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Abstract. Widespread outbreaks of mountain pine beetle in North America have drawn
the attention of scientists, forest managers, and the public. There is strong evidence that
climate change has contributed to the extent and severity of recent outbreaks. Scientists are
interested in quantifying relationships between bark beetle population dynamics and trends in
climate. Process models that simulate climate suitability for mountain pine beetle outbreaks
have advanced our understanding of beetle population dynamics; however, there are few
studies that have assessed their accuracy across multiple outbreaks or at larger spatial scales.
This study used the observed number of trees killed by mountain pine beetles per square
kilometer in Oregon and Washington, USA, over the past three decades to quantify and assess
the influence of climate and weather variables on beetle activity over longer time periods and
larger scales than previously studied. Influences of temperature and precipitation in addition
to process model output variables were assessed at annual and climatological time scales. The
statistical analysis showed that new attacks are more likely to occur at locations with
climatological mean August temperatures .158C. After controlling for beetle pressure, the
variables with the largest effect on the odds of an outbreak exceeding a certain size were
minimum winter temperature (positive relationship) and drought conditions in current and
previous years. Precipitation levels in the year prior to the outbreak had a positive effect,
possibly an indication of the influence of this driver on brood size. Two-year cumulative
precipitation had a negative effect, a possible indication of the influence of drought on tree
stress. Among the process model variables, cold tolerance was the strongest indicator of an
outbreak increasing to epidemic size. A weather suitability index developed from the
regression analysis indicated a 2.53 increase in the odds of outbreak at locations with highly
suitable weather vs. locations with low suitability. The models were useful for estimating
expected amounts of damage (total area with outbreaks) and for quantifying the contribution
of climate to total damage. Overall, the results confirm the importance of climate and weather
on the spatial expansion of bark beetle outbreaks over time.

Key words: adaptive seasonality; aerial detection survey data; climate suitability; Dendroctonus
ponderosae; logistic regression; mountain pine beetle; multinomial probabilities; spatial regression; spline
functions.

INTRODUCTION

Recent mesoscale epidemics of the mountain pine

beetle (Dendroctonus ponderosae Hopkins, Coleoptera:

Curculionidae, Scolytinae) in conifer forests of North

America have concerned scientists, forest managers, and

the public, especially where outbreaks have resulted in

expansive areas of dead forests in areas of high social

and ecological values. There is strong evidence that

climate is a driver of these epidemics (Carroll et al. 2004,

Raffa et al. 2008). Given future projections of warming

in the coming decades and associated predictions of

changes in outbreaks (Logan and Powell 2001, Hicke et

al. 2006, Bentz et al. 2010), it is important to understand

the effect climate has on these widespread forest

disturbances.

Climate plays a major role in influencing large

outbreaks of mountain pine beetle through several

mechanisms. First, temperatures directly affect beetles.

Seasonal temperatures control life stage development

rates. Daily temperature regimes exist that synchronize

populations (Logan and Powell 2001), thereby maxi-

mizing the potential to mass attack and overcome

defenses of host trees. Temperatures also control

voltinism: a one-year life cycle allows populations to

build more quickly than multi-year life cycles as well as

possibly avoid unfavorable weather conditions. In

addition, temperatures influence developmental timing

that ensures that the appropriate life stage enters the

cold season. Year-round temperatures that cause

synchronous emergence of a beetle population at an
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appropriate time of year with a one-year life cycle result

in ‘‘adaptive seasonality’’ (Logan and Powell 2001).

Temperature also controls beetle cold tolerance in

winter. Beetle larvae progressively develop cold toler-

ance with decreasing fall temperatures, but abnormally

cold weather results in mortality (Régnière and Bentz

2007). Temperatures below�158C to�408C can result in

significant larval mortality (Wygant 1940). Finally,

thermal effects (August temperatures) have also been

noted for flight characteristics and mass attack success

of mountain pine beetles (McCambridge 1971), and thus

have been included in a climate suitability model

(Carroll et al. 2004).

Second, climate impacts on beetle dynamics are

manifested in the host trees because tree defense

mechanisms can be compromised under high tempera-

tures and drought (Raffa et al. 2008, Bentz et al. 2010;

A. L. Carroll, J. Régnière, S. W. Taylor, and L.

Safranyik, unpublished manuscript). For instance, un-

stressed lodgepole pine (Pinus contorta) has a significant

capacity to mount defenses against mountain pine beetle

attack, including exuding toxin resin to pitch out

attacking beetles (Raffa et al. 2008). However, drought

stress may make host trees more susceptible to attack,

because such trees cannot produce resin in sufficient

quantities (Safranyik et al. 1975, Raffa et al. 2008,

Grulke et al. 2009). Drought stress also reduces tree

phloem thickness, and phloem thickness has been shown

to be positively related to beetle brood production

(Amman and Cole 1983). Thus, beetle epidemics may

also be facilitated by healthy, unstressed trees.

Studies of climate drivers of bark beetle outbreaks

have used process models representing one or more of

these influences. Models of adaptive seasonality have

been generated from laboratory measurements of life

stage development rates (Bentz et al. 1991, Logan and

Powell 2001) as well as from empirical methods based on

degree-days (Safranyik et al. 1975, Carroll et al. 2004).

Logan and Powell (2009) demonstrated that when model

results indicated adaptive seasonality in the Sawtooth

Valley region of central Idaho, USA, observed attacks

by mountain pine beetle increased as well. Simple

(Carroll et al. 2004) and more complex (Régnière and

Bentz 2007) models have been developed to simulate

cold tolerance. Régnière and Bentz (2007) showed good

agreement between their mechanistic model of cold

tolerance and observations of beetle supercooling

points. A model incorporating drought stress has been

developed from observations of mountain pine beetle

outbreaks and precipitation (Safranyik et al. 1975,

Thomson and Shrimpton 1984, Carroll et al. 2004).

Statistical analyses have also informed our under-

standing of climate drivers. Williams and Liebhold

(2002) found that temperature and precipitation in

several months were important variables for explaining

mountain pine beetle outbreaks in the northwestern

United States in their study of the effects of climate

change on future bark beetle outbreaks. Aukema et al.

(2008) statistically analyzed presence/absence of moun-

tain pine beetle attacks within the area of one outbreak
in British Columbia, Canada, considering neighborhood

beetle populations, temperature metrics, and topogra-
phy as drivers. The authors identified several tempera-

ture variables in addition to beetle presence in
surrounding cells that significantly affect probability of
beetle presence. Duehl et al. (2011) performed a similar

analysis for southern pine beetle outbreaks in the
southeastern United States, also reporting the impor-

tance of nearby beetle populations and climate.
Despite these and other studies, our understanding of

the relative importance of the three primary climate
drivers discussed above (adaptive seasonality, winter

mortality, drought stress on hosts) on mountain pine
beetle outbreaks is limited. Climatological variables

have been used in past studies as indicators of climate
suitability, for example, as part of forecasting climate

change effects (Hicke et al. 2006, Bentz et al. 2010).
Empirical validation of the laboratory-derived suitabil-

ity models under a range of conditions and for multiple
mountain pine beetle outbreaks over large areas has not

been conducted. Yet such understanding is critical for
developing and evaluating predictions of these epidemics

at large spatial scales, particularly in view of future
climate change projections that could significantly alter
key climate drivers of beetle outbreaks.

Here we examined the extent to which individual

climate and weather variables and climate suitability
indices produced by process models can explain the
spatial and temporal patterns of three decades of

mountain pine beetle epidemics over 50 672 km2 of
lodgepole pine forests in Oregon and Washington, USA.

Spatial data on historical mountain pine beetle out-
breaks were obtained from annual survey data collected

by the USDA Forest Service. We examined the
explanatory ability of simple climate variables (e.g.,

mean annual temperatures) as well as complex climate
suitability indices developed from simulation models.

We assessed explanatory variables in terms of both
short-term (annual) and long-term climatological

(means over three decades) time scales. The long-term
time scale is the one that has been presented in previous

studies (Carroll et al. 2004, Bentz et al. 2010, Safranyik
et al. 2010). Our focus was to study influences of weather

drivers on mountain pine beetle outbreaks within 1-km2

grid cells. The findings of the study contribute to the
broader understanding of the potential effects of climate

change on mountain pine beetle epidemics.

METHODS

Study area and data

The study area consisted of lodgepole pine forests in

Oregon and Washington, USA (Fig. 1). We determined
the location of stands composed primarily of lodgepole

pine using three data sources: (1) a 1-km map of forest
types from satellite observations (Zhu and Evans 1994);

(2) a 30-m map of forest types from a classification of
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Landsat imagery produced by the USGS Gap Analysis

(available online);5 and (3) a similar map of existing

vegetation types from 30-m Landsat imagery published

by the LANDFIRE program (Rollins and Frame 2006;

available online).6 We combined the data sources by
assuming the presence of lodgepole pine if any of the

three data sources listed its presence. The resulting host

map covered 5 067 200 ha, located primarily on the

central and eastern portions of the states, corresponding
to 50 672 1-km2 grid cells.

Response variables

Our response variables were derived from the number

of trees killed by mountain pine beetle, which we used as
an indicator of beetle populations. We used the Aerial

Detection Survey (ADS) database maintained by Forest

Health Protection in Region 6 (Washington and

Oregon) of the USDA Forest Service (available online).7

ADS data have been widely analyzed for monitoring

and other assessments by forest health staff in the Forest

Service (Johnson and Wittwer 2006, 2008). The data

were collected with aerial sketchmapping procedures in

which the locations of infestations were mapped
annually. Flights typically occurred in late summer,

and the observer estimated several attributes, including

the infested area boundaries; the density (trees per unit

area) of newly attacked trees based on the presence of
red needles; and host tree species and damage causal

agent (in our case, mountain pine beetle attacking

lodgepole pine).

Because a one-year lag exists between beetle attack

and the appearance of red needles, the ADS data

actually identify trees attacked in the prior year.

Mountain pine beetles disperse to new trees in late

summer, and successfully attacked trees are girdled

during egg gallery construction and inoculated with

fungi that penetrate the xylem. However, needles on

attacked trees do not turn red (and thus are not

observable by ADS sketchmappers) until the following

summer. Thus we defined the attack year as the year

prior to when ADS reported red trees.

Tree mortality due to beetle outbreaks was aggregated

from the ADS database for each 131 km grid cell in the

study area, and for each year between 1980 and 2006.

Thus all data were kilometer 3 kilometer 3 year voxels

(grid cells/pixels [locations] by time [year]). Our initial

analysis used the number of trees killed as the response

variable. However, it was difficult to detect influences of

the explanatory variables on the exact numbers of trees

killed due to the amount of noise in such data. As an

alternative, we decided to group the number of trees

killed into four classes, as explained below, and study

the influence of the climate drivers on each of these

classes.

Outbreak classes.—We classified outbreaks by num-

ber of killed trees per voxel. Class 0: 0–2.5 trees killed

per voxel. Class I: 2.5–100 trees killed per voxel. Class II:

100–1000 trees killed per voxel. Class III: �1000 trees

killed per voxel. A 2.5 trees killed cutoff point was used

following Amman (1984), who identified 2.5 trees killed/

km2 as a threshold between endemic (background) and

epidemic population levels.

Outbreak initiation (new attacks).—Cells in Class I

and higher categories (�2.5 trees killed) were defined as

being in the outbreak initiation stage when they were

surrounded by cells that were in endemic stage in the

previous year (,2.5 trees killed).

Explanatory variables

We divided explanatory variables into three major

groups as follows (Table 1 and Appendix C).

FIG. 1. Lodgepole pine forests in Oregon and Washington, USA (gray) and 1-km2 cells with .100 trees killed by mountain pine
beetle (small black squares, which merge together) in at least one year during the study period 1980–2006.

5 http://gap.uidaho.edu/index.php/gap-home/Northwest-GAP/
landcover

6 http://landfire.cr.usgs.gov/NationalProductDescriptions21.
php

7 http://www.fs.fed.us/r6/nr/fid/as/index.shtml
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Variables included in all models.—

1) Beetle pressure in the previous year (btp). Beetle

pressure represented the size and proximity of nearby

beetle populations that can disperse and attack other

stands (Shore and Safranyik 1992). Greater beetle

pressure (from either closer and/or larger beetle

populations) is expected to result in higher probabil-

ity of tree mortality in a stand (Shore and Safranyik

1992). Few studies have documented the dispersal

distances of mountain pine beetles and bark beetles

generally, with reports including dispersal events

within 30–500 m (Safranyik et al. 1992, Robertson et

al. 2007, Kautz et al. 2011) or within 5 km (Turchin

and Thoeny 1993, Wallin and Raffa 2004, Raffa et al.

2008), and low-probability, long-distance events

(Safranyik and Carroll 2006, Chen and Walton

2011). In this study, the spatial resolution of our

grid (1 km2) is comparable to the size of a stand and

.500 m, suggesting that many dispersal events are

within a grid cell. We also included nearby cells that

may be a source of dispersing beetles. We calculated

the beetle population in the surrounding neighbor-

hood using inverse-distance weighting of the number

of trees killed in the cell of interest and in

surrounding cells (out to 10 km). We applied an

inverse sigmoidal curve with weights of 1 in the cell of

interest and 0.5 and 0.1 at cells 3 and 6 km distant,

respectively. Beetle pressure was defined as the beetle

population size in this neighborhood in the previous

year. The population was considered endemic if btp

, 2.5. An examination of effect of beetle pressure at

lag times longer than one year indicated no

discernible effect on beetle populations when includ-

ed in models with previous year btp.

2) Cumulative number of trees killed in a 131 km cell in

the previous five years (ctree5). The variable ctree5

was used as a surrogate for the number of uninfested

host trees (which we did not have); mountain pine

beetle populations are dependent on the presence and

density of host trees within a stand (Shore and

Safranyik 1992).

3) A spatial location variable (longitude, latitude)

(spatial). The spatial location variable was used as

a surrogate for effects such as soil fertility or other

site conditions that were not available but may have

affected mountain pine beetle population levels in the

study area. The spatial term accounts for correlations

in the data due to persistent trends in the landscape

that are not changing over time.

Annual weather variables and process model outputs.—

Daily weather data from local weather station observa-

tions within the study area and for the period 1980–2006

were interpolated for each voxel via inverse distance

weighting and vertical lapse rates. We used the BioSIM

program for this purpose (Régnière et al. 1996) and

generated both temperature and precipitation variables

(Table 1). BioSIM was also used to generate annual

outputs of modeled climate suitability indices for

mountain pine beetle (Loganp, Loganb, Coldt, SafP3P4,

and SafP4) (Safranyik et al. 2010) (Table 1 and

TABLE 1. Description of the explanatory variables used in the study.

Variable Description

A) Variables included in all models

btp beetle pressure within neighborhood in previous year
ctree5 cumulative number of trees killed over previous five years
spatial longitude and latitude of center of cell

B) Weather and process-modeled output variables; annual time scale

Drought variables

prec01 cumulative precipitation (Jun–Aug) in current and previous year
prec1 precipitation (Jun–Aug) in previous year
water01 cumulative precipitation (Oct –Sep) in current and previous year
water1 precipitation (Oct–Sep) in previous year
moist01 cumulative 1 Sep soil moisture (0–40 cm depth) (mm) current and previous year
moist1 1 Sep soil moisture (0–40 cm depth) (mm) in previous year

Mean temperature

tmean mean temperature between Oct and Sep
tmaa mean temperature between Apr and Aug
tma mean temperature for Aug
Loganp and Loganb logan probability; adaptive seasonality (see Appendix A)

Minimum winter temperature

tmin minimum monthly temperature between Dec and Feb
coldt probability of winter survival based on cold tolerance (see Appendix A)

Climate suitability

SafP3P4 and SafP4 Safranyik model (see Appendix A)

C) Climatological variables

All variables in B above (except for the lagged variables) evaluated over the 27-year study period.
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Appendix A). We also included soil moisture (0–40 cm,

top two model layers) for 1 September from the Variable

Infiltration Capacity (VIC) model (Elsner et al. 2010),

which represented a measure of tree stress in the early
fall. A plot of a select group of annual weather variables

averaged over the study area (Appendix D: Fig. D1)

demonstrates some of the overall trends in these

variables over the study period.

Climatological variables.—The weather variables de-

scribed previously were averaged over the 27 years in
our study (1980–2006) to generate variables that

described the long-term climate in the study area.

Long-term climate suitability indices were also generat-

ed with BioSIM.

Weather and climate explanatory variables were

categorized into three groups that represented the
different climate drivers of mountain pine beetle

outbreaks according to past literature: adaptive season-

ality (based on year-round temperatures), winter mor-

tality (based on minimum cold-season temperatures),

drought-related host tree stress (based on two-year
cumulative precipitation), and brood size (based on

amount of precipitation in the previous year, which

influences production of brood that emerges in the

current year). The relative importance of explanatory

variables within each group was then assessed to identify
the most influential variables in that group.

Statistical methods

We used logistic regression to identify the explanatory

variables most influential on the probabilities of
outbreak initiation (new attacks) and intensification,

and to quantify the skill of these variables in predicting

large outbreaks at specific locations. The logistic

regression equation was

logitðpÞ ¼ log� odds ¼ b0 þ sðlon; latÞ þ
X

m

smðXmÞ

ð1Þ

where p was either the probability of outbreak initiation

or intensification (further details are given in Appendix

B); lon, lat, were the longitude and latitude of the 1-km2

grid cell; Xm, for m¼ 1, . . . , M is the vector of values of

the mth explanatory variable; s(lon, lat) is a time-

invariant, two-dimensional cubic spline for the location

variables, and sm(Xm) are tensor product smooth

functions of the explanatory variables (Wood 2006).
Plots of the estimated smooth functions describe the

potentially nonlinear relationships between each of the

explanatory variables and the log-odds of the probabil-

ities, after controlling for the rest of the variables in the

model.

Variable selection was done using the following
stepwise regression (Appendix C: Tables C1–C4). All

models included beetle pressure in the surrounding cells

in the previous year (btp), and cumulative number of

trees killed in the previous five years (ctree5). All models

except those with the climatological variables also

included spatial location (lon, lat). Having the above

variables in each model allowed us to select and study

the effects of each of the weather drivers after

controlling for differences in beetle pressure and host

conditions in each voxel. We considered three groups of

variables that represented the three climate/weather

processes (Table 1). At each selection step, only one

type of variable from each group was included in the

model. For example, no model included both precipita-

tion and soil moisture. However, lagged values of the

same variable (e.g., precipitation for the present and

previous year) were tested by including multiple lags at

each selection step. The variable from each group that

produced the largest drop in the Akaike Information

Criteria (AIC) was selected.

We assessed the level of spatial correlation in the data

by producing correlogram plots measuring the correla-

tion between data points at various distances from each

other. Spatial correlation in the residuals was minimal

(,0.13) at distances .4 km (Appendix D: Fig. D2).

Significance of each of the selected drivers in the ‘‘best’’

model was assessed using jackknife standard errors,

rather than the standard errors produced directly by the

statistical package, in order to account for between-year

variability (i.e., a random year effect). Jackknife

standard errors were evaluated from 27 different

estimates for each of the parameters of concern. Each

estimate uses data from all years but one (see Appendix

B for details).

For the analyses involving the long-term climatolog-

ical variables, all models included btp and ctree5. We did

not include the spatial location variable because many of

the climatological variables exhibited a spatial trend.

For example, there was a strong decreasing west–east

trend in the values of the climatological cold tolerance

variable. Because these variables did not change over the

span of the study (unlike the annual variables), they

were confounded with a spatial term that also mainly

estimates trends over space. This confounding effect

makes it difficult to interpret the results for the

climatological variables.

Goodness-of-fit of the logistic regression was assessed

by first grouping the data over space to produce

observed and expected trends of large outbreaks over

time. Specifically, by summing the estimated probabil-

ities of a Class II or larger outbreak over all grid cells in

a given year, we estimated the expected area (in square

kilometers) with .100 trees killed in Oregon and

Washington separately. We compared this number to

the observed total area in Washington or Oregon

(lodgepole pine lands) that had at least 100 trees killed

by mountain pine beetle. For our 1-km2 grid cells, total

area is the same as total number of grid cells. Because

the number of beetles in the previous year is likely to be

a strong predictor of outbreak size in the next year, we

anticipated that most of the models ability to predict

observed outbreak sizes would be due to beetle pressure

and thus would mask the contribution of weather. To
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ascertain the total contribution of the weather variables

on the estimated total area attacked in a given year while

keeping beetle pressure constant, we calculated a

measure of the contribution of each type of driver

(beetle pressure vs. weather) using a weighted average of

the corresponding additive terms in the logistic model

(Eq. 1). Additional details of these analyses are included

in Appendix B. The contribution of the individual

weather variables on the probability of outbreaks was

studied via the plot of the estimated odds from the

logistic regression fit as described previously.

We also studied the goodness-of-fit of our model in

predicting the spatial distribution of large outbreaks in

the last three years (2004–2006) by first estimating the

parameters of the selected model using only prior years’

data (before 2004). Next we produced maps showing

locations with predicted low, medium, high, or extreme

probabilities for 2004–2006, and compared those with

the observed locations of large outbreaks for the

corresponding years. The four categories based on the

predicted probabilities are: low ¼ 0.0–0.25; medium ¼
0.25–0.5; high ¼ 0.5–0.75; extreme ¼ 0.75–1.00. We

expect that the fraction of observed large outbreaks

among all voxels with a low prediction to be 0–0.25, and

so on for the other categories.

Finally, we produced a table showing the observed

increase in the odds of Class II outbreaks or greater

given beetle presence in the cell, for voxels with low and

high weather suitability. We evaluated an overall

weather suitability index by summing the estimates of

the weather terms in the logit line (Eq. 1). Weather

conditions in a given voxel were defined as highly
suitable if the sum of the weather terms was greater than

the 75th percentile of the index, and low if it is less than

the 25th percentile. Because the logit-line is the log-odds

of an outbreak, higher values of the suitability index

imply higher odds when all other terms in the model are
kept fixed. To control for the variable beetle pressure,

odds in each of the high and low suitability groups were

calculated after grouping the voxels in five categories

according to the observed surrounding beetle pressure in
the previous year (btp).

RESULTS

Influence of annual variables

Beetle pressure in the previous year was one of the

most important variables for all stages of mountain pine

beetle outbreaks. The estimated odds of Class I or
greater outbreaks (i.e., presence of killed trees) in a cell

surrounded by attacks in previous years (btp � 2.5) was

on average 30 times larger than for new attacks. The

probability of new attacks, i.e., attacks being introduced

to a new location where beetle pressure in the
surrounding area in the previous year was negligible

(,2.5), was marginally influenced by the precipitation

levels in current and previous years (Table 2; Appendix

C: Table C1 and Appendix D: Fig. D3). New attacks
appeared to be more likely at locations with low two-

year cumulative precipitation and low previous-year

precipitation (Fig. D3e, f ). The cold tolerance (coldt)

and April to August mean temperature (tmaa) variables,

although selected as the best variables in their group

TABLE 2. List of the selected annual variables with significant influence on mountain pine beetle outbreaks in a 1 km3 1 km3 1
year voxel.

Variable

Outbreak class

New attacks� �Class II� �Class III§

Sign} df# DAIC|| Sign df DAIC Sign df DAIC

spatial var 22 2233 var 22 1873 var 19 980
btp na�� na na þ 4 9938 þ 4 1277
ctree5 0 � � var 4 973 var 4 628
coldt 0 � � na na na þ 4 205
tmin na na na þ 4 1897 na na na
tmean na na na var 4 1276 na na na
tmaa 0 � � na na na þ 4 224
prec01 var 4 799 – 4 465 � 0 �
prec1 var 4 962 þ 4 1547 – 4 434

Notes: Only variables found to have significant influence on at least one of the probability classes are included in the table. The
variables are defined in Table 1.

� New attacks represent at least 2.5 trees killed by mountain pine beetles at locations with negligible previous year attacks (,2.5
trees killed in neighborhood in previous year).

� �Class II are at least 100 trees killed by mountain pine beetles in cells with beetle presence (�2.5 trees killed).
§ �Class III are at least 1000 trees killed by mountain pine beetles in cells with �Class II outbreaks (�100 trees killed).
} Theþ symbol indicates an overall increasing influence; – indicates a decreasing influence; 0 no significant influence, and var

indicates both increasing and decreasing influence. The exact shapes of these relationships are seen in Fig. 2 and Appendix D: Figs.
D3 and D4.

# Degrees of freedom of the smooth term; df ¼ 1 indicates a linear relationship.
jj Amount of increase in AIC when the variable is removed from the model. Larger increases indicate greater relative influence.

�� Not applicable. Throughout the table ‘‘na’’ indicates that the variable was not selected (via AIC analysis) to be included in the
model (see Appendix C: Table C1), or for new attacks, it was not included because beetle pressure in the surrounding area in the
previous year is negligible by definition of new attacks (btp , 2.5).

HAIGANOUSH K. PREISLER ET AL.2426 Ecology, Vol. 93, No. 11



(Appendix C: Table C1), were not found to have

significant effects on the probability of new attacks

(Appendix D: Fig. D3b, c). In summary, none of the

tested variables had a large influence on the probability

of new attacks in areas lacking prior mountain pine

beetle activity.

The most influential variable for intensification of

outbreaks (i.e., Class II or greater) was previous year

beetle pressure (Table 2). The estimated log-odds

increased sharply with increasing pressure up to

;50 000 trees, after which the effect seemed to level

off (Fig. 2b). The cumulative number of dead trees was

also significant. The log-odds increased with increasing

ctree5 up to ;2000 trees/km2, after which the odds

decreased, possibly as an indication of a decrease in the

number of available host trees (Fig. 2c). The influence of

the spatial term, which may be considered as a surrogate

for stand conditions and topography, although signifi-

cant, was smaller than that of the combined weather

variables (Table 2). The weather variables selected from

each of the groups were tmin, tmean, prec01, and prec1

(Appendix C: Table C2). The influence of the weather

variables tmin and tmean was significant with the log-

odds increasing with increasing tmin values above�108C

and decreasing with tmean values above 18C (Fig. 2d, e).

For the selected drought variables (precipitation), the

pattern was as follows: the odds of at least a Class II

outbreak increased with increasing precipitation in the

previous year but decreased with increasing two-year

cumulative precipitation (Fig. 2f, g).

For the largest outbreak class in our study, the

weather drivers that appeared to be most influential on

outbreak transition from Class II to Class III were coldt

followed by tmaa (Table 2; Appendix D: Fig. D4). The

odds of a Class III outbreak in voxels with at least Class

II increased 4.5-fold as coldt increased from 0 to 0.5.

However, no additional increase in the odds was seen for

cold tolerance values greater than 0.4 (Fig. D4).

Influence of climatological variables

The three long-term average (climatological) variables

selected by the AIC analysis to be included in the model

for probability of new attacks were coldt, tma, and prec

(Appendix C: Table C3). A spatial component was not

included in the study of the climatological variables for

the reasons given in Statistical methods. Of the three

climatological variables, only the mean August temper-

ature (tma) had a statistically significant influence on

probability of new attacks (Table 3; Appendix D: Fig.

D5a). The log-odds for new attacks increased linearly

with tma values .158C. This result needs to be

interpreted with caution, given the confounding effect

of the climatological variables with location-related

effects (e.g., elevation, aspect, soil conditions). However,

the significant influence of tma was consistent with

mountain pine beetle ecology (Bentz et al. 2010), and it

is likely that the landscape-scale relationship seen here

between temperature and outbreak initiation is not

simply spurious. Further studies are required (possibly

on a larger landscape) to arrive at more conclusive

results regarding beetle outbreak initiation.

The three climatological variables selected for Class II

outbreaks or greater were coldt, tmean, and precipita-

tion (Appendix C: Table C4). Of these variables, the

influence of coldt and tmean were statistically signifi-

cant, with coldt having the largest influence (Table 3;

Appendix D: Fig. D5b). We found an estimated 1.3 6 2

times increase (mean 6 SE), interval ¼ 1.2–1.5) in the

odds of an outbreak of at least Class II for each 0.1

increase in coldt. There was a 3.5 (3–4) times increase in

the odds over the range of coldt (range¼ 0.6) observed

in the region. For the conditional probability of Class

III outbreak, variables coldt and tmean were found to

have significant effects (Table 3; Appendix C: Table C3

and Appendix D: Fig. D5c). None of the climatological

drought variables had a significant effect on outbreak

initiation or intensification. This may not be surprising

given that the climatological variable is on average .27

years and our results on the annual variables indicated a

lagged effect of drought, with the different lags having

opposite effects.

Model assessment and regional level results

Total area affected by mountain pine beetle attacks

per year was predicted for each state (Oregon and

Washington) and plotted against time (Fig. 3). The

outputs reproduced the fluctuations in the observed

numbers, and in particular the increasing trend of

attacks starting in the year 2000 (Fig. 3). However, the

model did not predict as large a drop in the beetle

activity observed in the ADS data for Oregon between

1987 and 1988. Scarcity of suitable hosts during these

years may be a reason for this sharp drop in area

attacked. A better measure of host availability than the

one used (ctree5) in our study may improve results.

We studied the partial contributions of the two main

groups of explanatory variables, the combined weather

variables and the beetle pressure variable, on the total

area attacked in a given year to understand the

combined influence of weather after controlling for

beetle presence in the region (Fig. 4). Consistent with

our results above, beetle pressure had the largest

influence on the probability of intensification of an

outbreak. Also consistent with our logistic regression

results, these figures demonstrate the role weather plays

in increasing and decreasing outbreaks at the landscape

level. Increasing beetle populations in Oregon in the

early 1980s and 2000s and in Washington in the early

2000s appear to be facilitated by favorable weather

conditions in those years. In contrast, outbreak levels in

Oregon in 1985–1987 decreased because weather was

unsuitable despite high pressure.

As a further check of the influence of weather on

beetle outbreaks, we calculated the observed odds of an

outbreak for voxels with low and high overall weather

suitability (Table 4). Regardless of the beetle pressure,
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FIG. 2. Estimated change in log-odds for the conditional probability of at least 100 trees killed in a 1 km3 1 km3 1 year voxel
(at least Class II) due to the influence of (a) the spatial variables, (b) beetle pressure, (c) cumulative trees killed, and (d, e, f, g) the
climate/weather variables selected from each of the groups listed in Table 1. A variable is assumed significant if the 62 SE bands
(dashed lines) do not include the horizontal line at zero. Hatched marks at the bottom are the locations of the observed values for
the corresponding variable. (Gaps indicate that there were no observations.)
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the odds of a Class II or larger outbreak in voxels with

highly suitable weather conditions (in the upper 75th

percentile) was ;2.5 times larger than the odds in

corresponding voxels with low weather suitability (in the
lower 25th percentile).

Maps of predicted low, medium, high, or extreme

probabilities for the likelihood of Class II outbreaks for

2004–2006 demonstrate the models’ ability to predict

locations of outbreaks (Fig. 5). Good spatial agreement

was observed between predicted and observed outbreak
areas. Agreement between observed and predicted

values is also seen for 2004–2006 when the observed

frequency of outbreaks is compared to the predicted

range of probabilities in each category (Table 5). For
example, for voxels in the high category, the observed

frequency of voxels with large outbreaks for the years

2004–2006 were all in the predicted range of 0.5–0.75.

The same comparisons for 1988 were not as good. Here

the model overestimated the frequency of attacks in each

category. This result is another indication that the

variables in our model (and in particular the ctree 5

variable) were not adequate for predicting the sharp
drop in attacks between 1987 and 1988, and that a better

measure of host availability may improve model

predictions.

Discussion and Conclusions

Among all the variables tested in this study, the most

influential on the probability of outbreak intensification

was beetle pressure in the neighborhood in the previous

year. The number of beetles that disperse within a stand

(grid cell) as well as from neighboring stands (as
represented in our analysis) to attack new hosts is

critical for determining the success of beetles in killing

host trees (Shore and Safranyik 1992, Safranyik and

Carroll 2006). Cumulative number of killed trees was an

TABLE 3. A list of the selected climatological variables with significant influence on mountain pine beetle outbreaks in a 1 km3 1
km 3 1 year voxel.

Variable�

New attacks � Class II � Class III

Sign df DAIC Sign df DAIC Sign df DAIC

btp na na na þ 4 11 516 þ 4 1309
ctree5 na na na var� 3 381 var 4 496
coldt 0 � � þ 4 888 þ 3 581
tmean na na na var 3 381 var 4 545
tma þ 4 248 na na na na na na

Note: Only variables found to have significant influence on at least one of the probability classes are included in the table.
� No spatial term was included in models when studying the climatological variables. See Methods for further details.
� The shape of the relationships between the various variables and the odds of attack for each of the classes is seen in Appendix

D: Fig. D5.

FIG. 3. Observed (solid squares) and estimated (open circles) area (measured in km2) with at least 100 trees killed by mountain
pine beetle (at least Class II) in a given year, grouped by state. The shaded gray area is the ;95% confidence bounds of the
estimated curve.
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important explanatory variable as well, showing a

positive effect at low mortality values, probably related

to correlation with beetle pressure, and then a negative

relationship as mortality increased, representing stands

in which the lack of an available host limited subsequent

beetle attacks.

Weather variables, including mean annual tempera-

ture, summer precipitation, and winter low temperature,

had significant effects on outbreak intensification (Table

6). Higher winter temperatures were associated with

increased odds of large outbreaks, likely because of

increased winter survival of beetles. In contrast,

intermediate mean annual temperatures, which repre-

sent the effect of year-round temperatures on adaptive

seasonality, were optimal for large outbreaks. Higher

temperatures decreased the odds of large outbreaks,

perhaps related to conditions too warm to support

adaptive seasonality, as suggested by previous modeling

studies (Hicke et al. 2006, Bentz et al. 2010, Littell et al.

2010). There was some evidence that precipitation in the

previous year had increased the probability of outbreak

intensification; we hypothesize that this effect may be

related to increased beetle brood production with

thicker phloem (Amman and Cole 1983). The relation-

ship with total precipitation 0–1 years prior indicated

the role of drought stress on hosts and a negative

relationship between precipitation and outbreaks (Sa-

franyik et al. 1975, Raffa et al. 2008).

Except for cold tolerance, climate suitability indices

from process models (e.g., Logan probability of

adaptive seasonality) were not selected in any of our

models as alternatives to the weather variables used in

developing these indices. In the models of outbreak

initiation, the cold tolerance variable decreased AIC

slightly more than minimum winter temperature. In the

models of larger outbreaks, cold tolerance decreased

TABLE 4. The observed percentage of voxels with .100 trees killed per beetle pressure category
grouped for voxels with high or low weather suitability.

Beetle pressure
(btp)

Voxels observed

High to low
odds ratio

Low suitability� High suitability

Voxels (%) Sample size Voxels (%) Sample size

0, 10 10 2 444 22 2 911 2.5
10, 100 10 2 814 22 3 670 2.5
100, 1500 22 8 534 39 9 878 2.3
(1.5–15) 3 104 44 13 129 63 14 066 2.2
(15–150) 3 104 67 7 902 85 5 078 2.7

Note: Regardless of the beetle pressure, the odds of a Class II or larger outbreak are ;2.5 times
larger in voxels with highly suitable weather when compared to voxels with low weather suitability.

� Weather suitability is defined as low when the sum of the estimated weather terms in the
logistic regression is in the lower 25th percentile and high when it is in the upper 75th percentile.

FIG. 4. Estimated incremental contribution of beetle pressure (solid curve) and weather suitability (dashed curve) to the
probability of �Class II outbreaks within the entire study area in Washington (top panel) and Oregon (bottom panel).
Contributions were weighted by the estimated probability of beetle presence in a cell to focus on cells with beetle attack only.
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AIC substantially compared with winter temperature,

suggesting that the model for cold tolerance (Régnière

and Bentz 2007) is useful for predicting transition of

outbreaks to epidemics at regional scales, although the

relationship is not linear. There are several possible

reasons for the lack of additional explanatory power

provided by process model results. First, population-

scale genetic variation exists in the climate response of

mountain pine beetles (Bentz et al. 2001, Mock et al.

2007); the Logan model of adaptive seasonality was not

developed with populations from our study region

(Bentz et al. 1991). In addition, the Logan adaptive

seasonality model included in BioSIM results in a binary

outcome (0, 1) only under optimal thermal conditions.

However, near-optimal thermal conditions could still

produce large populations of beetles that are effective at

mass dispersal and attack, suggesting that the model

may be too restrictive in its outcomes (Bentz et al. 2010).

Another explanation is that the BioSIM mountain pine

beetle model does not consider temporal lags in drought

or the potential positive effects of precipitation (Safra-

nyik et al. 2010). Our study indicates that the

intensification of an outbreak was more likely when

there were drought conditions 0–1 years prior, and

wetter conditions during the year before an outbreak.

Although weather variables were not as important as

beetle pressure (Fig. 4) when estimating probabilities of

large outbreaks, they were ecologically significant at

critical times. First, larger positive contributions of

FIG. 5. (Top panels) Predicted probabilities of at least 100 trees killed per km2 (at least Class II) grouped into four categories
(L, ,0.25; M, 0.25–0.5; H, 0.5–0.75; E, .0.75). (Bottom panels) Study area (gray) and outbreak cells with at least 100 trees killed
per km2 (red).

TABLE 5. Observed fraction of voxels with .100 trees killed
per probability category developed for four selected years.
Voxels are assigned to one of four categories (low, medium,
high, extreme) based on their predicted probabilities.

Year

Predicted probability category

Low
0.0–0.25

Medium
0.25–0.50

High
0.50–0.75

Extreme
0.75–1.00

2004 0.020 0.39 0.59 0.81
2005 0.010 0.46 0.74 0.86
2006 0.120 0.32 0.62 0.82
1988 0.002 0.20 0.21 0.49

Notes: In each category, the observed number of voxels with
more than 100 trees killed was divided by the total number of
voxels in that category to obtain the values in the table. For a
good fit, the observed fractions should be within the predicted
probability range in the corresponding category. Lower than
expected values are observed in all categories for 1988 (see
possible explanation in Results: Model assessment and regional
level results).
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weather occurred at the beginning of major epidemics,

aiding population increases (Fig. 4). Second, weather

variables contributed to population decreases in Oregon

in the late 1980s and in Washington after 2004. High

beetle pressure resulted in an estimated high probability

of large outbreaks, whereas climate variables may

reduce these probabilities (Fig. 2). Model estimated

population decreases, which generally matched observed

decreases, were caused by variables other than beetle

pressure (like climate).

Several limitations of the study are important to

consider in relation to the main findings. The lack of

data on stand structure (tree density and size), which is

known to affect susceptibility to mountain pine beetle

attack (Shore and Safranyik 1992), precluded its use in

the statistical models. Many of the lodgepole pine stands

in the study area are highly susceptible, but there is

substantial variation in conditions (Hicke and Jenkins

2008). Some of the variation in stand structure was

included in our model by the spatial terms. Uncertainty

in the aerial survey data may have further contributed to

modeling errors. Aerial survey information was record-

ed by observers, suggesting some subjectivity and

reduced confidence in these data. We reduced this effect

by considering classes of beetle-killed trees that allow for

some variability in the accuracy of number of trees

killed. Aerial survey information also included live and

killed trees within affected area polygons, and thus was

not designed to be analyzed at fine spatial scales. Our

relatively coarse-resolution analysis (1-km grid cells) and

study of climate variables that vary slowly in space

minimized negative impacts of this effect. Adaptation of

beetle or host tree populations to local climate may hide

responses of beetle populations to weather. For exam-

ple, life stage development rates of different mountain

pine beetle populations respond differently to tempera-

ture (Bentz et al. 2001). The more limited spatial extent

of our study and similar climate across the study area

suggest that this may not be an issue here, although

more research is needed to address this question.

Our analysis did not explicitly include some drivers of

beetle population dynamics such as natural enemies,

competition, or symbionts, which are clearly important

(Safranyik and Carroll 2006, Raffa et al. 2008),

particularly at low population levels. These processes

operate at spatial scales below our 1-km spatial

resolution, and may be most important before aerial

surveys detect killed trees, making inclusion of these

drivers in our study difficult. Dispersal also acts to

influence outbreaks, although little is known about the

importance and spatial patterns of dispersal. We

included a representation of dispersal in our analysis,

and many dispersal events likely occur within one of our

grid cells (Robertson et al. 2007). However, future

statistical analyses may benefit from a more informed

representation of dispersal as new information is

obtained.

Our results are similar to evaluations of bark beetle/

climate relationships reported previously. For instance,

Aukema et al. (2008) studied a mountain pine beetle

outbreak in British Columbia, also finding that beetle

pressure was the most important driver of beetle

outbreaks. The authors also determined that winter

and summer temperatures were the most important

climatic variables, with higher probability of beetle

presence in warmer winters and summers. However,

Aukema et al. (2008) did not consider drought or

adaptive seasonality variables. Duehl et al. (2011) used a

statistical analysis of southern pine beetle outbreaks to

assess potential drivers, including climate variables.

Similar to our study, these authors found that nearby

beetle populations in the previous year were most

important, and that temperature (minimum winter

temperatures) and precipitation were also significant.

Precipitation in the last two years compared with

average had a negative relationship with beetle popula-

tions (attributed to host stress and lack of defensive

capability), whereas fall precipitation had a positive

relationship that the authors attributed to increased

nutritional quality of food resource, a finding similar to

ours.

Our study confirms the important role of climate

variables driving bark beetle outbreaks that has been

noted at smaller scales and in different geographic

locations. The relative importance of different variables

depended on the lag times, with some effects such as

drought stress switching the sign of their influence,

depending on the lag value. We also found that process

model outputs, with the exception of cold tolerance, did

not lead to additional explanatory power at the

TABLE 6. A summary of the influential drivers for optimal conditions for a large outbreak.

Driver variable Potential explanation
Optimal conditions
for large outbreaks

Beetle pressure beetle pressure high levels
Number of trees killed in past five

years
available host for beetles lower levels

Minimum winter temperature beetle mortality from very cold conditions highest levels (. �58C)
Year-round temperature adaptive seasonality: one-year life cycle synchrony

of mass attack emergence at appropriate time of year
intermediate levels (0–28C)

Precipitation in previous year thickness of phloem/quantity of food resource highest levels (.200 mm)
Cumulative precipitation in current

and previous year
drought stress of host trees lowest levels (,200 mm)
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landscape level beyond the simple climate or weather

variables. Empirical validation of process model results

over large areas and long time spans will be difficult

without new sources of data on host distribution,

weather, and beetle mortality maps. The findings here

increase our understanding of bark beetle ecology and

contribute to the development of future models of

climate suitability. These latter models will be critical for

understanding effects of future climate change on bark

beetle epidemics and resulting forest successional

dynamics (Bentz et al. 2010).
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2004. Effects of climate change on range expansion by the
mountain pine beetle in British Columbia. Pages 223–232 in
Mountain Pine Beetle Symposium: Challenges and Solutions.
Natural Resources Canada, Canadian Forest Service, Pacific
Forestry Centre, Kelowna, British Columbia, Canada.

Chen, H., and A. Walton. 2011. Mountain pine beetle dispersal:
spatiotemporal patterns and role in the spread and expansion
of the present outbreak. Ecosphere 2:art66.

Duehl, A. J., F. H. Koch, and F. P. Hain. 2011. Southern pine
beetle regional outbreaks modeled on landscape, climate and
infestation history. Forest Ecology and Management
261:473–479.

Elsner, M. M., L. Cuo, N. Voisin, J. S. Deems, A. F. Hamlet,
J. A. Vano, K. E. B. Mickelson, S. Y. Lee, and D. P.
Lettenmaier. 2010. Implications of 21st century climate
change for the hydrology of Washington State. Climatic
Change 102:225–260.

Grulke, N. E., R. A. Minnich, T. D. Paine, S. J. Seybold, D. J.
Chavez, M. E. Fenn, P. J. Riggan, and A. Dunn. 2009. Air
pollution increases forest susceptibility to wildfires: a case
study in the San Bernardino Mountains in Southern
California. Developments in Environmental Science
17:365–403.

Hicke, J. A., and J. C. Jenkins. 2008. Mapping lodgepole pine
stand structure susceptibility to mountain pine beetle attack
across the western United States. Forest Ecology and
Management 225:1536–1547.

Hicke, J. A., J. A. Logan, J. Powell, and D. S. Ojima. 2006.
Changing temperatures influence suitability for modeled
mountain pine beetle (Dendroctonus ponderosae) outbreaks
in the western United States. Journal of Geophysical
Research-Biogeosciences 111:G02019. http://dx.doi.org/
:02010.01029/02005JG000101

Johnson, E. W., and D. Wittwer. 2006. Aerial detection
surveys in the United States. Pages 809–811 in C. Aguirre-
Bravo, P. J. Pellicane, D. P. Burns, and S. Draggan, editors.
2006. Monitoring Science and Technology Symposium:
Unifying Knowledge for Sustainability in the Western
Hemisphere. Proceedings RMRS-P-42CD, USDA Forest
Service, Rocky Mountain Research Station, Fort Collins,
Colorado, USA.

Johnson, E. W., and D. Wittwer. 2008. Aerial detection surveys
in the United States. Australian Forestry 71(3):212–215.
[online]. http://search.informit.com.au/documentSummary;
dn¼406583786848213;res¼IELHSS ISSN: 0004-9158

Kautz, M., K. Dworschak, A. Gruppe, and R. Schopf. 2011.
Quantifying spatio-temporal dispersion of bark beetle
infestations in epidemic and non-epidemic conditions. Forest
Ecology and Management 262:598–608.

Littell, J. S., E. E. Oneil, D. McKenzie, J. A. Hicke, J. A. Lutz,
R. A. Norheim, and M. M. Elsner. 2010. Forest ecosystems,
disturbance, and climatic change in Washington State, USA.
Climatic Change 102:129–158.

Logan, J. A., and J. A. Powell. 2001. Ghost forests, global
warming and the mountain pine beetle (Coleoptera: Scoly-
tidae). American Entomologist 47:160–173.

Logan, J. A., and J. A. Powell. 2009. Ecological consequences
of climate change altered forest insect disturbance regimes.
Pages 98–109 in F. H. Wagner, editor. Climate change in
western North America: evidence and environmental effects.
University of Utah Press, Salt Lake City, Utah, USA.

McCambridge, F. W. 1971. Temperature limits of flight of the
mountain pine beetle, Dendroctonus ponderosae. Annals of
the Entomological Society of America 64:534–535.

Mock, K. E., B. J. Bentz, E. M. O’Neill, J. P. Chong, J. Orwin,
and M. E. Pfrender, editors. 2007. Landscape-scale genetic
variation in a forest outbreak species, the mountain pine
beetle (Dendroctonus ponderosae). Molecular Ecology
16:553–568.

Raffa, K. F., B. H. Aukema, B. J. Bentz, A. L. Carroll, J. A.
Hicke, M. G. Turner, and W. H. Romme. 2008. Cross-scale
drivers of natural disturbances prone to anthropogenic
amplification: the dynamics of bark beetle eruptions.
BioScience 58:501–517.
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Archives E093-228-A2).

Appendix C

Supplemental tables with AIC values evaluated for selection of variables in the various models (Ecological ArchivesE093-228-A3).

Appendix D

Figures showing observed yearly total areas attacked and mean values for the weather drivers with significant influence on the
probability of outbreaks, spatial correlation of data, and for model residuals, estimated log-odds for the probability of new attacks,
estimated log-odds for the conditional probability of at least 1000 trees killed, and estimated influence of the selected climatological
temperature and drought variables (Ecological Archives E093-228-A4).
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