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Forest management under uncertainty: the influence of management versus 
climate change and wildfire in the Lake Tahoe Basin, USA. 
Charles Maxwell 1 , Robert M. Scheller 1 , Jonathan W. Long 2 and Patricia Manley 3 

ABSTRACT. Climate change will accelerate forest mortality due to insects, disease, and wildfire. As a result, substantial resources will 
be necessary where and when forest managers seek to maintain multiple management objectives. Because of the increasing managerial 
requirements to offset climate change and related disturbances, the uncertainty about future forest conditions is magnified relative to 
climate change alone. We provide an analytical approach that quantifies the key drivers of forest change—climate, disturbance, and 
forest management—using scenarios paired with simulation modeling to forecast and quantify uncertainties in the Lake Tahoe Basin 
of California and Nevada (USA), a montane seasonally dry conifer forest. We partitioned uncertainty among climate change (including 
associated changes to wildfire and insect outbreaks), forest management (including thinning, prescribed fire, and fire suppression), and 
other sources using a fully factorial experimental design and analysis of variance. We focused on three metrics that are important for 
forest management objectives for the area: forest carbon storage, area burned at high severity, and total area burned by wildfire. 
Management explained a substantial amount of variance in the short term for area burned at high severity and longer term carbon 
storage, while climate explained the most variance in total area burned. Our results suggest that simulated extensive management 
activities will not meet all the desired management objectives. Both the extent and intensity of forest management will need to increase 
significantly to keep pace with predicted climate and wildfire conditions. 
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INTRODUCTION 
We are experiencing unprecedented global change and these 
changes will accelerate in the coming decades. Globally, forests 
are subject to many drivers of anthropogenic change (McIntyre 
et al. 2015, Franklin et al. 2016, Balch et al. 2017) that may reduce 
their capacity to deliver expected levels of ecosystem services 
(Asner et al. 2015). Because these anthropogenic drivers interact 
in surprising ways and their future magnitude is also uncertain, 
the future of forests are highly uncertain (Millar et al. 2007, 
Lindner et al. 2014, Luce et al. 2016, Wang et al. 2016, Boulanger 
et al. 2018). Natural resource managers must account for 
uncertainty when making decisions (Nichols et al. 2011, Lindner 
et al. 2014) but climate change magnifies uncertainty and can be 
a barrier to management action (Polasky et al. 2011, Adams 2013, 
Scheller and Parajuli 2018).  

Despite decades of progress, there remain many sources of 
uncertainty that constrain our capacity to understand and 
forecast future forests, including parameter uncertainty (the data 
that feed into the models), model uncertainty (reflecting our 
overall understanding of how the system operates), and inherent 
uncertainty (unresolvable uncertainty; Higgins et al. 2003, Morin 
and Thuiller 2009, Reyer et al. 2016). Nevertheless, within the 
domains of forest ecology and management there are 
opportunities to quantify and evaluate the sources of uncertainty 
through the use of scenario planning. Scenarios in combination 
with forecasting models are a common approach to quantifying 
uncertainty by attempting to identify outcomes from a variety of 
inputs, states, and actions (Peterson et al. 2003). By identifying 
the plausible or potential bounds of the primary drivers of system 
change, uncertainty due to each (or neither) can be estimated 
(Polasky et al. 2011). In the case of forests and climate change, 
the climate forecasts themselves are a substantial source of 
uncertainty as they reflect a range of social, economic, and 
technologic variables themselves (Van Vuuren et al. 2011). Model 

uncertainty can also be substantial (Petter et al. 2020). Forest 
disturbances contribute considerable uncertainty to our 
understanding of forest futures (Hicke et al. 2006, Millar et al. 
2007, Littell et al. 2010, Scheller et al. 2011, Anderegg et al. 2015, 
Seidl et al. 2016, Bognounou et al. 2017, Coen et al. 2018, Stephens 
et al. 2018). On the contrary, negative feedbacks among 
disturbances, in combination with ecological memory, may reduce 
uncertainty. Disturbances do not necessarily compound; there 
can be negative feedbacks among disturbances that tend to reduce 
the magnitude (i.e., tree mortality) of subsequent disturbances 
such as with insects and high severity fire where fire risk is reduced 
after needle drop (Meigs et al. 2016). Forested landscapes have 
long ecological memories (Sun et al. 2013, Johnstone et al. 2016) 
—consisting of the biotic elements, their age, and spatial 
distribution—that limit their future behavior (Rhemtulla et al. 
2009, Loudermilk et al. 2013, Perring et al. 2016).  

We provide an analytical approach that quantifies the key drivers 
of forest change, climate, disturbance, and forest management 
using scenarios paired with simulation modeling to forecast and 
quantify future uncertainties. We focused on uncertainty 
generated by climate change (including associated changes to 
wildfire and insect outbreaks), forest management (including 
thinning, prescribed fire, and fire suppression), and other sources 
using a fully factorial experimental design (similar to Seidl and 
Lexer 2013); we conducted an analysis of the variance generated 
by uncertainty (e.g., Seidl and Lexer 2013).  

Our combination of scenarios and modeling enabled forecasting 
of an array of potential futures as dictated by climate and 
management. The information generated can subsequently 
inform long-term strategic management planning (Sturtevant et 
al. 2007), which can, in turn, answer this question: Can 
management continue to guide outcomes on this landscape in 
spite of changing climate?  
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Table 1. Management scenario broken down by intent and treatment type, by hectares, annually (approximate, rounded). 

Scenario Management specifications Mecha­
nical 

Hand Prescribed 
fire 

Total Percent of 
landscape 

treated 
annually 

Stand 
minimum 

re-treatment 
time 

Natural 
ignitions as 

managed fires 

1 The only management activity was to suppress fires. 
2 Management activities were focused on forest thinning in 

the wildland-urban interface (WUI). This management 
strategy was designed to provide a buffer of defensible 
space around human-built structures and property. It 
treated ~2% of the vegetated area each year, all in the 
WUI. This scenario most closely resembled current 
management activities in the Lake Tahoe Basin. Fire 
suppression efforts remain the same as Scenario 1. 

3 This scenario builds upon Scenario 2 by expanding 
management activities into the remaining forested 
landscape beyond the WUI and used predominantly 
mechanical and some manual methods to thin the forest 
and reduce biomass. It treats approximately 6.7% of the 
vegetated area each year. Fire suppression efforts remain 
the same as Scenario 1. 

4 This scenario builds upon Scenario 2 by expanding 
management activities into the remaining forested 
landscape. Scenario 4 uses primarily prescribed fire and 
managed wildfire. This scenario treats approximately 4% 
of the vegetated area each year. Fire suppression efforts 
were the same as Scenario 1 in WUI areas but natural 
ignitions were allowed to burn for resource objectives in 
the wilderness areas. 

5 This scenario builds upon Scenario 4 by greatly expanding 
the use of prescribed fire. This scenario treats a 
approximately 7.2% of the vegetated area each year, 
slightly more than Scenario 3, but with the majority of 
treatments (75%) being prescribed fire. Fire suppression 
efforts were the same as Scenario 1 in WUI areas but 
natural ignitions were allowed to burn for resource 
objectives in the wilderness areas. 

0 0 0 0 0% 0 No 
350 950 0 1300 2% 20 No 

1200 3800 0 5000 7% 11 No 

250 1000 1800 3050 4% 20 Yes, in 
wilderness 

250 1000 6600 7850 11% 20 Yes, in 
wilderness 

We assessed three metrics that we forecasted through time that 
reflect present day management objectives, including the 
restoration of a more natural fire regime dominated by low-
intensity fire; the reduction of high-risk, high-intensity wildfires; 
and the maintenance of potential C sequestration. We address 
this issue within the Lake Tahoe Basin (LTB), which is well-suited 
for landscape modeling because (1) the forests are mostly in public 
ownership, which allows for a unified approach to forest and fire 
management, (2) wildfires there have been historically confined 
within its steep basin boundaries, and (3) the climate is expected 
to warm but will remain characterized by winter snow and dry 
summers. 

METHODS 
Our analysis was a component of a larger effort to examine social 
and ecological resilience in the Lake Tahoe West (LTW) study 
area under alternative management strategies as part of a 
collaborative landscape restoration effort. This larger effort is the 
subject of various articles in this special feature, and more 
information about that project is available here: https://www. 
nationalforests.org/regional-programs/california-program/laketahoewest. 
This core of this effort involved modeling ecological change in 
the forests of LTW over time.  

We forecast climate and management interactions using the 
LANDIS-II simulation modeling framework; LANDIS-II 

simulates management and climate forcings to quantify 
uncertainty (Scheller et al. 2007). We simulated five management 
strategies varying in overall intensity and specific management 
activities deployed (Table 1) and eight climate projections in a 
fully factorial design. We selected our 40 scenarios to reflect the 
full range of plausible climate and management projections that 
were then replicated three times, therefore encapsulating most of 
the uncertainty from both (while recognizing that there is 
potential uncertainty beyond what is currently regarded as 
plausible). The behavior of the dominant disturbances, wildfire 
and insects, were dependent upon both climate and management. 

Metrics 
A variety of metrics were used to evaluate social and ecological 
resilience as part of the larger LTW research effort; these metrics 
were selected and constructed with input from a group of 
stakeholders as well as the research team (see Abelson et al. 2022). 
For this analysis, we examined three metrics that reflect important 
landscape dynamics relevant to forest management: (1) area 
burned at high intensity, (2) total area burned by wildfire; and (3) 
landscape carbon density. Note that our fire module was set up 
to represent fire intensity, specifically to approximate different 
classes of flame lengths and crown fire, but it serves also a measure 
of fire severity (Scheller et al. 2019). Although many dimensions 
of fire regime are important to consider, area burned at high-
intensity may be more informative than percent area burned at 

https://www.nationalforests.org/regional-programs/california-program/laketahoewest
https://www.nationalforests.org/regional-programs/california-program/laketahoewest
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high-intensity or severity. Area burned at high severity has been 
widely reported as a measure of departure in fire history studies 
(e.g., Safford and Stevens 2017), but that measure has potential 
to distort understandings of landscape change. For example, if a 
small area burns mostly at high-intensity in one year, followed by 
a large area mostly at low-intensity in another year, that outcome 
may be very consistent with a resilient landscape condition. 
However, if those relationships are switched, i.e., a small area at 
low-intensity followed by a large area at high-intensity, that 
outcome is indicative of departure from reference conditions. 
However, a metric based upon average percent high-severity does 
not effectively distinguish between those two outcomes.  

Total area burned by wildfire is an important process variable, 
although in itself is not generally indicative of ecological resilience 
for fire-adaptive landscapes. Area burned by wildfire is important 
for understanding larger social and ecological processes, such as 
costs of suppression, smoke emissions, and restoration of 
functional fire, which were important indicators to stakeholders 
(Abelson et al. 2022). Carbon storage, both within the forested 
landscape and overall system (including wood products) 
represents another value important to some stakeholders 
(especially because funding programs have been established to 
support management that stores carbon). For this analysis, we 
considered carbon density, or mass per unit area (Mg ha-1) within 
the landscape as a measure of this social-ecological value. We 
focus on these three indicators to consider resilience in fire-
adapted ecosystems under climate change. Much recent research 
has suggested potential to both restore fire and secure carbon 
stores (e.g., Krofcheck et al. 2017, Loudermilk et al. 2017, Liang 
et al. 2018). However, some research has also suggested that 
carbon stocks in contemporary forests of the Sierra Nevada have 
exceeded historical references in some areas with a long-history 
of fire suppression (Harris et al. 2019), which suggests that 
reductions in carbon may be consistent with ecological 
restoration. Therefore, this analysis sheds light on important 
trade-offs when considering alternative management strategies in 
light of climate change. 

Study area 
The Lake Tahoe Basin (LTB) consists of 70,000 ha of 
predominantly forested land around Lake Tahoe in the Sierra 
Nevada of California and Nevada, USA (Fig. 1). The majority 
of the LTB forested area is under the management of the USDA 
Forest Service. The climate is a Mediterranean-influenced 
continental climate with warm to hot summers and most of the 
precipitation falling as snow in the winter. Annual precipitation 
averages a little over 1000 mm per year (ranging from 400 mm to 
2000 mm; Fig. A1.1), with a mean minimum monthly temperature 
average around -7 °C and mean maximum monthly temperature 
around 24 °C (PRISM 30-year averages; Fig. A1.2). Most forests 
are mixed conifer, with the composition varying across 
topography and soils. At higher elevations, red fir (Abies magnifica 
A. Murr.) dominates, while in lower elevations Jeffrey pine (Pinus 
jeffreyi Grev. & Balf.) and white fir (Abies concolor Gord. & 
Glend.) dominate. Sugar pine (Pinus lambertiana Dougl.) and 
incense-cedar (Calocedrus decurrens (Torr.) Florin) are important 
components of the lower elevation forests. Shrub fields exist 
throughout elevation classes, featuring species primarily from the 
Ceanothus and Arctostaphylos genera. 

Fig. 1. Map of the Lake Tahoe Basin. WUI, wildland-urban 
interface. 

Much of the basin was heavily logged beginning in the late 19th 
century to support mining operations in the greater area (Taylor 
2004). Following the subsequent recovery of the forests and the 
institution of fire suppression policies, the present-day forests 
have become denser and feature more shade-tolerant tree species 
at the expense of less shade-tolerant pines (Barbour et al. 2002). 
Loudermilk et al. (2013) project that this trend will continue over 
the next 80 years. Wildfires were much more frequent prior to 
Euro-American settlement, with small fires happening nearly 
every year in some watersheds, while larger fires occurred once 
every 35 years (Taylor and Beaty 2005). Several species of bark 
beetles are also present in the Basin and have caused mortality 
across large areas of forest (Scheller et al. 2018). 
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Forest and disturbance modeling 
We chose the LANDIS-II simulation framework because it 
simulates forest succession, disturbance, and management over 
long time periods and wide spatial extents (Scheller et al. 2007). 
In LANDIS-II trees and shrubs species are modeled individually 
as species-age cohorts, each species has its own life history 
attributes (e.g. shade tolerance, fire tolerance, dispersal ability, 
etc.), and multiple cohorts can occupy the same space. This allows 
species to respond uniquely to the multiple and interactive drivers 
(Scheller et al. 2007). Moreover, each species has its own range of 
temperature and water optimums, and so each responds to the 
future climate projections differently. Cohort establishment, 
likewise, was dependent on climate conditions, and it was assumed 
that there would only be natural regeneration on this landscape. 
Species parameters are detailed in Loudermilk et al. (2013), 
Kretchun et al. (2016), and Scheller et al. (2018). Initial 
aboveground biomass results were validated against Wilson et al. 
(2013; see Appendix 1 for supplemental methods and Fig. A1.4). 

The ignition, spread, and intensity of fires (both wild and 
prescribed) were modeled using the Social-Climate Related 
Pyrogenic Processes (SCRPPLE v. 2.1) extension (Scheller et al. 
2019). Simulated fire regimes are sensitive to climate; recent 
wildfires (2000–2016) were used to parameterize fire spread and 
size. Five fire experts working in the region provided their 
estimates of the mortality of three fire intensities for varying 
species and age combinations.  

Three beetle species—Jeffrey pine beetle (Dendroctonus jeffrey), 
mountain pine beetle (Dendroctonus ponderosae), and fir engraver 
beetle (Scolytus ventralis)—that cause the majority of insect 
mortality within the LTB, as well as white pine blister rust 
(Cronartium ribicola), were simulated using a modified version of 
the Biological Disturbance Agent (BDA v.2.0.1) extension 
(Sturtevant et al. 2004); the modification triggers outbreaks 
following climate water deficit (CWD) and minimum winter 
temperature thresholds. The extension requires insect-specific 
resource requirements and assigns a species-specific vulnerability 
that varies by age. Mortality at an outbreak site is determined by 
tree species’ age and host susceptibility probabilities based from 
empirical field studies (Egan et al. 2010, 2016) and expert opinion. 
The parameters for insect spread and their resultant mortality are 
outlined in Kretchun et al. (2016). Additionally, results from the 
Insect and Disease Detection Survey (1993–2017) were used to 
validate the model results under historical climate conditions (see 
Fig. A1.5). However, there were challenges associated with using 
a climate threshold as a trigger approach as it ignores the brood 
mechanics and so does not capture the epidemic “wave” pattern 
of Egan et al. (2016). As such, the model underestimates peaks 
and overestimates troughs; instances where population dynamics 
override climate controls. All model parameters, and the model 
and extension versions used, are available on GitHub at: https:// 
github.com/LANDIS-II-Foundation/Project-Lake-Tahoe-2017/. 

Management modeling 
We developed five scenarios that represent unique approaches to 
achieving multiple management objectives: restore a low-intensity 
fire regime; reduce the risk of high-intensity fires; and maintain 
carbon sequestration. These scenarios were co-developed with 
managers representing multiple agencies operating within LTB 
along with input from stakeholder groups operating in the region. 

For details of area treated annually and treatment frequency for 
each scenario, see Table 1. Scenario 1 features no fuels 
management paired with a high fire suppression. Scenario 2 
focuses on reducing wildfire hazard in wildland-urban interface 
(WUI) area (1.5 miles from urban development) through hand or 
mechanical thinning (based upon accessibility) along with high 
effort fire suppression; it was closest to the current, business-as-
usual strategy because understory prescribed burning has been 
rather limited. Scenario 3 increases the intensity and extent of 
vegetation thinning treatments. This scenario focuses on hand 
and mechanical treatments in the WUI and general forest, with 
hand treatments occurring in the wilderness as well. Scenario 4, 
the fire-focused strategy, uses prescribed and managed natural 
ignitions, along with some limited thinning in the WUI (akin to 
Scenario 2) to reduce fuels and restore forest structure. Prescribed 
fire was constrained to be low-intensity fire only, based upon 
guidance from managers regarding their intent. Scenario 5 was 
similar to Scenario 4, but with higher levels of prescribed burning. 
In Scenario 4 and Scenario 5, natural ignitions were not 
suppressed in management zones outside of the WUI. The 
amount of area treated under the five scenarios ranges from 0% 
to 11% of the landscape annually. The amount removed by 
thinning treatments were based on recent treatments within the 
Basin, and moreover followed the same approach of a thin-from-
below up to a set diameter size class (27 cm dbh for hand thinning, 
61 cm dbh for mechanical thinning) and slope restrictions (< 30%) 
for mechanical operations. 

Climate modeling 
In keeping with the 4th California Climate Assessment, future 
climate projections were derived from four Global Change 
Models (GCM; CanESM2, CNRM5, HADGEM2, and 
MIROC5) under two different relative concentration pathways 
(RCP) (4.5: which is an “optimistic” scenario of emissions; and 
8.5: which represents a “business-as-usual” uncontrolled 
emissions scenario) using the localized constructed analogs 
downscaling methodology (Pierce et al. 2014). Climate futures 
ranged substantially with respect to precipitation: some 
projecting an increase of around 30% more annual precipitation 
(CanESM2 8.5), others projecting an almost equivalent decrease 
(MIROC5 8.5). With the CanESM2 8.5 projection, summers were 
projected to see an increase in summertime precipitation. Under 
the MIROC5 GCM, the area is expected to see increasing 
frequency and persistence of summertime droughts (Fig. A1.3). 

Analysis 
In order to differentiate between management and climate sources 
of uncertainty, an analysis of variance was performed using 
climate and management scenario as group factor variables for 
every time step of the model run and for our three metrics 
(landscape carbon density; area burned at high-intensity, and 
total area burned by wildfire). This analysis was repeated using 
decadal averages of each metric to reduce temporal 
autocorrelation associated with persistent climate events like 
multi-year droughts. We also examined a climate by management 
interaction effect although doing so produced too few degrees of 
freedom at the annual or decadal scale. The analysis was 
performed using the “car”package (3.0) in R (3.5.2). The reported 
explained variance is in terms of the sum of squares (SS), which 
can be apportioned into treatment effect and error. Error 
represents other sources of variation not explained by climate or 

https://github.com/LANDIS-II-Foundation/Project-Lake-Tahoe-2017/
https://github.com/LANDIS-II-Foundation/Project-Lake-Tahoe-2017/
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Fig. 2. Landscape level results for carbon and fire metrics by climate projection and management scenario 
through model year 100. (A) Projected landscape C density, in megagrams per hectare, for the Lake Tahoe 
Basin by management scenario, by climate projection. (B) Cumulative number of hectares that burned at 
any intensity by climate projection. (C) Cumulative number of hectares that burned at high intensity by 
climate projection. Ribbons represents +/- 1 standard deviation across 3 replicates. 

management and results from stochastic model behavior not 
specifically related to climate or management, e.g., randomized 
ignition locations and seed dispersal. 

RESULTS 

Total area burned by wildfire 
Climate was the main driver for total area burned. Despite the 
different approaches taken with respect to management practices 
among the different scenarios, there was little difference in the 
total area of wildfire (Fig. 2B). 

Area burned at high intensity 
The area of high intensity (> 8’ flame length) fire was most limited 
under the intensive third scenario (Fig. 2C). The influence of 
climate on high-intensity area burned was closely tied to the 
precipitation values for each climate projection (Fig. A1.1). As a 
result of increasing summertime precipitation, the CanESM2 8.5 

climate projection resulted in the least of amount of high-
intensity fire. The persistent droughts toward the end of the 
century forecast under the MIROC5 RCP 4.5 and 8.5 climate 
projections resulted in the largest high-intensity area burned by 
the end of the century (approximately 2-3 times higher than the 
CanESM2 RCP 8.5 projection; Fig. 2C). 

Landscape carbon density 
Our simulations project that forest carbon would increase through 
time as this forest recovers from historical logging. There was not 
a substantial amount of variation among the climate projections 
until the end of the century, when there was the greatest divergence 
among the different climates (Fig. 2A). The intensive mechanical 
treatment scenario (Scenario 3, subjected to the most thinning, 
produced an initial decline in C density (Fig. 2). However, this 
was offset over the century as the thinned stands were less likely 
to experience high-severity fire, resulting in a higher rate of carbon 



 
 

 

 

 

 
 

 
 

 

sequestration. The high fire use scenario (Scenario 5) had the 
lowest C density at the end of the century, in part due to greater 
removal of C in surface fuels, dead wood, and standing biomass 
from long-term use of prescribed fire (as compared to hand or 
mechanical thinning treatments used in Scenario 3). 

Variance decomposition 
Group predictors (climate and management scenario) explained 
a range of variation in landscape C density, total area burned, 
and area burned at high intensity, ranging from 11 to 98% of 
variance (adjusted R-squared) in a given year (Figs. 3, 4, and 5). 
Management strategy and climate projection explained 
substantially more of the variation in landscape C density (and 
were always significant; Fig. 5) as compared to total area burned 
or high-intensity area burned (Figs. 3 and 4, respectively). This 
difference highlights the uncertainty of fire generally and 
indicates that there are other sources of uncertainty, including the 
stochastic numbers of fires and their locations. 

Fig. 3. Variance decomposition through time for climate and 
management factors for high severity fire area. Proportion of 
variance, in terms of sum of squares explained by factor 
(climate, management, error), each year (left), and each decade 
(right) through time for the area burned by high severity 
wildfire. Also included is the adjusted R-squared for each 
model for each timestep. Panel C and D show P-value for each 
factor. 
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Fig. 4. Variance decomposition through time for climate and 
management factors for total wildfire area. Proportion of 
variance, in terms of sum of squares explained by factor 
(climate, management, error), each year (left), and each decade 
(right) through time for the total area burned by wildfire. Also 
included is the adjusted R-squared for each model for each 
timestep. Panel C and D show P-value for each factor. 

For total area burned, management explained less variance than 
with high-intensity fire at annual and decadal time scales. Climate 
was the main driver of total area burned, while management was 
the main driver of area burned at high-intensity (Fig. 3). For high-
intensity fire, climate explained more variance than management 
although the error term—functionally the stochasticity of 
disturbance within the model—accounted for much of the total 
variance (Fig. 4A). When aggregated to a decadal time step, 
management explained substantially more variance in the area of 
high severity fire (see Fig. 4B). At the decadal scale, large 
fluctuations in climate are averaged out (wet years can follow dry 
years, except during periods with multi-year droughts forecast), 
while the area treated was deterministic (i.e., determined by the 
management scenarios). 



 

 

 
 

 

 

 
  

 
 
 

 

 

 
 

 

 

 

 

 

 
 

Fig. 5. Variance decomposition through time for climate and 
management factors for mean total carbon. Proportion of 
variance, in terms of sum of squares explained by factor 
(climate, management, error), each year (A), and each decade 
(B) through time for the mean total landscape carbon. Also 
included is the adjusted R-squared for each model for each 
timestep. Panel C and D show P-value for each factor. 

DISCUSSION 
Uncertainty regarding future forest conditions has important 
implications for derived social values, including ecosystem 
services (Hou et al. 2013, Hamel and Bryant 2017). From carbon 
storage to wildlife habitat, forest benefits are dependent on the 
interactions of climate, disturbance, and management. When 
those benefits drive the local economy, such as recreation in the 
Lake Tahoe Basin, quantifying the contribution of individual 
drivers improves decision making regarding the forest and the 
benefits in question, which is the focus on another manuscript in 
this special feature (Abelson et al. 2022). We focused on the 
primary sources of uncertainty—climate and management and 
interactions with fire—in our simulations of forest landscape 
change in order to assess the ability of management generally to 
shape future forest conditions. Our results suggest areas where 
management can have the greatest influence (high-intensity fire 
~ landscape C density > total area burned). Although this 
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landscape is unique in its centralized ownership, which may limit 
the broader applicability of this study, there is now greater 
movement toward whole landscape planning for the State of 
California.  

The amount of area treated was more important in reducing area 
of high-intensity fire than the type of treatment used: as the area 
treated increased, the area burned by high-intensity fire declined 
because a fire would have a larger likelihood of intersecting a 
treated area. This is evident from the order of the results in Figure 
2C and how they align with the number of hectares treated in 
each management scenario (i.e., 1, 2, 4, 3, 5). However, the 
variance explained by management waned as climate change 
uncertainty increased over the century, implying that the 
effectiveness of management may decline after 40 years. 
Management efforts within the LTB may need to increase 
substantially through time, more than managers considered when 
co-designing the management strategies tested. In the near term, 
more aggressive initial treatment may delay widespread mortality, 
and in the long term, promote the transition to a more drought-
tolerant species mix (Elkin et al. 2015). In general, our results 
suggest that to increase the capacity of LTB forests to remain 
forests, management would need to cover a greater proportion of 
the landscape in a shorter period of time (Drever et al. 2006). 
Without this increased level of investment and activity, the rate 
of change brought by management actions may not keep the forest 
within a desirable condition (Johnstone et al. 2016).  

Fuel treatments (hand and mechanical thinning) locally reduce 
fire intensity and rate of spread. The extent to which this holds 
true at the landscape-scale is debated (Campbell et al. 2012, 
Restaino and Peterson 2013), because in low-ignition 
environments there is only a small chance that fire will intersect 
with a treatment. At the same time, climate change and associated 
higher temperatures will reduce fuel moisture and will generate 
larger and more intense fires (Westerling and Bryant 2008). Our 
results suggest that management reduces fire intensity at 
landscape scales when the accumulation of treated area is large 
enough that there is a high chance a wildfire will intersect a 
treatment. This finding is consistent with other studies in the 
region that have found that both area treated and incidence of 
wildfire would need to increase from recent historical levels for 
that intersection to take place (Chiono et al. 2017, Krofcheck et 
al. 2017), and that there may be thresholds of area treated above 
which that have even greater effectiveness in reducing the risk of 
high severity fire (Stevens et al. 2016). The variance in area of 
high-intensity fire and total area burned explained by 
management declined over the century, which reflects the 
warming and drying trend of climate change.  

In addition to management and climate uncertainty, we estimated 
the error term or unexplained uncertainty, which is the variance 
unexplained by either management or climate alone. This variance 
is not the same as error propagation, which is the combination of 
all the uncertainty of all the variables used in the development of 
these results (Morgan et al. 1990). In our modeling framework, 
unexplained variance of landscape C density may include a fire-
by-climate effect: as the climate warms, the number of fires 
increases, but probabilistically. A given warm and dry day may or 
may not produce multiple wildfires. Therefore, the “inherent” 
variance (Higgins et al. 2003) increases over time in parallel with 
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climate for our estimates of landscape C density. In contrast, the 
inherent variance remained relatively constant for total and high-
intensity area burned because maximum area burned for each fire 
was a linear function of climate (Scheller et al. 2019).  

Although there is and always will be uncertainty about the future, 
management has an important role to play in shaping the future 
forest conditions. Management actions can shape landscape 
conditions in spite of climate uncertainty up to a certain point. 
Areas, or metrics, where management is less effective suggests the 
need for new thinking about the kind (planned vs. reactionary), 
intensity, rate, or placement of treatments. Given the recent 
extremity of the climate conditions across the western U.S. only 
highlights the need for treatment and the need for new thinking. 

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses. 
php/13278 
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Supplemental Methods: 

Climate projections 

A combination of 8 projections were used from 4 different global change models (GCMs) at two 

relative concentration pathways (RCPs).  The RCPs chosen were 4.5 and 8.5, the former 

representing an emissions-controlled future, while the latter represents an uncontrolled emissions 

future.  The particular combination is based on recommendations from Pierce et al. 2016.  The 

LANDIS model utilizes the following climatological variables: daily precipitation (Fig. A1.1 and 

A1.2), daily maximum temperature (Fig. A1.3), daily minimum temperature, daily average 

windspeed, and daily average wind direction that are averaged across the Level II EPA 

ecoregions in the study area. 

Forest succession 

NECN (v6.5) simulates both above and belowground processes, tracking C and N through 

multiple live and dead pools, as well as tree growth (as net primary productivity--a function of 

age, competition, climate, and available water and N).  Soil moisture, as well as movement 

across the dead pools: wood and litter deposition and decomposition, soil accretion and 

decomposition are based on the CENTURY soil model (Parton et al. 1983, Scheller et al. 2011).  

Carbon estimates by pool were validated against Wilson et al. (2013) at the ecoregion level, 

where the model overestimated total C for only one region but was within one standard deviation 

for all others (Fig. A1.4). Forest growth estimates using the climate data for year 2010-2015 for 

the region were calibrated against the MODIS 17a3 product annual mean for 2000 – 2015 (Fig. 

A1.5). Mean landscape value for MODIS was 393 g C/m ^2 (sd 134), while for LANDIS the 

mean value was 320 g C/m^2 (sd 312). Reproductive success is dependent on temperature and 

water. 

Fire modeling 

The SCRPPLE extension (v2.1) models ignitions by drawing the number of ignitions from a 

zero-inflated Poisson distribution and allocates them across the landscape with a weighted 

ignition surface for each type of fire modeled (Scheller et al. 2019).  The weather influence on 

fire is based on the Fire Weather Index (FWI) measures created by the Canadian Fire Prediction 

System (1992).  There are three categories of fires that can be modeled: lightning, accidental 

(i.e., human started), and prescribed fire.  The extension also includes the ability to explicitly set 

fire suppression effort levels across the landscape as well as by ignition type, where the 

suppression parameter reduces the probability of fire spread from one cell to another.  Effort 

levels can range from 0 to 3, where 0 is no suppression attempted, to 3 which represents high 

effort and was designed to mimic current suppression efforts in the Basin (Fig. A1.6). However, 

suppression effectiveness can be limited by weather as well, a maximum wind speed parameter 

can limit suppression to days only when resources can be deployed safely.  That parameter was 

set at wind speeds of 11 meters per second (~25 miles per hour) in consultation with regional fire 

personnel. Prescribed fires follow a set of weather prescriptions for when fires can occur (Table 

A1.2). 

Contemporary wildfires (2000-2016, from CalFIRE FRAP) were used to parameterize fire 

spread and size from the Central Sierra Nevada in order to increase the sample size of fires.  

Mean annual fire area (in ha) for observed data was 117 hectares per year (SD = 309), for 



 

 

 

      

 

 

  

 

  

 

 

 

 

    

 

 

 

  

   

 

 

 

  

 

  

 

 

 

  

 

modeled data, the mean value was 122 hectares per year (SD = 210).  In order to move from fire 

intensity to fire severity (to encompass the mortality associated with fire), five fire experts 

working in the LTB provided their estimates of mortality for varying species, age, and intensity 

combinations.  More details about the parameterization of the fire extension are found in Scheller 

et al. (2019).  Suppression effort and fire spread are calibrated at the same time in order to try to 

account for both forces in recreating the contemporary fire regime. 

The model calculates three levels of fire intensity, roughly corresponding to flame lengths of: 1) 

less than 4 ft, 2) between 4 ft. and 8ft., and 3) greater than 8ft.  While ignitions are based off of 

climate, fire intensity is based off of fuel loading within each cell.  LANDIS calculates fuel 

loadings based on the current year’s litter, duff, and downed and dead woody debris.  When a 
threshold of fine fuels is exceeded in a cell, the fire intensity increases.  This threshold is based 

off a value of ~1100g/m2 or about 5 tons per acre of fine fuels.  The other threshold is based on 

ladder fuels: a combination of specific species, under a certain age, and over a certain amount of 

biomass per area, contribute to intensity.  Those species contributing to ladder fuels are: Jeffrey 

Pine, white fir, and incense-cedar, and the cohorts in the cell have to be younger than 40 with a 

biomass greater than 2000g/m2 (9 tons per acre).  When one threshold is exceeded, fire intensity 

increases.  When both thresholds are exceeded, fire intensity is at its highest.  High intensity fire 

spreads as high intensity fire.  To validate fire intensity for the Basin, the targeted fire intensity 

value for any of the larger multi-day fires was 40% high, 40% mid, and a 20% low intensity, 

with high intensity less than 60% of the total fire area. These targets are based on long-term 

averages calculated for the Northern half of the Sierra Mountains (which includes the Lake 

Tahoe footprint) using the Monitoring Trends in Burn Severity Composite Burn Index data.  

Over the entire data period (1984-2020), the percentage of area burned at high severity was 41% 

each year (with 36% and 22% for moderate and low severity respectively), with up to 58% of 

area burning at high severity in 2007, see Table A1.7. 

Insect modeling 

A modified version of the Biological Disturbance Agent extension (Biomass BDA v.2.0) 

(Sturtevant et al. 2009) was used to simulate insect outbreaks for three species of insects: Jeffrey 

pine beetle (Dendroctonus jeffrey), mountain pine beetle (Dendroctonus ponderosae), and fir 

engraver beetle (Scolytus ventralis). The extension requires insect-specific resource 

requirements and assigns a species-specific vulnerability that varies by age. Cells are 

probabilistically selected for disturbance based upon the species host density at a given site and 

the presence of non-hosts reduce disturbance probability. The parameters for spread and 

mortality are outlined in Kretchun et al. (2016), see Table A1.5 and Table A1.6 below.  Mortality 

at an outbreak site is subsequently determined by species' age and host susceptibility 

probabilities based from empirical field studies (Egan et al. 2010, 2016) and expert opinion, see 

Table A1.2 below. The insects had differing rates of spread per year from previous outbreaks.  

Mountain Pine Beetle had positive neighbor effects, where pheromones promoted more rapid 

spread when there were neighboring populations.  All insects were able to exploit recently 

burned stands up to 10 years after a fire.  Following mortality, dead biomass remains on site and 

moves to the downed woody debris C pool and the fine woody debris C pool. 

However, unlike Kretchun et al. (2016), the trigger for an outbreak was changed to be responsive 

to climate signals.  This is because for many beetle species climate influences outbreaks in three 

ways: low winter temperatures cause beetle mortality; year-round temperatures influence 



 

 

 

  

 

     

 

 

 

 

development and mass attack; and drought stress reduces host resistance. Here, we modeled 

climate influences as a function of drought and mean minimum winter temperature, recognizing 

that the full suite of climatic influences is necessary for a fully mechanistic model.  So long as 

annual climatic water deficit exceeded a set threshold, in conjunction with mean winter 

minimum temperatures exceeded a certain threshold, outbreaks could occur.  A comparison 

between the modeled and observed outbreak dataset (USFS Aerial Detection Survey: 

https://www.fs.fed.us/foresthealth/applied-sciences/mapping-reporting/index.shtml) found an 

overestimation of frequency of occurrence but an underestimation of area impacted by insects 

(Fig. A1.7). However, there was unprecedented mortality across the Sierras due to the drought 

in California that lasted from 2012-2016, and the cause of the mortality has not been definitively 

attributed to insects or drought given that field studies are retrospective (e.g., Fettig et al. 2019, 

Restaino et al. 2019). While the ADS data were the main source of such insect mortality data; 

there are significant limitations with the data.  Not all areas receive a fly-over each year and very 

few areas that are marked as having mortality receive on the ground verification.  A newer 

dataset developed by the R5 Remote Sensing Research Team uses LANDSAT images to assess 

changes in canopy cover through time.  From personal communication with Michele Slaton 

(USFS) who helped develop this data product, the amount of area affected by insects is far less 

than what is reported by the Aerial Detection Survey possibly due to the limited accuracy of fly-

over mapping. However, these data are still provisional as their manuscript is in review.  

https://www.fs.fed.us/foresthealth/applied-sciences/mapping-reporting/index.shtml


 

 

    

 
  

   

      

      

      

Supplemental Tables: 

Table A1.1. Suppression effort levels and effectiveness on fire spread probability. 

Fire Weather Index 

Thresholds Effort Level 

Fire Type 
Low-

mod 

Mod-

high 
Low Moderate High 

Accidental 40 60 0 5 10 

Lightning 40 60 0 5 10 

Rx 40 60 0 0 0 



 

   

  

  

  

  

  

    

  

   

Table A1.2. Prescribed fire parameters used for Scenario 5 

Prescribed Fire Parameters 

MaximumRxWindSpeed 6.6 (m/s) 

MaximumRxFireWeatherIndex 55 (unitless) 

MinimumRxFireWeatherIndex 10 (unitless) 

MaximumRxFireIntensity 1 (low) 

NumberRxAnnualFires 364 (days of year allowable, subject to climate constraints) 

FirstDayRxFires 1 (first julian day for allowable fire, subject to climate constraints) 

TargetRxSize 72 (hectares) 



 

  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

           

           

           

            

            

           

           

           

           

           

           

           

           

           

 

  

Table A1.3. Species parameters used in modeling. 

Name Longevity 

Sexual 

maturity 

age 

Shade 

tolerance 

Fire 

tolerance 

Seed effective 

dispersal 

distance 

(meters) 

Maximum 

dispersal 

distance 

(meters) 

Vegetative 

Reproduction 

Probability 

Minimum 

age veg 

reproduction 

Maximum 

age veg 

reproduction 

Post-fire 

regeneration 

Pinus jeffreyi 500 25 2 5 50 300 0 0 0 none 

Pinus 

lambertiana 550 20 3 5 30 400 0 0 0 none 

Calocedrus 

decurrens 500 30 3 5 30 1000 0 0 0 none 

Abies concolor 450 35 4 3 30 500 0 0 0 none 

Abies magnifica 500 40 3 4 30 500 0 0 0 none 

Pinus contorta 250 7 1 2 30 300 0 0 0 none 

Pinus monticola 550 18 3 4 30 800 0 0 0 none 

Tsuga 

mertensiana 800 20 5 1 30 800 0.0005 100 800 none 

Pinus albicaulis 900 30 3 2 30 2500 0.0001 100 900 none 

Populus 

tremuloides 175 15 1 2 30 1000 0.9 1 175 resprout 

Non-N fixing, 

Resprouting 80 5 2 1 30 550 0.85 5 70 resprout 

Non-N fixing, 

Seeding 80 5 2 1 30 1000 0 0 0 none 

N fixing, 

Resprouting 80 5 1 1 30 500 0.75 5 70 resprout 

N fixing, 

Seeding 80 5 1 1 30 800 0 0 0 none 



 

      

     

              

               

   

 

        

       

 

      

     

                 

   

 

           

        

       

        

       

        

       

        

       

        

       

        

       

        

       

        

       

        

       

        

Table A1.4. Harvest removals prescription tables 

Abies 

concolor 

Calocedrus 

decurrens 

Pinus 

jeffreyi 

Abies 

magnifica 

Pinus 

contorta 

Pinus 

lambertiana 

NonnResp NonnSeed FixnResp FixnSeed 

Hand Thinning Age range 1-60 1-64 1-52 1-60 1-73 1-52 10-200 10-200 10-200 10-200 

Scenario 1 - 5 Percent removed -66% -66% -66% -66% -66% -66% -5% -5% -5% -5% 

Trees up to 11” 
dbh 

Age range 61-70 65-78 53-68 61-75 74-88 53-64 

Percent removed -39% -39% -39% -39% -39% -39% 

Mechanical Thinning Abies 

concolor 

Calocedrus 

decurrens 

Pinus 

jeffreyi 

Abies 

magnifica 

Pinus 

contorta 

Pinus 

lambertiana 

NonnResp NonnSeed FixnResp FixnSeed 

Scenario 1, 2, 4, 5 Age range 1-60 1-64 1-52 1-60 1-73 1-52 10-200 10-200 10-200 10-200 

Trees up to 24” 
dbh 

Percent removed -93% -93% -93% -93% -93% -93% -30% -30% -30% -30% 

Age range 61-65 65-71 53-60 61-68 74-80 53-58 

Percent removed -70% -70% -70% -70% -70% -70% 

Age range 66-70 72-78 61-68 69-75 81-88 59-64 

Percent removed -65% -65% -65% -65% -65% -65% 

Age range 71-75 79-84 69-76 76-82 89-96 65-70 

Percent removed -57% -57% -57% -57% -57% -57% 

Age range 76-80 85-91 77-85 83-90 97-105 71-77 

Percent removed -45% -45% -45% -45% -45% -45% 

Age range 81-84 92-99 86-95 91-97 106-115 78-83 

Percent removed -32% -32% -32% -32% -32% -32% 

Age range 85-89 100-107 96-105 98-104 116-125 84-90 

Percent removed -23% -23% -23% -23% -23% -23% 

Age range 90-93 108-115 106-115 105-112 126-136 91-97 

Percent removed -17% -17% -17% -17% -17% -17% 

Age range 94-98 116-125 116-126 113-120 137-148 98-104 

Percent removed -13% -13% -13% -13% -13% -13% 

Age range 99-103 126-135 127-138 121-127 149-161 105-112 

Percent removed -8% -8% -8% -8% -8% -8% 

Age range 104-108 136-145 139-151 128-135 162-176 113-120 



       

 

      

     

              

  

 

           

        

       

        

       

        

       

        

       

        

       

        

       

        

       

        

       

        

       

        

       

          

       

        

       

 

Percent removed -4% -4% -4% -4% -4% -4% 

Mechanical Thinning Abies 

concolor 

Calocedrus 

decurrens 

Pinus 

jeffreyi 

Abies 

magnifica 

Pinus 

contorta 

Pinus 

lambertiana 

NonnResp NonnSeed FixnResp FixnSeed 

Scenario 3 Age range 1-60 1-64 1-52 1-60 1-73 1-52 10-200 10-200 10-200 10-200 

Trees up to 38” 

dbh 

Percent removed -95% -95% -95% -95% -95% -95% -30% -30% -30% -30% 

Age range 61-65 65-71 53-60 61-68 74-80 53-58 

Percent removed -95% -95% -95% -95% -95% -95% 

Age range 66-70 72-78 61-68 69-75 81-88 59-64 

Percent removed -85% -85% -85% -85% -85% -85% 

Age range 71-75 79-84 69-76 76-82 89-96 65-70 

Percent removed -85% -85% -85% -85% -85% -85% 

Age range 76-80 85-91 77-85 83-90 97-105 71-77 

Percent removed -85% -85% -85% -85% -85% -85% 

Age range 81-84 92-99 86-95 91-97 106-115 78-83 

Percent removed -75% -75% -75% -75% -75% -75% 

Age range 85-89 100-107 96-105 98-104 116-125 84-90 

Percent removed -70% -70% -70% -70% -70% -70% 

Age range 90-93 108-115 106-115 105-112 126-136 91-97 

Percent removed -60% -60% -60% -60% -60% -60% 

Age range 94-98 116-125 116-126 113-120 137-148 98-104 

Percent removed -35% -35% -35% -35% -35% -35% 

Age range 99-103 126-135 127-138 121-127 149-161 105-112 

Percent removed -20% -20% -20% -20% -20% -20% 

Age range 104-108 136-145 139-151 128-135 162-176 113-120 

Percent removed -10% -10% -10% -10% -10% -10% 

Age range 109-120 146-180 152-240 136-180 177-230 121-160 

Percent removed -10% -10% -10% -10% -10% -10% 

Age range 121-125 181-200 241-252 181-190 231-250 161-180 

Percent removed -5% -5% -5% -5% -5% -5% 



   

  

 

 

 

  

 

 

 

       

 

 

 

  

 

 

 

 

 

 

 

 

 

 

    

 

 

       

 

  

Table A1.5. Insect disturbance inputs by insect 

Fir Jeffrey Mountain 

Engraver Pine Beetle Pine 

Beetle 

Parameter Source Parameter Source Parameter Source 

Dispersal 1000 m/year Jactel 600 m/year Egan 400 m/ Safranik 

Rate (1991) (personal year (2006) 

comm.) 

Neighborhood N/A USFS Fir N/A N/A Yes, 2x Safranik 

Effect Engraver (2006) 

Facts 

(2017) 

Disturbance Fire: 100%, Schwilk Fire: 100%, Schwilk Fire: 100%, Schwilk 

Modifier 10 years 2006 10 years 2006 10 years 2006 



  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

       

 

 

     

 

  

 

 

 

       

 

 

       

       

       

 

 

  

Table A1.6: Insect disturbance parameters by insect by host species 

Susceptibility Mortality 

Target 

Species 

Age 

Class 1 

Age 

Class 2 

Age 

Class 3 

Age 

Class 1 

Age 

Class 2 

Age 

Class 3 

Source 

Fir 

Engraver 

Abies 

concolor 

0-10, 

0% 

10-60, 

65% 

60+, 

75% 

0-10, 

0% 

10-60, 

8% 

60+, 

12% 

Ferrell 

1994, 

Schwilk 

2006, 

Egan 

(personal 

comm) 

Abies 

magnifica 

0-10, 

0% 

10-60, 

45% 

60+, 

55% 

0-10, 

0% 

10-60, 

8% 

60+, 

12% 

Jeffrey 

Pine 

Beetle 

Pinus 

jeffreyi 

0-20, 

10% 

20-30, 

80% 

30+, 

80% 

0-40, 

5% 

40-

120, 

18% 

120+, 

8% 

Egan et 

al. 2016 

Mountain 

Pine 

Beetle 

Pinus 

albicaulis 

0-20, 

33% 

20-60, 

66% 

80+, 

80% 

0-20, 

5% 

20-60, 

15% 

80+, 

20% 

Safranik 

(2006), 

Cole and 

Amman 

(1980) 

Pinus 

lambertiana 

0-20, 

33% 

20-60, 

66% 

80+, 

80% 

0-20, 

5% 

20-60, 

25% 

80+, 

30% 

Pinus 

contorta 

0-20, 

33% 

20-60, 

66% 

80+, 

80% 

0-20, 

5% 

20-60, 

15% 

80+, 

20% 

Pinus 

monticola 

0-20, 

33% 

20-60, 

66% 

80+, 

80% 

0-20, 

5% 

20-60, 

25% 

80+, 

30% 



  

                  

 

                  

 

                  

 

 

                  

                 

 

                 

 

                 

 

 

                 

  

Table A1.7. Percent of fire severity type by class based on MTBS thematic burn severity for the Northern Sierras 

1984 1985 1986 1987 1988 1989 1990 1991 1992 1994 1996 1997 1999 2000 2001 2002 2003 2004 

High 

severity 

23% 16% 21% 32% 39% 37% 41% 6% 68% 48% 21% 17% 28% 45% 50% 31% 8% 42% 

Moderate 

severity 

30% 17% 52% 39% 35% 41% 35% 52% 23% 29% 56% 41% 49% 36% 37% 41% 51% 36% 

Very 

low/low 

severity 

47% 67% 27% 29% 27% 22% 24% 42% 9% 22% 23% 42% 24% 19% 13% 29% 41% 23% 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total 

High 

severity 

32% 27% 58% 30% 20% 15% 5% 34% 42% 54% 45% 36% 38% 38% 37% 50% 41% 

Moderate 

severity 

42% 52% 29% 48% 39% 45% 39% 48% 37% 24% 32% 43% 37% 40% 39% 26% 36% 

Very 

low/low 

severity 

26% 21% 12% 22% 41% 39% 56% 18% 22% 21% 23% 22% 26% 21% 24% 24% 22% 



   

 

 

 

Supplemental Figures: 

Fig. A1.1. Projected precipitation in mm yr-1, lines of best fit are GAM estimated, and boxplots 

represent distribution of annual precipitation for the years 2090-2100. 



 

 

  

Fig. A1.2. Projected number of consecutive days with no precipitation, lines of best fit are GAM 

estimated, and boxplots represent distribution of consecutive days per year for the years 2090-

2100. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1.3. Projected daily maximum temperature in degrees C, lines of best fit are GAM 

estimated, and boxplots represent distribution of daily temperatures for the years 2090-2100 for 

the future climate projections. 



 

  

  

Fig. A1.4. Observed versus modeled total C, in megagrams C per hectare, by ecoregion, error 

bars represent +/- 1 standard deviation. 



  

 

 

 

  

Fig. A1.5. Comparison of MODIS (left) and LANDIS (right) estimates of Net Primary 

Productivity in g C/m ^2.  Mean landscape value for MODIS was 393 g C/m ^2 (sd 134), while 

for LANDIS the mean value was 320 g C/m^2 (sd 312). 



 

     

  

Fig. A1.6. Map of suppression effort (left), management zone (middle), and the overlay of the 

two (right). 



 

  

   

   

 

  

Fig. A1.7. Observed versus modeled number of hectares affected by insect/mortality agent. 

Time 0 is equal to 1990, with Time 22-25 corresponding to the 2012-2015 California drought.  

FE is fir engraver beetle (Scolytus ventralis), JPB is Jeffrey pine beetle (Dendroctonus jeffrey), 

and MPB is mountain pine beetle (Dendroctonus ponderosae). 



 

   

  

Fig. A1.8. Harvest return frequency by management scenario. Treatments were expanded 

beyond the WUI area in Scenario 3.  Scenarios 3 through 5 had a higher intended treatment 

frequency. 



 

 

  

Fig. A1.9. Histogram of fire sizes (left) and high severity fire area (right) by scenario and by 

climate 
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