the top-of-canopy and ground surface DEMs
following (Clark et al., 2004; Lefsky et al., 2002, 1999).

2.3.3. Hyperspectral data processing
The hyperspectral data were converted to at-sensor radiances

by applying radiometric corrections developed during sensor
calibration in the laboratory. Apparent surface reflectance was
then derived from the radiance data using an automated
atmospheric correction model, ACORN 5LiBatch (Imspec
LLC, Palmdale, CA). Inputs to the atmospheric correction
algorithm included ground elevation (from the LiDAR), aircraft
altitude (from GPS-IMU), solar and viewing geometry, atmo-
sphere type (e.g., tropical), and estimated visibility (in km). The
code uses a MODTRAN look-up table to correct for Rayleigh
scattering and aerosol. Water vapor was estimated directly from
the 940/1140 nm water vapor features in the radiance data.

Following the preparation of the hyperspectral data, the
reflectance images were automatically masked based on
illumination conditions between the sensors and canopies
(Fig. 2). The LiDAR data, along with known solar position at
time of data acquisition, provided three-dimensional maps of
precise illumination geometry for each canopy element. If there
were no obstructions in the sun-vegetation-sensor path (e.g.,
neighboring tree crowns, branches, stems), then that element
was considered sunlit at the time of imaging. At the same time, a
minimum LiDAR vegetation height requirement of 2.0 m was
applied to remove exposed ground areas and short vegetation
such as grasses and shrubs.

The masked hyperspectral images were passed to an
automated spectral mixture analysis model called AutoMCU
(Asner & Heidebrecht, 2002). This algorithm uses tied short-
wave-infrared (tied-SWIR) (Asner & Lobell, 2000) spectra to
quantify the fractional cover of photosynthetic vegetation (PV),
non-photosynthetic vegetation (NPV), and bare substrate within
each image pixel. The model uses spectral endmember bundles
derived from field- or image-based measurements, and Monte
Carlo unmixing to derivemean estimates of fractional cover along
with standard deviation and root-mean-squared-error (RMSE)
data on a per-pixel basis. The PV, NPVand bare-substrate spectral
bundles were derived from island-wide samples collected using
2001–2005AVIRIS imagery aswell as field-basedmeasurements
with spectroradiometers (Asner et al., 2005). For our purposes
here, only the NPV data derived from the AutoMCUwere used to
mask out the standing dead trees and other non-photosynthetic
vegetation from the hyperspectral data (Fig. 2).

The image spectra that remained after illumination, shadow,
vegetation height, and NPV masking represented a well
controlled set of reflectance signatures that, theoretically,
should be most indicative of unique species. The final
automated step in the processing stream involved a new
reformulated version of the AutoMCU algorithm to detect
species using spectral bundles (Fig. 1). Whereas the previous
step — running the AutoMCU in tied-SWIR spectral mode —
isolated the fractional cover of live and dead vegetation with
little influence from variation in taxonomic composition (Asner
et al., 1999, 2005), application of AutoMCU with full-range
spectral reflectance signatures (hereafter called “AutoMCU-S”
mode) should be sensitive to the species that comprise the
spectral bundles used in the model. A spectral unmixing
approach was selected because crown diameters of native and
invasive trees range from just a few meters to 30 or more
meters; we thus required an algorithm that could accommodate
a wide range of crown sizes and thus fractional cover values.
AutoMCU-S uses the same Monte Carlo unmixing technique
as the AutoMCU, but with species-specific endmember bundles
to derive maps of fractional species cover per pixel, along with
standard deviation and RMSE images.

In previous work, we collected image-based spectral bundles
of 43 of the most common native and invasive tree species
found in Hawaiian rainforests (Asner et al., 2008-this issue).
Here, we applied the AutoMCU-S approach with a subset of
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species bundles relevant to the region of interest. These were
selected based on our general knowledge of the likely tree taxa
to be present in each study forest. For example, a spectral
bundle for F. uhdei was only used in the forests where this
species is known to occur. This geographically-constrained use
of the bundles simplified our detection and mapping problem,
yet we felt it a necessary step in our effort to determine the
maximum accuracy of the approach at the landscape scale. In
addition, the general presence and absence of both native and
invasive species is well known for most forests on Hawaii
Island (Smith, 1985) (http://www.hear.org), so tuning the Au-
toMCU-S with regionally-specific libraries was justified from
both scientific and land management perspectives.

For this study, we used 12 endmember bundles containing
one native species collected from all five sites (M. polymorpha),
one native species from two sites (A. koa), and three invasive
species from all five sites (M. faya, F. uhdei, P. cattleianum).
The libraries were constructed from spectra pre-screened for
minimum height and illumination conditions using the co-
aligned LiDAR data, and thus were compatible with the image
data. Minimum height was set to 2.0 m, and only pixels
containing canopies with unobstructed ray traces from the sun-
Fig. 3. Example output of each automated analysis step in the data fusion and invasiv
reflectance imagery demonstrates the pre-screening of the spectrometer image data
shorter canopies: red-dark blue; taller canopies yellow-white); (c) shadow masking
geometry (shadow: gray; sunlit: white); (d) live/dead fractional cover masking from
detection of an invasive tree based on spectral endmember bundles and AutoMCU-S
to-canopy and canopy-to-sensor were used in the library
development and image analyses. In addition, only pixels
with no detected NPV from the AutoMCU code were selected
both for library construction and image processing.

The separability of the spectral bundles was analyzed using
t-tests and cluster analysis. The t-tests were intended simply
to highlight wavelength-specific differences between spectral
bundles of native and invasive tree species. In contrast, the cluster
analyses provided information on the separability of species-
based on the entire spectrum as the signature, rather than as band-
by-band comparisons. The spectral endmember bundles were
analyzed using a hierarchical k-means cluster tree, with iterative
clustering based on the Euclidean distance (Everitt, 1993).
Pairwise Euclidean distance in n-dimensional space (n=218
AVIRIS bands) was calculated using the equation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
jxi � yij2

q

where x and y are the mean AVIRIS reflectance values at
wavelength i. The k-means clustering approach iteratively moves
spectra between clusters, minimizing variability within each
cluster and maximizing variability between them. The Euclidean
e species detection process outlined in Fig. 2. This 53 ha example of the (a) basic
by (b) minimum vegetation height modeling from LiDAR data (ground: black;
based on 3-D structure of the canopies with respect to solar angle and sensor
AutoMCU modeling (PV: green; NPV: blue; bare/shade: pink); and (e) the final
algorithm (invader: yellow-red; native: green).

http://www.hear.org


1948 G.P. Asner et al. / Remote Sensing of Environment 112 (2008) 1942–1955
distance between clusters was tabulated as a measure of the
spectral separability of species.

2.4. Field evaluation

We carried out field studies to evaluate the accuracy of our
remote species detections in each forest stand. The analysis
employed a combination of intensive plot-scale measurements,
long field-based transect surveys, and low altitude helicopter
surveys that identified false-positive and false-negative detec-
tions. The transects ranged from 200 m to 3000 m in length,
with a total distance covered among sites of 16.3 km. Sampling
was done according to Asner and Vitousek (2005) and Varga
and Asner (in press), by which a point was recorded whenever
the canopy cover changed, in this case, when the overstory
changed in species dominance. Each change in species cover
was recorded using a survey-grade GPS for co-location of field
data with the airborne measurements. A Leica GS-50+GPS
with multiple-bounce filtering and post-differential correction
was used to measure our position in the forest to average
uncertainties of ∼2 m (Leica Geosystems Inc., St. Gallen,
Switzerland). In addition, a ruggedized tablet computer with
integrated GPS (Xplore Technologies, Austin, TX) was used to
navigate in the forests, providing a real-time analysis and
logging of our position with respect to the species identified in
each digital map. Helicopter-based validation measurements
were carried out by entering the coordinates of detected invasive
species from the digital maps into a GPS with real-time Wide
Area Augmentation System (WAAS) corrections (Thales
Navigation, Santa Clara, CA). Each helicopter GPS point was
visited from an altitude of b75 m a.g.l., with 2–3 observers
determining canopy species cover. A total of 993 field and
helicopter validation points were used in this study.
Fig. 4. Effect of pre-screening the spectra for minimum vegetation height, illuminatio
reflectance for the invasive tree M. faya. Number of samples prior to screening was
3. Results and discussion

3.1. Automated spectral masking

Fig. 3 shows the interim and final processing results for a sample
53 ha forest stand in Hawaii Volcanoes National Park containing
the invasive tree M. faya. Here, the calibrated reflectance image
(Fig. 3a) is alignedwith theLiDARvegetation height data (Fig. 3b),
which along with known solar and sensor viewing geometries,
allows for a deterministic mapping of sunlit and shaded tree crowns
of a prescribed minimum 2.0 m height (Fig. 3c). This canopy
illumination-minimum height mask is then re-combined with the
reflectance spectra as input to the AutoMCU algorithm (Fig. 2),
which calculates the sub-pixel fractional cover of PV, NPV and
bare/shade (Fig. 3d). Any pixels with NPV values greater than zero
are removed, since those pixels are influenced by standing dead
trees and other senescent material that risk not carrying the spectral
signature of the live species. This step results in a final
determination of the spectra to be advanced to the species detection
step, as shown in the final mask of Fig. 3e. Finally, theAutoMCU-S
module provides sub-pixel fractional cover estimates of each
species. This last panel showsM. faya detections at fractional cover
values N75% in red and N25% in yellow, with native forest
canopies shown in green. Pixels not meeting the pre-screening
requirements for illumination conditions, minimum height or dead
material are left unanalyzed, as shown in black in Fig. 3f.

The quantitative importance of masking pixels prior to species
determination is shown in Fig. 4, which demonstrates how the
mean and standard deviation of M. faya canopy reflectance
changed before and after screening in Fig. 3. The unmasked
spectral data of M. faya have a lower reflectance in the near-
infrared and shortwave-infrared wavelength regions (750–
1800 nm) than do the data following the masking step (Fig. 4).
n conditions, and live:dead fraction on the mean and standard deviation (inset) of
N400, whereas the number is decreased to 210 following all masking steps.



Fig. 5. Mean reflectance spectra of native and invasive tree detections following pre-screening (Fig. 3), with band-by-band t-tests showing significant differences in
grey bars (p-values≤0.05; n=210–239 as shown in Table 2). Sites: (a–b) Hilo Forest Reserve; (c–d) Hawaii Volcanoes National Park east–west; (e) Olaa Forest
Reserve; and (f) Wao Kele O Puna Natural Area Reserve.
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At the same time, the standard deviation ofM. faya reflectance is
much higher prior to screening and masking, especially in the
near-IR. Following masking, the reflectance of this invader is
Table 2
Minimum Euclidean distances between species-based spectral endmember bundles

Site Species combination

Hilo Forest Reserve M. polymorpha F. uhde
A. koa F. uhde
M. polymorpha A. koa

Wao Kele O Puna M. polymorpha P. cattle
Olaa Forest Reserve M. polymorpha P. cattle

A. koa P. cattle
M. polymorpha A. koa

Hawaii Volcanoes National Park–East M. polymorpha M. faya
Hawaii Volcanoes National Park–West M. polymorpha M. faya

Distance values indicate the uniqueness of species bundles, with high separability s
species.
much higher and its variability decreases, resulting in a species-
specific endmember bundle that is statistically more unique from
that of native species (Fig. 5). Tests with this image, and 26 field
derived from k-means clustering algorithm

Cluster distance after masking Number of spectra

i⁎ 171.6 210/210
i⁎ 155.7 220/210

61.3 210/220
ianum⁎ 108.5 220/220
ianum⁎ 105.4 220/220
ianum⁎ 119.3 239/220

108.1 220/239
⁎ 82.3 210/210
⁎ 88.6 210/210

hown as values exceed 50.0 (Everitt, 1993). Asterisks (⁎) denote invasive tree
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validation points, showed that minimizing the spectral variance
within a target species using the hyperspectral-LiDAR screening
steps described above resulted in an increase in mapping accuracy
from 63% to 91%. This serves as a general estimate of the positive
effect in using the data fusion method presented here.

Fig. 5 shows the mean reflectance of the final species
bundles for each forest study site. The gray bars display the
significances (p-value) of differences between species calcu-
lated from simple band-by-band t-tests. Similar to the results
from (Asner et al., 2008-this issue), we find that native and
invasive species are highly separable in most wavelength regions.
These spectral differences result from the fact that leaf nitrogen
concentrations are systematically higher in invasive tree species
as compared to native trees in Hawaiian forests (Baruch &
Fig. 6. a. Mapping results of constrained AutoMCU-S analysis for the detection of inv
Hawaii Volcanoes National Park–East. Fig. 6b. Top panel: Mapping results of constr
nativeM. polymorpha trees (greens) in Hawaii Volcanoes National Park–West. Botto
polymorpha (blue-purple) in Hilo Forest Reserve. Fig. 6c. Top panel: Mapping result
trees (reds), native A. koa (green) and native M. polymorpha (blue) in Olaa Fore
polymorpha (green) in Wao Kele O Puna Natural Area Reserve.
Goldstein, 1999; Funk & Vitousek, 2007; Vitousek & Walker,
1989). In addition, the leaf area index (LAI) and total canopy
water content were found to higher among many invasive tree
species (Asner & Vitousek, 2005). Most importantly, a combina-
tion of leaf nitrogen, pigments, and canopy structural properties
has proven consistently different between invasive and native
trees in Hawaii (Asner et al., 2008-this issue).

These spectral differences among native and invasive tree
species facilitate mapping and monitoring efforts in Hawaii, but
only after the spectral images and the extracted endmember
bundles are screened for illumination, minimum height, and
NPV fraction to eliminate excessive variability. Using the
k-means cluster analysis, we calculated the statistical distance
between spectral endmember bundles after masking (Table 2).
asiveM. faya trees (red colors) and nativeM. polymorpha trees (green colors) in
ained AutoMCU-S analysis for the detection of invasive M. faya trees (reds) and
m panel: Invasive F. uhdei (orange), native A. koa (yellow-green) and native M.
s of constrained AutoMCU-S analysis for the detection of invasive P. cattleianum
st Reserve. Bottom panel: Invasive P. cattleianum trees (reds) and native M.
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Cluster distances among native and invasive trees are large,
ranging from about 82–172 units, which indicates excellent
statistical separability (Everitt, 1993). In contrast, cluster dis-
tances between two groups of the native M. polymorpha taken
from different forests average 31–64 (data not shown), which
suggests some spectral differences between native forest
systems dominated by this species, as documented by Asner
et al. (2008-this issue). Promisingly, spectral differences
between the native nitrogen-fixer A. koa and non-fixing natives
such as M. polymorpha range from 61 to a maximum of 108
(Table 2), suggesting good spectral separability among native
trees from contrasting functional groups. Without the screening
steps afforded by the fused LiDAR and spectrometer data, the
spectral bundles are far more variable and are difficult to
interpret at the species level. Masking provides a much clearer
delineation of species for a variety of methods, including
the new automated Monte Carlo unmixing for species
(AutoMCU-S) as reported in the next section.
3.2. Invasive species detection

The final invasive species maps are shown in Fig. 6a–c. The
overall fidelity of the detection results is demonstrated in
the M. faya map of Hawaii Volcanoes National Park–East
(Fig. 6a). The natural color composite map hints of the pres-
ence of a differing vegetation type (dark greens), yet the
processed data emphasize the location and abundance of
M. faya, shown as increasing intensities of red as M. faya
fractional cover increases at 3 m spatial resolution. Small
outbreaks of this invader are also shown, sometimes at low
fractional cover (darker reds), indicating the presence of newly
established plants, usually in the sapling to small-tree phase
(field observations, R. Martin and K. Carlson). In this forest,
we detected 145.2 ha of total canopy cover by M. faya, which
represented 44.0% of the total image, and 63.4% of the pixel
analyzed following masking (Table 3). The majority of the
infestations maintained sub-pixel fractional covers of b50%
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(61.9 ha), while 34.2 ha of cumulative detections had fraction
canopy covers exceeding 75% per pixel.

M. fayawas also detected in dense patches and outbreaks in the
Hawaii Volcanoes National Park-West study area (top of Fig. 6b).
We calculated 93.8 ha, or 17.4%, of the total study area was
invaded by this species. Similar to the eastern study site, most
canopy cover fractions were less than 50% per pixel (62.9 ha
cumulatively), but fewer patches were completed covered by
M. faya (8.6 ha with N75% fractional cover) (Table 3).

In Hilo Forest Reserve, F. uhdei was detected in 71.3 ha of
the 1395 ha study area (Fig. 6b). Although this species is
contained within a relatively contiguous forest patch, we did
detect numerous small outbreaks, found later to be single tree
crowns up to 600 m from the core area of infestation (oranges in
Fig. 6b). Most of the F. uhdei trees covered b75% of any given
pixel (66.9 ha cumulatively), even within the core area, with just
4.4 ha of canopy totally dominated by F. uhdei in the sub-pixel
fractional cover results (Table 3).
The thirdmajor invasive tree species inHawaii,P. cattleianum,
was also readily detected in the Olaa and Wao Kele O Puna
reserves, as shown in Fig. 6c. Similar to the F. uhdei results, the
infestation of P. cattleianum within Olaa Forest Reserve was
formed in a core area, with outbreaks detected up to 1.5 km from
this core (red in top of Fig. 6C). A total of 110.5 ha of this species
were mapped, which represented 16.4% of the total study area
(Table 3). Themajority of detections had sub-pixel cover fractions
b75% (100.9 ha total). In contrast to Olaa, the P. cattleianum
invasions in Wao Kele O Puna was more diffuse, with several
infestation nuclei andmany patches representing outbreaks of this
invader (red in bottom of Fig. 6c). The core areas were comprised
ofP. cattleianum at fractional covers well over 75% per pixel, and
these areas summed to 24.8 ha of the total 139.8 ha of detections
(Table 3). However, the majority of patches (100.8 ha in total)
contained outbreaks with fractional cover values less than 50%,
indicating these areas as relatively new invasions within this
rainforest reserve.



Table 3
Summary results for invasive species mapping including overall study area, analysis area following masking, area invaded (ha) by fractional cover class from
AutoMCU-S, total area of invasion, and percent of analysis and total study areas invaded

Site Total study area
(ha)

Analysis area
(ha)

Area invaded by fractional
cover class

Total invaded area
(ha)

% of analysis
area

% of total study
area

Hilo Forest Reserve 1395 799 b50%: 35.8 71.3 8.9 5.1
50–75%: 31.1
N75%: 4.4

Wao Kele O Puna 620 588 b50%: 100.8 139.8 23.8 22.5
50–75%: 14.2
N75%: 24.8

Olaa Forest Reserve 675 542 b50%: 43.1 110.5 20.4 16.4
50–75%: 57.8
N75%: 9.6

Hawaii Volcanoes National
Park–East

330 229 b50%: 61.9 145.2 63.4 44.0
50–75%: 48.9
N75%: 34.2

Hawaii Volcanoes National
Park–West

540 112 b50%: 62.9 93.8 83.8 17.4
50–75%: 22.3
N75%: 8.6
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3.3. Field evaluation

We tabulated invasive species detections at AutoMCU-S
thresholds of N25% (∼2 m2) and N75% (∼7 m2) fractional
cover, and compared those results to the field- and helicopter-
based validation points (Table 4). In Hilo Forest Reserve, we
visited 164 points in the field, and calculated a 1.0% false-
negative and 15.5% false-positive error rate for F. uhdei when
Table 4
Validation results for invasive species detection

Hilo Forest Reserve F. udhei
(n=164)

Observed Observed Percentage
error

No Yes

Detected No 92/93 1/0 1.0/0.0
Detected Yes 11/3 60/68 15.5/4.2

Wao Kele O Puna P. cattleianum
(n=64)

Observed Observed

No Yes

Detected No 31/34 3/1 8.5/2.8
Detected Yes 3/0 26/29 10.5/0.0

Olaa Forest Reserve P. cattleianum
(n=141)

Observed Observed

No Yes

Detected No 96/109 22/8 18.6/6.8
Detected Yes 2/0 21/23 8.6/0.0

Hawaii Volcanoes–East M. faya
(n=405)

Observed Observed

No Yes

Detected No 166/180 20/6 10.8/3.2
Detected Yes 31/9 188/211 14.2/4.1

Hawaii Volcanoes–West M. faya
(n=256)

Observed Observed

No Yes

Detected No 118/130 16/4 11.9/3.0
Detected Yes 11/6 111/116 9.0/4.9

Values separated by slash (/) indicates detection results at 25% (∼2 m2) and 75%
(∼7 m2) fractional cover levels from AutoMCU-S output for each species.
the AutoMCU-S cover threshold was 25% for that species.
Increasing to a 75% minimum cover requirement decreased the
errors to 0% and 4% for false-negative and -positive detections,
respectively. For the invasive tree P. cattleianum in the Wao
Kele O Puna and Olaa forest sites, the 25% and 75% detection
thresholds produced false-negative errors ranging from 8.5–
18.6% and 2.8–6.8%, respectively (Table 4). False-positive
errors varied from 8.6–10.5% at the lower detection threshold,
but were zero at the higher threshold for both forest sites. M.
faya was detected throughout Hawaii Volcanoes National Park
with false-negative errors of 10.8–11.9% and 3.0–3.2% at the
25% and 75% minimum fractional cover thresholds. False-
positive errors were 9.0–14.2% and 4.1–4.9% at these two
thresholds.

These low error rates are linked to the strong spectral
separability of the species (Table 2), which results from the
unique properties of invasive and native trees found in most
Hawaiian forests. Specifically, a combination of high leaf
nitrogen, differences in leaf pigments, and contrasting leaf area
index (LAI) and canopy water content makes the three invasive
tree species studied here, as well as many others (Asner et al.,
2008-this issue), spectrally unique from most of their native
Hawaiian neighbors. The particularly low uncertainties in the F.
uhdei results are clearly connected to the large statistical
distances between spectral clusters of this species relative to the
native species M. polymorpha and A. koa (Table 2). The other
invasive trees, P. cattleianum and M. faya, had smaller
clustering distances to their native counterparts, resulting in
slightly elevated levels of uncertainty in their detection at the
lower fractional cover threshold of 25%.

4. Conclusions

Remote sensing is beginning to play a more active role in efforts
to detect, monitor and manage invasive species. Broadband multi-
spectral methods have been successfully used to map invasive
species that represent unique lifeforms in the communities they
invade; a good example is shrub invasion into grasslands, and grass
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invasion into shrublands (Lass, 2005). Habitat suitability analyses
are also being carried out using spaceborne multi-spectral imaging
(Morisette et al., 2006), allowing managers to consider future areas
of potential invasion.

In contrast to these successes, the detection of species of
similar lifeform has proven more difficult, requiring more data
such as from hyperspectral sensors and often complicated
analytical techniques. Underwood et al. (2006) used hyper-
spectral data with classification methods to map invasive
aquatic plants in central California wetlands. Asner and
Vitousek (2005) used airborne imaging spectroscopy and
radiative transfer modeling to detect the nitrogen-fixing tree
M. faya in a Hawaiian forest. That study also highlighted the
difficulty of detecting smaller patches and sub-pixel cover
fractions of M. faya in the forest. A subsequent bottom-up
analysis of the spectral separability of trees in Hawaii showed
that this invasive tree species, and many others, are system-
atically unique from most native species (Asner et al., 2008-this
issue). However, that study enjoyed the luxury of hand-picking
spectral signatures from only the largest tree crowns and under
constant illumination conditions. Further analyses showed that
shadows, terrain, and non-photosynthetic vegetation caused
great uncertainty in any top–down mapping efforts.

In response to these substantial limitations, and the
continuing need for more robust invasive species maps for
conservation and management of Hawaiian forests (http://www.
hear.org), we deployed a new hybrid airborne remote sensing
system combining LiDAR and imaging spectroscopy to map the
three-dimensional spectral and structural properties of Hawaiian
forests. The spectral and LiDAR data were fully integrated
using new in-flight and post-flight fusion techniques, facilitat-
ing an analysis of forest canopy properties that best determine
the presence and abundance of invasive tree species in
Hawaiian rainforests.

In this first study, we limited our approach by using spectral
endmember bundles derived from canopies of known species
within each image. This approach worked well, allowing for the
mapping of each invasive tree with relatively high accuracy.
Indeed, our field evaluation studies showed b6.8% and b18.6%
error rates in the detection of invasive tree species at ∼7 m2 and
∼2 m2 canopy cover thresholds in a very densely populated
rainforest environment. However, the next test of the approach
will involve combining species-specific bundles for application
across an ensemble of hyperspectral images containing many
more native and invasive trees. Until then, our current results
show that the integration of imaging spectroscopy and LiDAR
remote sensing sensors and measurements provide enormous
flexibility and analytical potential for studies of invasive species
and biodiversity in tropical forest ecosystems.
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