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Abstract. In the last decade, increases in fire activity and suppression expenditures have caused budgetary problems for

federal land management agencies. Spatial forecasts of upcoming fire activity and costs have the potential to help reduce
expenditures, and increase the efficiency of suppression efforts, by enabling them to focus resources where they have the
greatest effect. In this paper, we present statistical models for estimating 1–6 months ahead spatially explicit forecasts of

expected numbers, locations and costs of large fires on a 0.1258 grid with vegetation, topography and hydroclimate data
used as predictors. As an example, forecasts for California Federal and State protection responsibility are produced for
historic dates and compared with recorded fire occurrence and cost data. The results seem promising in that the spatially
explicit forecasts of large fire probabilities seem to match the actual occurrence of large fires, with the exception of years

with widespread lightning events, which remain elusive. Forecasts of suppression expenditures did seem to differentiate
between low- and high-cost fire years. Maps of forecast levels of expenditures provide managers with a spatial
representation of where costly fires are most likely to occur. Additionally, the statistical models provide scientists with

a tool for evaluating the skill of spatially explicit fire risk products.

Additional keywords: fire simulations, generalised Pareto distribution, hydroclimate, logistic regression, moisture deficit,
spline functions.

Introduction

For land management agencies such as the US Forest Service
(FS), wildland firemanagement has always been an integral part
of the job of caring for the land and protecting lives and valuable

resources. Fire management includes a mix of activities that can
be planned for, such as hazardous fuel reduction treatments and
wildfire prevention and detection, and activities that are more

subject to the whims of Mother Nature, such as wildfire sup-
pression. However, the entire wildfire management program,
including suppression, is part of the annual budget for the federal

land management agencies and, as such, is subject to federal
regulations governing the use of funds. In 1870, the legislative
appropriations bill included language, later known as the Anti-

Deficiency Act, which prohibits departments or agencies from
spending more in a fiscal year than they have been provided in
their budget (United States Senate 1998). Given that suppression
is part of an overall budget they cannot exceed, the FS and other

federal land management agencies need estimates of future
suppression expenditures both during the budgetary planning
process, which occurs 2 to 3 years out, and during the current
fiscal year in order to monitor spending.

Over the past decade, the need for such information has
grown. Both the magnitude and variability of expenditures have
increased substantially over the past two decades. Budgets

formulated 2 to 3 years in advance using a 10-year moving
average of expenditures often deviate substantially from the
amount actually expended. To further complicate matters,

agency trust funds, such as the Knudson–Vandenberg fund,
were often available to draw from in active fire years, and the
funds were repaid in subsequent years. However, these funds

have been largely depleted owing to continual borrowing during
one active fire year after another. To meet antideficiency
regulations, in recent years the FS has either had to request
highly uncertain emergency supplemental funding from

CSIRO PUBLISHING

International Journal of Wildland Fire 2011, 20, 508–517 www.publish.csiro.au/journals/ijwf

� IAWF 2011 10.1071/WF09087 1049-8001/11/040508



Congress or transfer funds from other programs within the FS to
pay for suppression.A

Owing to these issues, it is important for the FS and other

federal land management agencies to have advance warning of
the likelihood that actual fire suppression expenditures will
exceed the amount appropriated for that fiscal year. It is also

important that the agencies have an indication of the magnitude
of likely suppression expenditures in order to plan for shortfalls
in spending. To that end, researchers have been working on

providing forecasts of both upcoming fire activity and likely
suppression expenditures (see Gebert and Schuster 1999;
Bachelet et al. 2000; Westerling et al. 2002; Gebert et al.
2007; Preisler and Westerling 2007; Abt et al. 2008, 2009;

Prestemon et al. 2008).
There are several ongoing research projects aimed at fore-

casting suppression expenditures at various lead times. The

Rocky Mountain Research Station has developed within-season
forecast models, which are currently being used by both the FS
and the Department of Interior to monitor spending during

the fire season (Gebert and Schuster 1999). These forecasts
use a ‘best-professional judgment’ approach, where forecasts of
upcoming fire activity are produced by personnel in the Predic-

tive Services group at the National Interagency Fire Center in
Boise, Idaho. These predictions of fire activity are then used to
produce forecasts of monthly suppression expenditures that are
added to actual year-to-date expenditures to arrive at a forecast

for annual suppression expenditures.
Prestemon et al. (2008) have developedmodels, evaluated in

autumn and in spring, which use climate and trend variables to

estimate suppression expenditures forOctober–September fiscal
year. These models have the advantage of being more scientifi-
cally based than the fire-season forecasts but thus far cannot be

updated, and the forecasts are provided only twice per year.Also,
none of these projects use spatially explicit fire history, land
surface and climate data. The advantage of using spatial data to
produce the forecasts is the possibility of being able to use the

forecasts to inform managers not only of how much might be
spent to suppress fires but also where the expenditures might
actually occur. There also exists the possibility to reduce

expenditures, or to at least increase the efficiency of suppression
and prevention efforts, by using spatially explicit forecasts to
focus resources where they will have the greatest effect.

The work by Bachelet et al. (2000) describes a spatially
explicit dynamic vegetation model (MAPSS: Mapped
Atmosphere–Plant–Soil System) that includes a fire module

(MC1). Currently, MAPSS is being used to produce seasonal
forecasts of fire occurrence probability and expected area
burned, known as fire risks. The fire occurrence probabilities
from the MC1 modules, however, are consensus probabilities

‘defined as the percentage of climate scenarios (out of a total
of five) that predict a fire in the timeframe mentioned’
(http://www.fs.fed.us/pnw/mdr/mapss/fireforecasts/index.shtml,

accessed 5 April 2011). As such it is not easy to assess the skill of
these forecasts because consensus probabilities cannot be com-
pared directly with historic fire frequency records. In contrast,

the skill of large fire probability forecasts estimated from fire
occurrence data may be compared directly with observed fire
occurrences and sizes, as will be discussed below.

In this work, we propose a statistical model that is used to
provide spatially explicit forecasts of suppression costs. As an
intermediary step, climate data up to present are used to predict

the number of large fires ($200 ha) on a 0.1258 grid for 1 to
6 months ahead, referred to herein as the ‘upcoming season’.
The estimation is done in two steps. First, we estimate a

statistical model relating fire suppression costs – per fire – to
fire size, vegetation and topography. Next, we develop and
estimate a probability model for forecasting fire occurrence and
size. The model estimates probability of occurrence of large

fires per 0.1258 grid-cell per month, using vegetation, topogra-
phy and climate variables up to present as explanatory variables.
We also estimate the distribution of fire sizes for all fires

$200 ha. Finally, the two models above are combined to
produce spatially explicit forecasts of suppression costs for the
upcoming fire season. As an example, our methods are applied

to develop a wildfire-forecasting model for California Federal
and State protection responsibility areas.

Data and statistical methods

Spatial domain

The spatial domain for this analysis covers the current combined
fire protection responsibility areas within the State of California
of the California Department of Forestry and Fire Protection and

contract counties (combined here as ‘CDF’), the USDepartment
of Agriculture’s Forest Service (USFS) and the US Department
of Interior’s National Park Service (NPS), Bureau of Land

Management (BLM) and Bureau of Indian Affairs (BIA). The
spatial resolution is a 0.1258 latitude by longitude grid (,12 km
resolution).

Fire history

A history of large wildfires ($200 ha) for California for 1985–
2003 was assembled from digital fire records obtained from
CDF (see http://frap.cdf.ca.gov/, accessed 5 April 2011), and

FS, NPS, BLM and BIA (see http://fam.nwcg.gov/famweb/
weatherfirecd/index.htm, accessed 18April 2011). Themethods
used in compiling a fire history from these data are described

in Westerling et al. (2006, 2009), and Westerling and Bryant
(2008). Westerling et al. (2003) describe the federal fire histo-
ries. The result is a 0.1258 gridded monthly dataset of frequen-

cies of fires$200 ha in size and of the total area burned in these
large wildfires. Federal fires were allocated to the grid cell
in which they were reported to have ignited. CDF fires were
reported as polygon perimeters and were allocated to the grid

cell corresponding to their centroid. Fires were assigned to
the month in which they were discovered. In many cases, fires
continued to burn for additional months, but the means to

apportion area burned by month were unavailable.
Whereaswildfiresmanaged by the Fish andWildlife Service,

the Department of Defence and the Bureau of Reclamation were

AIn the fiscal year 2010, a ‘FLAME FUND’ (Federal Land Assistance, Management, and Enhancement Fund) was established as part of the Interior

Appropriations Bill (77-21). This fund, which is separate from the regular appropriations, is intended to reduce the likelihood of these transfers from other

programs. The bill also requires forecasts of expected suppression spending several times a year.
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not included, the fire history assembled here is sufficiently
comprehensive to allow estimation of fire risks in a diverse
array of California fire regimes. Our prediction models could

easily be extended to cover additional parts of the state where
fire histories of comparable quality and duration are not avail-
able, using themodel coefficients derived for the areas described

above.

Vegetation characteristics

Coarse vegetation characteristics such as forested land area and
the vegetated fraction of each grid cell were compiled from the
Land Data Assimilation System (LDAS) for North America’s

0.1258 gridded vegetation layers that use the University of
Maryland vegetation classification scheme with fractional
vegetation adjustment (UMDvf) (Hansen et al. 2000; Mitchell

et al. 2004). The UMDvf scheme has 14 coarse surface cate-
gories derived from 1-km Advanced Very High Resolution
Radiometer (AVHRR) satellite data collected from April 1992

to March 1993. We combined these to obtain the vegetation
categories analysed here: Forest (the Evergreen Needleleaf
and Broadleaf Forest categories, the Deciduous Needleleaf and

Broadleaf Forest categories, and the Mixed Cover category),
Woodland (the Woodland and Wooded grasslands categories),
Grassland (the Grassland category) and Shrubland (the Closed
and Open Shrubland categories), Crop, Bare, Open Water, and

the fraction of each grid cell in the Forest, Woodland, Shrubland
and Grassland categories above. We were unable to distinguish
between evergreen and deciduous forest in this analysis because

too little area of the latter was included in the study area to
support a statistical analysis at a 12-km resolution.

Topography

Topographic data on a 0.1258 grid were also obtained from
LDAS. The LDAS topographic layers are derived from the

GTOPO30 Global 30 Arc Second (,1 km) Elevation Data Set
(Gesch and Larson 1996; Verdin and Greenlee 1996; Mitchell
et al. 2004).We testedmean and standard deviation of elevation,

slope and aspect as explanatory variables in our statistical
model.

Hydroclimate

We used a ‘nowcast’ from the University of Washington and
Princeton University Westwide Seasonal Hydrologic Forecast
System to get up-to-date gridded hydroclimate data throughout

the fire season (http://www.hydro.washington.edu/forecast/
westwide/spatial/ncast/index.shtml, accessed 5 April 2011).
Based on the index station method (Wood and Lettenmaier
2006), the data describing the preceding month are available at

the beginning of every month, allowing us to issue timely sea-
sonal forecasts with monthly forecast updates based on recent
climate observations. This system uses historical (1960–2009)

climate data obtained from a sample of National Cooperative
Development Corporation stations, including maximum and
minimum temperature, precipitation, and wind speed regridded

from Global Reanalysis data, together with LDAS vegetation
and topography, to drive the Variable Infiltration Capacity
(VIC) hydrologic model at a daily time step in full energy mode

(Liang et al. 1994; Maurer et al. 2002; Hamlet and Lettenmaier

2005; Wood and Lettenmaier 2006). The output gridded
hydroclimatic variables include actual evapotranspiration
(AET), soil moisture, relative humidity (RH), surface temper-

ature (TMP) and snow-water equivalent (SWE).
We used average monthly temperatures calculated from the

VIC input data and, as indicators of drought stress, cumulative

moisture deficits. We calculated the cumulative water-year
moisture deficit for the preceding 2 years, for the current water
year through March, and for each month afterwards through the

fire season. Moisture deficit (D) was calculated from Potential
Evapotranspiration (PET) and AET (D¼PET�AET). PET
was estimated by using the Penman–Monteith equation (Pen-
man 1948; Monteith 1965).

Population

We included population as a potential explanatory variable,
given that human-caused ignitions are important in many parts

of California. In addition, population may be a proxy for other
variables such as infrastructure, accessibility and suppression
resource availability. Gridded population estimates were

obtained from the Center for International Earth Science
Information Network’s Socioeconomic Data and Applications
Center at ColumbiaUniversity.We used theGridded Population
of the World Version 3 (http://sedac.ciesin.columbia.edu/gpw/,

5 April 2011) at 2.5-arc-minutes resolution, adjusted to match
United Nations population totals. We aggregated these data to
produce population counts on the LDAS 0.1258 grid.

Estimating suppression cost per fire

We obtained fire suppression cost data per fire for a sample of
fires of sizes greater than 40 ha (or 100 acres) for the years 1995

through 2007. These were obtained from a database created and
maintained by the Rocky Mountain Research Station, which
includes fire-specific suppression expenditures and fire char-

acteristic information for a large set of federal wildland fires
(see Gebert et al. 2007 for a full description of the database).
Although our fire occurrence data include both Federal and State

protection responsibility fires, the expenditure costs are only
from federal wildland fires. Consequently, if forecast costs are
to be extended to estimate both federal and CDF fires, we will

need to make the assumption that suppression costs for federal
and CDF fires are similar.

We developed a statistical regression model relating cost
per fire to various explanatory variables, including fire size.

The specific explanatory variables tested were elevation, slope,
aspect, standard deviation of the elevation, percentage forest,
vegetation fraction and population. The variables were evaluat-

ed for the 0.1258 grid cells containing the fire.
Following is the final model with only the significant vari-

ables included:

y ¼ bok þ b1k � esd þ b2k � vegf þ b3 logðhecÞ þ e ð1Þ

where y is the square root of the suppression cost, hec is the size

of the fire in hectares, esd is the standard deviation of elevation,
vegf is vegetation fraction, b values are parameters to be
estimated and e is white noise. The square root of cost was used
because the residuals from this fit were best approximated by the
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normal distribution. The subscript k in Eqn 1 stands for one of
two fire size classes: Class I, fires between 200 and 8500 ha, and

Class II, fires $8500 ha. In our preliminary exploratory analy-
sis, we noted that the slopes and intercepts of the relationships
between the vegf and esd variables appeared to be affected by the
fire size (Fig. 1). In particular, for fires greater than 8500 ha, the

standard deviation of elevation seemed to have a larger effect on
area burned than for fires ,8500 ha. Consequently, in our final
model in Eqn 1, different slopes were assigned to two fire size

classes. The standard deviation of elevation (esd) is an index of
surface roughness that may be indicating how easy it is for a fire
to spread given the terrain, as well as how accessible the terrain

is for firefighters. Fraction vegetation (vegf) describes how
much vegetated area there is in the 0.1258 grid that can carry a
fire in that location. In our sample, the correlation between vegf

and esd was �0.2.

Estimating probability of large fire occurrence

Using land surface (topography and vegetation), population and
hydroclimate, expected numbers of large fires for the upcoming

season were predicted by fitting spatially explicit logistic
regression models. The statement for the probability of a large
fire occurrence was as follows: let rij¼ 1, if there is a fire of size
$200 ha at location i in month j, and zero otherwise. Then rij is a

Bernoulli random variable with probability of response given by

pij ¼ expðyijÞ
1þ expðyijÞ

and with the linear predictor

yij ¼ bj þ gðlongi; latiÞ þ
X

m

gmðXmijÞ ð2Þ

The spatial covariate (longi, lati) is the longitude, latitude pair of
each 0.1258 grid cell in California State and Federal lands; the

covariate Xmij is the mth explanatory variable from the list of
variables, including topography, vegetation and lagged climate

variables for location i and on date j. The parameters bj, one
for each month, and the non-parametric functions g and gm
are estimated from the data. Note that the complement of the
response probability (i.e. 1�P) is the probability of ‘no fire’ or a

fire of size less than 200 ha.
We used spline functions for evaluating gm and thin-plate

spline for evaluating the two-dimensional spatial function g

(Hastie et al. 2001). We used the generalised additive modules
of RDevelopment Core Team (2008) in the R statistical package
to carry out the estimation and assess the significance of the

various explanatory variables. Similar models were used in
Preisler and Westerling (2007) and Preisler et al. (2008) for
studying relationships between various fire danger indices and

probability of large fire occurrence in the western United States.
Probability estimates were evaluated for 1–6 months ahead.

For example, using the previous 2 years of monthly climate data
up to the end of March, we evaluated response probabilities for

the months of April to September for that year (Table 1). At the
end of March, the response probabilities for April are 1-month-
ahead forecasts, whereas that for September is a 6-months-ahead

forecast (Table 1; Model 2 for April and Model 3 for the rest).
At the end of April, we updated the climate variables to include
values up to the end of April, then estimated response probabili-

ties forMay–September (Table 1:Model 2 forMay andModel 4
for rest) and so on. We also evaluated response variables with
only spatial location and month as explanatory variables
(Table 1, Model 1). The latter response probabilities were used

as the historic estimates for a given location and month. The
historic probabilities are invariant from year to year, and they
are used to describe the ‘norm’ for the years in the study (1985–

2003) for a given location and month.
Forecast probabilities may also be used to produce maps of

significant departures from normal condition. Here, the ‘norm’
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is considered to be the historic average probabilities evaluated
from a model with no climate variables. Departure from normal
conditions may be displayed by mapping the odds of a large fire

in the present year relative to historic odds. If the odds of a large
fire, P/(1�P), on a given 0.1258 grid-cell and for a given year,
are significantly greater than the historic odds, then that cell is

designated as having higher than normal odds. A cell is desig-
nated to be significantly higher than normal if the odds for that
year were larger than one standard deviation above the historic

odds. The standard deviation was estimated using the jack-knife
procedure (Efron andTibshirani 1993) where 19 different sets of
coefficient estimates were evaluated, each using historic data
from all 19 years but one and then calculating the jack-knife

standard errors of the 19 values.
In the next section, we fit a generalised Pareto distribution

(GPD) to the empirical fire size distribution to estimate the

expected size of a fire given the occurrence of a fire of at least
200 ha.

Estimating conditional distribution of large fire size

Histograms of observed large fire sizes are often best char-
acterised by heavy-tailed distributions, such as the log-
normal or the Pareto distributions. These distributions have

often been used successfully to characterise catastrophic
events such as earthquakes (Brillinger 1993) and fires
(Moritz 1997). Other distributions used to model fire sizes
include the truncated exponential distribution (Cumming

2001). Lately, Ramesh (2005), Holmes et al. (2008) and
Schoenberg et al. (2003) have demonstrated that the GPD is a
useful model for characterising large fire sizes in particular

when the data are truncated at the lower end. A more com-
prehensive list of citations on the use of GPD for modelling
fire sizes can be found in Holmes et al. (2008). In our case,

only fires greater than 200 ha are included in the data. The
GPD scale and shape parameters are estimated from the data
and a threshold level, which will be set to 200 ha. The scale

and shape parameters for our data were estimated within the
R statistical package using modules from the ‘ismev’ library
(R Development Core Team 2008). One may also include
explanatory variables (Holmes et al. 2008); however, none of

the variables in our list seemed to have a significantly
important effect on the fire size given that the fire has already
exceeded 200 ha. This might not be surprising given the fact

that suppression efforts (a variable not studied here) may
be one of the most important explanatory variables for the
eventual size of a fire that is already greater than 200 ha.

The goodness-of-fit of the fitted distribution was assessed
by simulating 5000 observations from the GPD with a scale and
shape parameter set at the values estimated from the data and

then comparing the quantiles of the simulated data with those
of the observed fire sizes. Simulated values (r) from the GPD
were generated by the formula, r¼ logð200Þþ ŝ � ðU�â � 1Þ=â,
where U is a random variable from a uniform (0,1) distribution

(Hastings and Peacock 1975; Davison 2003) and where â and
ŝ are values of the shape and scale parameters estimated from
the observed large fire sizes.

Forecasting spatially explicit fire suppression costs

In the ‘Estimating suppression cost per fire’ section above, we
developed a regression model for estimating suppression costs

for a given fire, given fire size and some site characteristics. As
fire locations and sizes are not known for an upcoming season,
we decided to simulate them given the estimated response

probabilities and the estimated distribution of fire sizes devel-
oped above. By generatingmultiple simulations of fires and then
fire sizes, given a large fire, we can produce a distribution of
expected suppression costs at the end of March for the rest of

the fire season. Fire occurrence for each month and each pixel
was simulated by drawing a random sample from the Bernoulli
distribution with probability of success set to the forecast

probability of a large fire as given by Eqn 2. Next, for all pixels
and each month where the response was one (i.e. a large fire
occurrence was forecast), we generated a realisation from the

GPD using the method described in the section on ‘Estimating
conditional distribution of large fire size’. The projected cost of
fire expenditures at each pixel was next estimated by Eqn 1 with

fire size and size class given by the simulated values. Averages
over 1000 simulations per pixel were then mapped to produce
spatially explicit cost estimates for the upcoming fire season,
covering the March–September period.

Table 1. Models and significant variables used for predicting 1]6 months ahead spatially explicit probabilities of large fires

in California

Variable codes are: Spatial, two-dimensional smooth function of latitude and longitude; Month, categorical variable for each month

between April and September; Elevation, average elevation (m) over the 0.1258 pixel; %Forest, percentage forested land in the 0.1258

pixel; pCM, previous years cumulative moisture deficit for October–May; CM, present year cumulative moisture deficit for March–

September; pMD, previous month’s average moisture deficit; pT, previous month’s average temperature; T3–T6, present year average

temperature for the months of March to June respectively; MD6, present year average moisture deficit for the month of June

Model Variables included

(1) Historic Spatial, Month, Elevation, %Forest

(2) 1-month ahead Spatial, Month, Elevation, %Forest, pCM, CM, pMD, pT

(3) End of March Spatial, Month, Elevation, %Forest, pCM, CM,T3

(4) End of April Spatial, Month, Elevation, %Forest, pCM, CM,T4

(5) End of May Spatial, Month, Elevation, %Forest, pCM, CM,T5

(6) End of June Spatial, Month, Elevation, %Forest, pCM, CM,T6

(7) End of July Spatial, Elevation, MD6

(8) End of August 1-month ahead model (as there is only 1 month, September, being forecast)

512 Int. J. Wildland Fire H. K. Preisler et al.



Results

Suppression costs per fire

We observed a significant relationship between the standard
deviation of elevation and suppression cost per fire. There
appeared to be an increase in suppression costswhen the elevation

around the fire was more variable. However, this increase in cost
was only apparent in the largest size class (Fig. 1). The effect of
fraction vegetation on suppression cost was also found to be sig-

nificant; however, there was no significant difference in the slope
for the two fire size classes. The overall multiple correlation
coefficient forEqn1was70%.Comparison of observed costswith

predicted costs (Fig. 2) demonstrates how, even with a multiple
correlation of 70%, there still remains a large degree of unex-
plained variability in costs per fire. Correlation alone is not a

sufficient statistic when describing the skill of a model.

Forecasts of large fire occurrence and size

The following variables were found to have statistically sig-

nificant effects on the historic probabilities of large fires: spatial
location, month-in-year, elevation and percentage forested land
(Table 1, Model 1). Note that no climate variables are used

to evaluate the historic fire occurrence probabilities because
historic probabilities are supposed to estimate overall average
monthly levels for a given location. The following variables

were found to have significant effects on the monthly proba-
bilities of large fire occurrence; spatial location, month-in-year,
elevation, percentage forested land in addition to the previous

year’s cumulativemoisture deficit for October–May, the present
year cumulative moisture deficit for October–March, the pre-
vious month’s average moisture deficit, and temperature
(Table 1, Model 2). These results are consistent with those of a

previous study over the western United States (Preisler and
Westerling 2007).

As a measure of the overall fit of the models, we produced

reliability plots forModels 1, 3, 4 and 5 of Table 1.We produced
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goodness-of-fit plots by dividing the estimated probabilities for
June through September into 10 classes, and plotting the fraction
of cases with observed large fire, in each class, against the

midpoint of the class (Fig. 3). For a good fit, the points will be

scattered close to the 458 linewithin the 95%confidence bounds.
The forecasts done inMay appear to be an improvement over the
historic model and over the forecasts made at the beginning of

the fire season (March). In order to assess the goodness-of-fit
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Fig. 4. Maps of forecast large fire probabilities (%) per 0.1258 pixel, with potential locations of fires (�) from three simulations (three left panels) compared

with observed locations of fires (�) for August 1994 (right panel). n is the total number of large fires in each panel. The year 1994was a relatively high fire year.
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Fig. 5. Maps of forecast large fire probabilities (%) per 0.1258 pixel, with potential locations of fires (�) from three simulations (three left panels) compared

with observed locations of fires (�) for August 1995 (right panel). n is the total number of large fires in each panel. The year 1995 was a relatively low fire year.
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Fig. 6. Maps of forecast large fire probabilities (%) per 0.1258 pixel, with potential locations of fires (�) from three simulations (three left panels) compared

with observed locations of fires (�) for August 1987 (right panel). n is the total number of large fires in each panel. There were many lightning-caused fires in

northern California in 1987.
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of the model spatially, we produced maps of observed locations
of fires for a given month and compared themwith a set of maps
with simulated fire locations (Figs 4–6). The simulations were

done using the estimated probabilities to generate a response
(fire or no fire of size$200 ha) for each 0.1258 grid cell and for a
given month. The year 1994 (Fig. 4) was a high fire year. The
spatial pattern and numbers of observed large fires are similar

to the simulated outcomes. The latter is an indication that the
observed fires can reasonably be looked at as a realisation from
our estimated distribution of large fires for that month and year.

The year 1995 (Fig. 5) was a low fire year. Again, the simula-
tions are seen to be similar to the observed numbers and pattern
of fires. A similar series of plots were developed for 1987

(Fig. 6). Here, we see how the simulation plots may be used to
study the limitations of our model. The pattern in the map with
observed fires seems to be different from the three simulations.

In particular, there is a cluster of fires that occurred in the north-
western region of California. Our model does not take into
account lightning events. The cluster of large fires in northern
California during the summer of 1987 is due to a larger than

average number of lightning events – hence more ignitions
than the historic average – resulting in a greater number than
expected large fires. Although our model takes into account

‘clustering’ of fires due to similarities in the topography or
vegetation of nearby points by including a spatial term in the
logistic model, it does not take into account causes of clustering

of ignitions due to lightning events.
One product of our probability modelling is forecast odds

maps relative to historic averages. The relative odds maps for
August 1994 and August 1995 (Fig. 7) demonstrate the utility

of these maps. Our forecasts made at the end of March for the
upcomingmonth ofAugust seem to capture the high and low fire
seasons in these 2 years. Similar maps for other historic years

(together with the latest forecasts) are posted on the web at
https://wildfire.ucmerced.edu/forecast.

The GPD appeared to be a good fit to the distribution of

observed large fire sizes when the observed distribution of large
fire sizes was compared with the simulated GPD (Fig. 8).

Spatially explicit fire suppression costs

As an example of the final output of our modelling procedure,

we produced a map of forecast costs for the 1994 fire season
and compared them with estimated costs (Fig. 9). The estimated
costs came from the National Interagency Fire Management
Integrated Database (NIFMID), which includes a field con-

taining estimated suppression expenditures on each fire by the
reporting agency. Because the NIFMID cost data do not include
CDF fires, we multiplied the forecast costs per pixel by

the fraction of the 0.1258 pixel within California with federal
responsibility of fire suppression.

The general spatial pattern of higher forecast costs for the Los

Angeles area, southern California, and the northernmost region
of California seem to match well with the pattern of large fire
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Fig. 7. Maps of forecast odds of large fire occurrences in August 1994 (left) and 1995 (right) relative to historic

odds developed with data up to end of March.
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Fig. 8. Quantiles of observed fire sizes against those generated from the

generalised Pareto distribution with parameters estimated from the historic

fire size data.
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occurrences and costs (Fig. 9). This general spatial pattern did

not change for the 1995 forecast (figure not included), although
the overall level of expenditure was lower owing to the smaller
number of fires in 1995 (Fig. 5). We also produced a map of the
standard deviations of forecast cost (Fig. A1 of the Accessory

publication, see http://www.publish.csiro.au/?act¼view_file
&file_id¼WF09087_AC.pdf). Note that the forecast costs are
per given 0.1258 pixel, and they reflect the chance of a large fire
in that pixel together with the cost of suppression given a fire.
Consequently, the cost of suppressing a large fire in a particular
pixel may be large. However, if the probability of a large fire

occurrence is small, then the forecast cost will not be as high.
Inversely, if the cost of fire suppression is low in a given pixel,
but the probability of occurrence is high, then the forecast cost
will be higher accordingly.

Summary and conclusions

In the last decade, increases in fire activity and, subsequently,

suppression expenditures by federal land management agencies
have caused budgetary problems for the involved agencies and
increased scrutiny of spending by government oversight agen-

cies. As federal agencies increase their efforts to contain the
costs of suppressing wildfires, spatial forecasts of upcoming fire
activity and likely expenditures may help the agencies to reduce

expenditures, or to at least increase the efficiency of suppression
and prevention efforts, by enabling them to focus resources
where they will have the greatest effect.

The methodology outlined in this article shows promise for

helping with this effort. The spatially explicit forecasts of large
fire probabilities seem to match the actual occurrence of large
fires well, with the exception of years with widespread lightning

events, which remain elusive to prediction efforts. Suppression
costs, as previous researchers have found (Gebert et al. 2007;
Prestemon et al. 2008), are difficult to predict, and the models

tested in the present effort also left a large degree of unexplained

variability. This is not unexpected, however, as suppression

expenditures are influenced by a wide array of non-biophysical
factors that are not readily captured in a statistical model,
especially a spatially explicit model (see Canton-Thompson
et al. 2006, 2008 for some of the other factors influencing

suppression costs). However, even in light of this, our forecasts
of suppression expenditures did seem to differentiate between
low- and high-cost fire years and regions and, consequently, can

provide managers with a spatial representation of where costly
fires are most likely to occur.

Additionally, the information provided by these models may

prove useful as independent variables in models designed to
forecast annual suppression expenditures, such as those pro-
duced by Prestemon et al. (2008) or Gebert and Schuster (1999).
Thus far, however, this methodology has only been tested for

the Pacific Southwest Region of the USDA Forest Service in
California. In order to be useful for predicting nationwide
suppression expenditures, the methodology will have to be

tested for the rest of the United States.
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