
(0123456789().,-volV)( 0123456789().,-volV)

Nitrogen cycling responses to simulated emerald ash borer 
infestation in Fraxinus nigra-dominated wetlands 

.Joshua C. Davis . Joseph P. Shannon . Matthew J. Van Grinsven 
.Nicholas W. Bolton . Joseph W. Wagenbrenner . Randall K. Kolka 

Thomas G. Pypker 

Received: 19 December 2018 / Accepted: 25 September 2019 

� Springer Nature Switzerland AG 2019 

Abstract Understanding short- and long-term 

responses of forest nutrient cycling to disturbance is 

vital to predicting future forest function. Mortality of 

ash trees (Fraxinus spp.) due to emerald ash borer 

[EAB, Agrilus planipennis (Coleoptera: Buprestidae)] 

invasion is likely to alter ecosystem processes within 

infested stands throughout North America. In partic-

ular, the loss of Fraxinus nigra (black ash) from F. 

nigra-dominated swamps may significantly impact the 

biogeochemical cycles within these ecologically 
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important wetlands. A multiyear manipulative study 

of nine F. nigra-dominated wetlands in Michigan, 

USA was undertaken to investigate the potential 

response of above- and belowground biogeochemical 

processes to EAB. Short- and long-term changes to 

site conditions following infestation were emulated by 

respectively girdling or felling F. nigra saplings and 

overstory trees. Following disturbance, a short-term 

reduction in demand for soil nitrogen (N) by dominant 

canopy species was hypothesized to result in increased 

soil N availability and a subsequent increase in N 

uptake by retained species. Though reduced total N 

return via litterfall indicated decreased demand, this 

resulted in minimal impacts to soil N availability 

following treatment. Additionally, increased N uptake 

by co-dominant Acer rubrum (red maple) and Betula 
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alleghaniensis (yellow birch) was not observed; these 

combined responses may be attributable to increased 

immobilization of N by soil microbes. In the 3 years 

following treatment, the response of foliar character-

istics of residual stems—including decreased N con-

centrations and increased leaf mass per area— 

appeared to be driven primarily by aboveground 

conditions and a change from shade- to sun-accli-

mated leaves. While increased microbial immobiliza-

tion of N may reduce long-term changes in site 

fertility, these responses may also limit the potential 

for short-term positive growth responses of extant 

woody vegetation. In the longer term, replacing N-rich 

F. nigra leaf litter with that of A. rubrum and B. 

alleghaniensis, which have lower N content, is likely 

to have important feedback effects on soil processes. 

Keywords Soil nitrogen � Black ash � Forested 
wetlands � Invasive species � Disturbance ecology 

Introduction 

The threats posed by invasive insects are both 

profound and multi-faceted (Lovett et al. 2006), and 

include significant alteration to forest structure and 

ecosystem processes (Gandhi and Herms 2010). The 

impacts from the invasive emerald ash borer in North 

America [EAB, Agrilus planipennis Fairmaire 

(Coleoptera: Buprestidae)] have received considerable 

recent attention (Kolka et al. 2018) due to the 

damaging effects of EAB on forest composition and 

ecosystem function and the ubiquity of the genus 

Fraxinus (ash) across eastern North America (Cap-

paert et al. 2005; Herms and McCullough 2014). 

Members of the genus are common in a wide variety of 

forests, though most species generally comprise 

relatively minor proportions of the canopy (MacFar-

lane and Meyer 2005), particularly in upland forests 

(Kashian 2016). In contrast, Fraxinus nigra Marshall 

(black ash) is frequently a major component of 

forested wetlands (Wright and Rauscher 1990) and 

in portions of the range may occur in nearly pure 

stands (Erdmann et al. 1987). In the Upper Peninsula 

of Michigan, USA, F. nigra is frequently the dominant 

species in the F. nigra-Ulmus americana L. (American 

elm)-Acer rubrum L. (red maple) forest type, partic-

ularly in areas with poor drainage or organic soils 

(Erdmann et al. 1987). In addition, F. nigra is among 

the preferred hosts of EAB (Pureswaran and Poland 

2009; Tanis and McCullough 2012), and has low 

resistance to infestation (Whitehill et al. 2012; Rigsby 

et al. 2015). As such, the mortality of F. nigra from 

these forests is expected to lead to many impacts on 

ecosystem processes (Kashian and Witter 2011; 

Klooster et al. 2018), and while some of these effects 

may be temporary as forests recover, others may result 

in a persistent shift in state (Davis et al. 2017; Looney 

et al. 2017). Recent reports on the effects of F. nigra 

mortality on forest hydrology (Slesak et al. 2014; Van 

Grinsven et al. 2017; Shannon et al. 2018) and 

greenhouse gas emissions (Van Grinsven et al. 2018; 

Noh et al. 2018) begin to highlight the breadth of these 

impacts, while also illustrating the complicated nature 

of interactive processes in these ecosystems. Investi-

gations into the potential effects of EAB and other 

disturbance agents across different timescales is 

paramount to understanding the longer-term nature 

of such impacts on ecosystem function, as well as the 

potential to mitigate negative consequences. 

The loss of a large proportion of the woody 

vegetation has been shown to have significant direct 

and indirect effects on biogeochemical cycles within 

these ecosystems (Gandhi and Herms 2010), which 

may have lasting effects on future forest recovery. 

Following F. nigra mortality, both above- and below-

ground growing conditions may be altered. Below-

ground, soil nutrient dynamics may be affected via 

multiple mechanisms (Hunter 2001); among these, the 

direct effect of changing plant demand for nitrogen 

(N) and indirect effects of soil microclimate on 

decomposition and nutrient mineralization rates are 

of particular importance to biogeochemical cycling 

(Vitousek and Melillo 1979). In addition, above-

ground changes in the light environment and micro-

climate, such as increased light availability and air 

temperature, are expected to stimulate morphological 

and biochemical acclimation of leaves to the new 

growing conditions (Naidu and DeLucia 1997, 1998; 

Jones and Thomas 2007). 

Given their fundamentally interconnected nature, 

perturbation of above- or belowground ecosystem 

properties and processes are likely to induce changes 

throughout the system, potentially resulting in cas-

cading effects throughout the forest community 

(Castello et al. 1995; Ellison et al. 2005). Damage 

due to phytophagous insects has frequently been 
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associated with increased soil N availability (Jenkins 

et al. 1999; Orwig et al. 2008; Keville et al. 2013), 

which is subsequently either redistributed within the 

system or subject to export (Lovett et al. 2002). As a 

result, this increase in belowground N may result in 

either improved aboveground nutrient status of resid-

ual vegetation (Griffin et al. 2011; Levy-Varon et al. 

2014) or nutrient losses from the system (Swank et al. 

1981; Eshleman et al. 1998), potentially with negative 

consequences for downstream ecosystems and long-

term site productivity (Lovett et al. 2002). In turn, 

changes in aboveground plant properties may impact 

soil processes through the role of the canopy in 

regulating the soil physical environment and litter 

production, the characteristics of which exert strong 

influences on nutrient cycling (Prescott 2002). As 

such, it is critical to consider the implications of EAB-

induced mortality on both above- and belowground 

processes (Bardgett et al. 1998). Additionally, poten-

tial changes within these systems are likely to occur at 

different temporal scales. Such changes may include 

short-term/fast cycle impacts such as direct effects on 

litter input quantity or plant demand, as well as long-

term/slow cycle effects, including changes in litter 

quality, community composition, and nutrient cycling 

rates (Hunter 2001; Lovett et al. 2006). It is thereby 

necessary to consider effects across a range of 

conditions and time scales to fully understand how 

EAB infestation may affect forest processes (Stadler 

et al. 2005). 

Our understanding of the potential impacts of forest 

pathogens and pests on plant response and ecosystem 

nutrient dynamics are primarily drawn from studies of 

abiotic or anthropogenic disturbances (Likens et al. 

1970; Vitousek and Melillo 1979; Goulet and Belle-

fleur 1986). These investigations provide a useful 

framework by which to understand the effects of biotic 

disturbances on forest processes (Orwig et al. 2008). 

However, it is important to recognize that the effects 

of biotic disturbances on nutrient cycling may differ 

fundamentally from other disturbance types (Castello 

et al. 1995), and substantially different responses 

frequently exist even among various biotic distur-

bances (Hunter 2001). By contrast, anthropogenic 

disturbance has been used successfully to simulate the 

effects of biotic disturbances, with generally good 

agreement on the timing and extent of impacts (e.g. 

Yorks et al. 2003; Orwig et al. 2013; Trahan et al. 

2015). Adding further complication to the prediction 

of anticipated impacts, the majority of studies of forest 

disturbance effects on biogeochemical cycles have 

been conducted in upland systems, while the limited 

research within forested wetlands has focused on 

managed systems (Nakagawa et al. 2012). As such, the 

extent to which patterns suggested by results from 

upland forests and managed wetlands are applicable to 

the F. nigra-dominated forested wetlands of the upper 

Great Lakes region is unknown. 

A multiyear manipulative study was initiated on the 

Ottawa National Forest, Michigan, USA to assess the 

potential impacts of EAB on ecosystem processes in F. 

nigra-dominated wetlands. Across a series of stands, 

the mortality of F. nigra was experimentally induced 

via girdling and ash-felling to emulate the range of 

potential short- and long-term changes in site condi-

tions following EAB infestation and their effects on 

above- and belowground nitrogen cycling as well as 

canopy morphological and biochemical acclimation. 

The objective of this investigation was to evaluate the 

potential effects of F. nigra mortality on nutrient 

cycling components expected to exhibit short-term 

effects of disturbance, including soil nitrogen avail-

ability, nitrogen uptake, and foliar characteristics. The 

nature of these components and how they are affected 

by disturbance can then be used to assess how long-

term site fertility and future vegetation recovery may 

be affected by the loss of the dominant canopy species. 

Additionally, the inclusion of two levels of experi-

mental disturbance may provide further insight into 

the drivers of change in these ecosystem processes, as 

sudden mortality or changes in growing conditions 

(e.g. via Fraxinus basal area reduction or salvage 

logging) may induce a different ecological response 

from death or other losses over a longer duration (e.g. 

unmanaged EAB infestation; Orwig et al. 2013). We 

hypothesize that the loss of the dominant species in 

these forests will drive changes in the functional role 

of co-dominant tree species in nitrogen and energy 

cycling, resulting in fundamental shifts in patterns of 

forest resource acquisition. Specifically, we hypothe-

sized that (i) F. nigra mortality will lead to a short-

term reduction in total demand for nitrogen and thus 

increased inorganic soil nitrogen availability, subse-

quently resulting in (ii) increased nitrogen return via 

litterfall of co-dominant species, indicating greater 

nitrogen availability to and uptake by these stems. In 

addition, (iii) changes in the foliage of co-dominant 
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species that reflect a shift from shade- to sun-grown 

foliar characteristics are expected. 

Methods 

Study site description 

Study sites were located on the Ottawa National Forest 

in the western Upper Peninsula of Michigan, USA 

(Fig. 1). Average monthly temperatures range from a 

minimum of - 11.3 �C in January to a maximum of 

18.2 �C in July (1981–2010 normals data from the 

Bergland Dam, MI station, UTM Zone 16 N 304840 

5162412; Arguez et al. 2010). Thirty year mean annual 

precipitation was 1010 mm year -1, with the majority 

occurring from June through November (Arguez et al. 

2010). Surface water in these wetlands is generally 

present from the onset of snowmelt until mid-summer 

and typically remained near the soil surface through-

out the growing season during this study (Van 

Grinsven et al. 2017). In these sites, surface soils 

were comprised of woody peat Histosols ranging in 

depth from 5 cm to greater than 690 cm with a mean 

depth of 140 cm, which were underlain by clay or clay 

loam glaciolacustrine deposits (Van Grinsven et al. 

2017). 

Nine wetlands were selected based upon similarity 

in overstory composition, size, and landscape position. 

No site exhibited any evidence of EAB infestation 

prior to or during the course of the study. Overstory 

basal area and density of F. nigra (mean ± standard 

error) across the nine sites was 19.2 ± 2.3 m2 ha -1 

and 556 ± 57 stems ha -1, respectively, which corre-

spond to a relative dominance of 66.3 ± 6.8% and 

relative density of 64.9 ± 5.0% (Davis et al. 2017). 

Wetland area ranged from 0.23 to 1.19 ha, and all 

study sites were located in isolated depressions within 

first-order watersheds. The blockTools package 

(Moore 2011) for the R statistical environment 

(version 3.2.0, R Core Team 2015) was used to create 

groups (n = 3) of study sites by geographical location, 

such that in-group spatial variation was minimized. 

Each group contained one site of each treatment, 

which consisted of ‘Control,’ ‘Girdle,’ and ‘Ash-Cut’. 

The ‘Girdle’ and ‘Ash-Cut’ treatments were intended 

to mimic potential short- and long-term changes in site 

conditions following EAB infestations, respectively. 

Scaled and weighted values for initial estimates of 

percent F. nigra basal area, total site area, and average 

depth of organic soil were calculated and used to 

assign treatments within each group such that among-

treatment variation in these values was minimized. 

Treatments in the ‘Girdle’ and ‘Ash-Cut’ sites were 

applied in the winter of 2012/2013. In ‘Girdle’ sites, 

all F. nigra stems C 2.5 cm in diameter at 1.37 m 

were hand-girdled with a drawknife in a 15–30 cm 

band to a depth sufficient to sever all phloem and 

cambium tissue. All F. nigra stems C 2.5 cm at 

1.37 m within ‘Ash-Cut’ sites were felled by chainsaw 

and left onsite. Within the ‘Girdle’ treatment sites, 

canopy leaf-out of all sampled trees occurred for a 

single year post-treatment; canopy mortality was 

complete by the second growing season following 

treatment application. In each of the ‘Girdle’ and 

‘Ash-Cut’ sites, epicormic branches originating from 

Fig. 1 Regional map (left) with Forest Inventory and Analysis 

importance value (Prasad and Iverson 2003) and detail map of 

the Ottawa National Forest in western Upper Michigan (right) 

with study site locations (diamonds). Each block of sites 

contained one replicate of each treatment (Davis et al. 2017) 
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the main stem just below the girdle or cut sprouted in 

the first growing season following treatment. Though 

some of these sprouts died over the course of the study, 

many continued to grow throughout the study, with 

some reaching heights in excess of 6 m. (Davis et al. 

2017). No additional treatment of epicormic sprouting 

was undertaken, and no instances of phloem closure 

across girdles was observed. 

Within each study site, three instrument clusters 

were established at spatially distributed random loca-

tions throughout the wetland, where cluster centers 

were located such that all instrumentation was [ 5 m

from the wetland edge and [ 10 m from another 

cluster. Instrumentation was accessed via raised 

boardwalks. 

Sample collection 

Ion exchange resin (IER) bags (Binkley and Matson 

1983) were used to evaluate inorganic soil nitrogen 

availability, using a modification of the protocol 

described in Giblin et al. (1994). Bags were con-

structed of undyed nylon/Lycra� fabric, each con-
taining 5 g of mixed bed IER (Dowex Marathon MR-

3, Sigma-Aldrich Corp., St. Louis, MO, USA), and 

closed with a nylon cable tie. Bags were soaked for 1 h 

in a 1.2 M HCl solution, rinsed in deionized water, and 

frozen in polyethylene bags until deployment. At each 

study site, a group of three IER bags was buried at each 

of ten locations randomly generated in ArcGIS (Esri, 

Redlands, CA, USA) such that groups were located a 

minimum of 5 m from either the study site edge or 

another resin bag group, and at least 1 m from any 

other infrastructure. To minimize disruption of upper 

soil layers, three angled incisions into the soil were 

made approximately 30 cm away from and toward the 

center flag marking each location. One bag was placed 

in each incision so that the lowermost point was at a 

depth of 10 cm below the soil surface, after which the 

soil was replaced. The remaining two IER bags were 

placed in this manner at 120� intervals around the 
center point. 

Three seasonal deployments and retrievals of IER 

bags occurred each year for 2 years, with each 

deployment keyed to phenological events. Initial 

deployments occurred after leaf-fall and prior to 

treatment in mid-November 2012. These bags were 

removed and new bags inserted in the same location 

after the leaves of all deciduous tree species were fully 

expanded in the spring (late June/early July 2013, 

‘‘Spring’’). The second set of bags was removed and 

replaced at the onset of senescence (late August/early 

September 2013, ‘‘Summer’’). The third set of IER 

bags remained in place until leaf fall in mid-November 

2013 (‘‘Autumn’’). Deployments were repeated on the 

same schedule in 2013/2014 with this second cycle of 

bags offset from the initial bag locations by 60�. After 
removing the IER bags from the soil, they were 

thoroughly rinsed with deionized water and placed in 

polyethylene bags. Bags were immediately stored in a 

cooler with ice in the field and subsequently at 

- 20 �C upon return to the laboratory and until 
extraction. 

Twenty 0.5 m2 litter traps constructed of polyvinyl 

chloride pipe frames and fiberglass window screen 

material were installed at each site. A pair of litter 

traps was located opposite each other at 3 m from the 

center point of each instrument cluster, while the 

remaining 14 were placed at randomly generated 

points adjacent to boardwalks, with a minimum of 3 m 

between traps. Traps were elevated to prevent con-

tamination from surface water or soil. Leaf litter was 

collected monthly at each site within all treatments 

between mid-June and mid-October from 2012 to 

2014. Collected litter was returned to the laboratory 

where it was dried at 65 �C until no further weight 
change was observed, after which it was stored at room 

temperature. All litter samples were subsequently 

sorted into F. nigra and non-F. nigra components and 

weighed, while litter from five traps at each site was 

further sorted to separate Betula alleghaniensis Brit-

ton (yellow birch) and A. rubrum litter. Litter from all 

months for a given trap and species were pooled for 

nutrient analyses (see ‘‘Sample processing and anal-

ysis’’). Litter trap locations and the subset of traps that 

received supplemental sorting remained fixed between 

study years. However, if a sample in a given month 

was unusable (e.g. a tipped or damaged trap), a 

substitute sample from another trap from the site was 

used, so that each composite annual sample for 

nutrient analysis contained litter from each month of 

the growing season. 

Live foliage samples were obtained by shotgun at 

each site in late August from 2012 to 2015, prior to the 

onset of senescence. For each of the three major 

overstory species (F. nigra, A. rubrum, and B. 

alleghaniensis), five dominant or co-dominant over-

story stems nearest the randomly generated locations 
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used for vegetation measurements in a related study 

(Davis et al. 2017) were sampled. Samples were taken 

from at least three different east- or west-facing 

branches (Law et al. 2008) of the upper third of the 

crown, yielding a composite sample of at least 25 

leaves for each tree. Within the ‘Girdle’ sites, foliage 

samples were obtained using the same criteria from 

epicormic branching that occurred following treat-

ment. Foliage samples were immediately placed in a 

zip-top polyethylene bag and stored in a cooler with 

ice while onsite, and subsequently stored at 4 �C until 
further processing. 

Sample processing and analysis 

Prior to extraction, IER bags were thawed at 4 �C 
overnight, after which they were again rinsed with 

deionized water to remove any remaining soil parti-

cles. Any bags that exhibited evidence of damage were 

discarded. Within a given sample period, each group 

of bags was extracted together in 50 ml of 2 M KCl 

solution (Kjønaas 1999) per bag for 1 h at 150 strokes 

per minute on an orbital shaker table (New Brunswick 

Innova 2100, Eppendorf, Hamburg Germany). The 

resulting eluent was passed through a 1.6 lm glass 

fiber filter (Grade A, Sterlitech Corp., Kent, WA, 

USA) and frozen at - 20 �C in a polypropylene 
centrifuge tube until analysis. Colorimetric analysis of 

the inorganic nitrogen content of each sample was 

performed on a microplate reader (SpectraMax M2, 

Molecular Devices LLC, Sunnyvale, CA, USA) using 

the techniques described for NH4 
? and NO3 

- in 

Sinsabaugh et al. (2000) and Doane and Horwáth 

(2003), respectively. Each polystyrene well plate 

contained triplicate aliquots of each sample along 

with a set of standards prepared in 2 M KCl. The 

concentration of each sample was calculated from the 

measured absorbance values of the standards on each 

plate and the mean absorption of each set of triplicates. 

Live foliage samples obtained in 2012 and 2013 

were dried at 65 �C until a stable weight was reached. 
In 2014 and 2015, the area of 25 fresh leaves from each 

sample tree was measured with a leaf area meter set to 

a resolution of 1 mm 2 (LI-3100, LI-COR Inc., 

Lincoln, NB, USA), after which the leaves were dried 

as above. Foliage samples obtained in 2015 received 

additional processing to determine chlorophyll con-

tent (Warren 2008; see Online Resource 1 for addi-

tional details on processing) prior to drying. Dried 

litter and live foliage samples were ground to a fine 

powder (8000 M Mixer/Mill, Spex SamplePrep LLC, 

Metuchen, NJ, USA), from which the mass-based 

carbon and nitrogen (NMASS, Reich et al. 1992) 

concentration was determined via elemental combus-

tion analysis (ECS 4010 CHNSO Analyzer, Costech 

Analytical Technologies Inc., Valencia, CA, USA). 

Analytical methods 

The mass of NH4 
? and NO3 

- eluted from the IER was 

determined from the measured concentration and 

volume of eluent, from which the mass of the nitrogen 

component of each molecule was then calculated. 

These values were standardized by resin mass and 

time in soil, yielding soil N availability as the mass of 

N per mass of resin per day (lg g  -1 day -1). A large 

early snowfall event in November 2014 prevented 

access to six of the nine sites for collection of the final 

set of IER bags until the following spring. As a result, 

data from all final collections were excluded from 

statistical analyses. Mixed effects models fit to these 

data used season and treatment as fixed effects, and 

group nested within site as random effects. Soil N data 

were square root transformed to correct non-normality 

and heteroscedasticity of the residuals of the statistical 

models. 

Leaf mass per area (LMA) for live foliage was 

calculated as oven-dry mass divided by leaf area 

(g m -2). Measured live foliage NMASS and LMA were 

then used to determine leaf nitrogen on an area basis 

(NAREA, g  m  -2, Reich et al. 1992). Mixed models fit to 

live foliage N and LMA data used treatment and year 

as fixed effects, and sample tree nested within site as 

random effects. Data were log transformed prior to 

fitting models with the exception of LMA, for which a 

square root transformation was superior at correcting 

non-normality and heteroscedasticity in the model 

residuals. 

Litter sample NMASS was multiplied by the mass of 

litterfall for a given species to calculate N return via 

litterfall for each year (kg ha -1 year -1). Mean values 

for litter mass and litter N return by species, study site, 

and year were calculated and models were fit using 

year and treatment as fixed effects, with study site as 

the sole random effect. Data were log transformed 

prior to fitting models to meet assumptions of 

normality and homoscedasticity of model residuals. 
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All analyses were performed in R (R Core Team 

2015). Comparisons of pre-treatment litter and fresh 

foliage NMASS site means were made using the 

Kruskall–Wallis rank sum test (R Core Team 2015) 

followed by pairwise comparisons using Nemenyi 

tests in the PMCMR package (Pohlert 2014). Mixed 

effects models were fit using the lme4 package (Bates 

et al. 2015). Visual examination of residual plots from 

models fit to data transformed as previously described 

did not reveal significant deviations from the assump-

tions of normality or homoscedasticity. Post-hoc 

pairwise comparisons and comparisons of trends were 

made using the lsmeans package (Lenth 2016) using 

the Tukey-HSD method to adjust p values. A signif-

icance level of a B 0.05 was used for all comparisons. 

Standard errors were calculated using a method of 

accounting for within-subjects designs (Morey 2008). 

Results 

Soil nitrogen availability 

Significant seasonal effects in soil NH4 
? were 

observed within treatments, indicating that NH4 
? 

availability was typically greater in Summer and 

Autumn across all treatments as compared to Spring 

(Online Resource 1, Table A1), though no seasonal 

pattern in NO3 
- availability was evident. No signif-

icant differences in square-root transformed ion 

exchange resin capture of NH4 
? and NO3 

- for a 

given season were observed among treatments over 

the 2 years post-treatment (Fig. 2). However, the 

positive slope of the model fit to NO3 
- capture within 

the ‘Girdle’ treatment was significantly different from 

Fig. 2 Soil NH4 
? (upper) and NO3 

- (lower) capture on ion 

exchange resins by season. Boxes represent the 25th and 75th 

percentiles and medians (middle line); fences extend to 1.5 

times the interquartile range. Points are observations outside 1.5 

times the interquartile range. Note that the scale in the both 

panels have been reduced for ease of interpretability, resulting in 

the omission of 4 observations (17.25 lg NO3–N g 
-1 day -1 in 

Autumn 2013, 12.71, 23.85, 44.28 lg NO3–N g 
-1 day -1 in 

Summer 2014 from ‘Girdle’’ sites; 3.84 lg NH4–N g 
-1 day -1 

from a ‘Control’ site in Summer 2014). Labels placed next to the 

legend that do not share a letter indicate a statistically significant 

difference in slope of models fit to square-root transformed 

values across seasons 
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the ‘Ash-Cut’ treatment (p = 0.002), though this trend 

was not significantly different from the ‘Control.’ 

Foliar nitrogen, LMA, and chlorophyll 

Prior to treatment, mean (± standard error) foliar 

NMASS ranged from 18.14 ± 0.53 mg g -1 in A. 

rubrum to 23.31 ± 0.67 mg g -1 in B. alleghaniensis. 

Foliar NMASS was significantly greater in F. nigra and 

B. alleghaniensis compared to A. rubrum (p = 0.006 

and p \ 0.001, respectively; Fig. 3). Foliar NMASS 

responses to disturbance varied by species and treat-

ment (Fig. 4). No significant change in A. rubrum 

NMASS was observed in any year within the ‘Girdle’ 

treatment, however A. rubrum NMASS declined in 

‘Ash-Cut’ sites in 2013 and 2014 compared to pre-

treatment (p = 0.002 and p = 0.036, respectively), but 

returned to pre-treatment levels by 2015 (Fig. 4). 

Betula alleghaniensis NMASS responded consistently 

to treatment, with significant declines in NMASS 

compared to pre-treatment across all years in both 

the ‘Girdle’ and ‘Ash-Cut’ (p \ 0.001 for all years and 
treatments, Fig. 4). Canopy foliage sampled from 

treated F. nigra trees in ‘Girdle’ sites during the first 

year post-treatment was significantly elevated in N 

concentration compared to pre-treatment (p \ 0.001, 
Fig. 4). Within the ‘Girdle treatment, the NMASS of 

foliage samples taken from F. nigra epicormic 

branching was greater than both the pre-treatment 

canopy foliage (p \ 0.001 for all years) and the single 

Fig. 3 Pre-treatment nitrogen concentrations by mass (NMASS) 

for fresh foliage and litter across all sites 
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year of canopy foliage that occurred post-treatment 

(p \ 0.001). No significant differences in transformed 

NAREA among treatments were observed in either 2014 

or 2015 (Fig. 5). 

Acer rubrum LMA (Fig. 6) in the ‘Ash-Cut’ sites 

was significantly higher compared to ‘Control’ 

(p = 0.036) in 2014, but declined slightly in 2015 

such that the difference was no longer significant 

(p = 0.112). LMA values in B. alleghaniensis foliage 

from both ‘Girdle’ and ‘Ash-Cut’ sites in 2014 were 

significantly greater than ‘Control’ sites (p = 0.010 

and p = 0.006, respectively), but were not signifi-

cantly different in 2015 (p = 0.167 and p = 0.111) due 

to increased LMA in the ‘Control’ sites (p \ 0.001). 
In contrast to the similar or greater LMA observed in 

the treated sites compared to controls for other species 

in 2014, F. nigra epicormic foliage LMA from 

‘Girdle’ sites was lower compared to ‘Control’ canopy 

foliage (p = 0.004), but was no longer significantly 

different in 2015 (p = 0.152). 

Mass-based chlorophyll content (ChlMASS; Online 

Resource 1, Fig. A1 upper panel) of A. rubrum foliage 

was significantly lower in the ‘Ash-Cut’ compared to 

‘Control’ (p = 0.044). The ChlMASS of epicormic F. 

nigra foliage in the ‘Girdle’ sites was significantly 

greater than in canopy foliage from ‘Control’ sites 

(p \ 0.001). No significant differences in B. 

alleghaniensis ChlMASS were observed, though con-

centrations were lower in both ‘Girdle’ and ‘Ash-Cut,’ 

and the difference approached significance in the 

‘Ash-Cut’ treatment (p = 0.097). While patterns of 

area-based chlorophyll content (ChlAREA; Online 

Resource 1, Fig. A1 lower panel) were similar to 

ChlMASS across treatments and species, no significant 

differences were observed for any species. 

Litter mass and nitrogen content 

Prior to treatment, litter NMASS varied by species: N 

concentrations in F. nigra litter were significantly 

greater than B. alleghaniensis (p = 0.050), which in 

turn were significantly greater than those in A. rubrum 

(p = 0.040, Fig. 3). Compared to pre-treatment 

NMASS, litter NMASS of F. nigra was significantly 

higher in both 2013 and 2014 in ‘Girdle’ sites 

(p = 0.008 and 0.003, Fig. 7), and in 2014 in ‘Ash-

Cut’ sites (p = 0.002) while measured values in the 

2013 ‘Ash-Cut’ treatments approached significance 

(p = 0.057) compared to 2012. No significant change 
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Fig. 4 Mass-based foliar concentration (NMASS). Boxplots 

represent the 25th and 75th percentiles and medians (middle 

line). Fences extend to 1.5 times the interquartile range, with 

observations beyond these values indicated by discrete points. 

Labels that do not share a letter indicate a statistically significant 

difference within a treatment across years. Significance values 

in litter NMASS of A. rubrum or B. alleghaniensis was 

observed (Fig. 7). Significant declines in F. nigra 

litterfall were observed in both treatment types in the 

first year following treatment (‘Girdle’ p = 0.003, 

‘Ash-Cut’ p \ 0.001, Fig. 8 upper panel), and 

remained highly significant in 2014 (p \ 0.001 for 
both treatments). Nitrogen return via F. nigra litter 

(Fig. 8, lower panel) followed a similar pattern, 

though decreases in the ‘Girdle’ treatment were not 

significant until the second year post-treatment 

(p = 0.004), while they were significant immediately 

following treatment in the ‘Ash-Cut’ sites (p = 0.003 

in both 2013 and 2014). Total A. rubrum litter 

deposition (Fig. 8, upper panel) increased signifi-

cantly in the ‘Girdle’ treatment in 2013 (p = 0.043), 

in the ‘Girdle—Epicormic’ foliage are compared to the pre-

treatment (2012) canopy foliage within the ‘Girdle’ treatment. 

An asterisk (*) indicates significant differences between canopy 

and epicormic foliage within a given year. Note that upper and 

lower panels differ in scale 

but returned to approximately pre-treatment levels by 

2014. No significant changes in litterfall or litter-N 

return from B. alleghaniensis were observed (Fig. 8). 

Discussion 

Based on the results of previous studies into the effects 

of disturbance on forest N cycling, decreased demand 

for soil N following F. nigra mortality was hypoth-

esized to result in increased soil N availability, in turn 

leading to improved aboveground nutrient status of 

residual overstory stems. Such a pattern did not 

emerge in this investigation. Rather, these results, in 

concert with the results of previously published 
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Fig. 5 Area-based foliar concentration (NAREA) by species. 

Boxplots represent the 25th and 75th percentiles and medians 

(middle line). Fences extend to 1.5 times the interquartile range, 

investigations at these sites, suggest that in the short 

term, belowground growing conditions were con-

trolled primarily by microbial activity, while above-

ground effects were dominated largely by responses to 

changing light conditions, as discussed in the sections 

that follow. 

Soil nitrogen availability 

A change in soil N availability is perhaps the most 

commonly reported biogeochemical change following 

biotic disturbance of forest ecosystems (Lovett et al. 

2006). In North American forests, increased NH4 
? 

availability has been observed in forests affected by 

the invasive hemlock wooly adelgid [HWA, Adelges 

tsugae Annand; (Jenkins et al. 1999; Orwig et al. 

2008)] and the native mountain pine beetle (MPB, 

Dendroctonous ponderosae Hopkins, Clow et al. 

2011; Griffin et al. 2011; Keville et al. 2013). 

However, no change in NH4 
? availability was 

observed following treatment in this study (Fig. 2). 

In contrast, girdling has been used to successfully 

simulate the biogeochemical effects of HWA and 

MPB infestation, yielding positive soil N availability 

responses similar to actual infestation (Yorks et al. 

2003; Orwig et al. 2013; Trahan et al. 2015). Post-

girdling mortality in these studies occurred over a 

similar time frame as F. nigra mortality in the ‘Girdle’ 

treatment, and effects on NH4 
? availability were 

observable 1 to 2 years post-treatment. Large increases 

in NH4 
? have also been reported following salvage 

with observations beyond these values indicated by points. Note 

that F. nigra samples in the ‘Girdle’ treatment were taken from 

epicormic branching 

logging of Tsuga canadensis (L.) Carriere (eastern 

hemlock, Kizlinski et al. 2002; Orwig et al. 2013). As 

girdling and other forms of disturbance have proven 

effective at simulating impacts of phytophagous 

insects, yielding effects on soil NH4 
? similar to 

true infestations, the lack of response in this study is 

likely attributable to the influence of other contributors 

to the ecosystem N cycle. 

Much of the research on biogeochemical responses 

to disturbance has been conducted in upland systems. 

However, increased soil water N content has been 

observed in forested wetlands following harvest 

(Trettin et al. 1997), harvest followed by site prepa-

ration (McLaughlin et al. 2000), and fire (Belova et al. 

2014). Similarly, increased export of N in streams 

draining disturbed forested wetlands has also been 

observed (Bayley et al. 1992; Nieminen 2004). 

Though exceptions to this pattern of increased N 

availability have also been observed (e.g. Westbrook 

and Devito 2004; Nakagawa et al. 2012), given the 

results of similar studies across both upland and 

wetland forests, the lack of soil NH4 
? increase in 

either treatment type was contrary to study 

hypotheses. 

This lack of soil N response may be attributable, in 

part, to changes in the microbial community, a major 

competitor for soil N (Kuzyakov and Xu 2013). 

Decomposition rates in northern peatlands are pre-

dominantly controlled by the elevated water table, 

resulting in accumulation of the partially decomposed 

organic matter characteristic of surface soils in these 
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Fig. 6 Leaf mass per area (LMA) by species. Boxes represent indicate a statistically significant difference across treatments 

within a year. Note that F. nigra samples in the ‘Girdle’ 

treatment were taken from epicormic branching 

the 25th and 75th percentiles and medians (middle line). Fences 

extend to 1.5 times the interquartile range, with outliers beyond 

these values indicated by points. Labels that do not share a letter 

Fig. 7 Litter nitrogen concentrations by mass (NMASS) and 

species. Boxplots represent the 25th and 75th percentiles and 

medians (middle line). Fences extend to 1.5 times the 

ecosystems (Gorham 1991). This pool of organic 

matter is assumed to be relatively labile in the 

presence of oxygen, as evidenced by increased 

decomposition rates with increasing oxygen availabil-

ity (Kasimir-Klemedtsson et al. 1997; Laiho 2006). If 

microbial activity in these saturated soils is secondar-

ily limited by N availability (Hart and Stark 1997; 

Kaye and Hart 1997), then the reduction in competi-

tion for N by plant roots such as that imposed by our 

experimental treatment (Kuzyakov and Xu 2013) may 

allow for increased uptake and immobilization by 

microbial communities. Soil heterotrophs are known 

to respond rapidly to changes in N availability (Zak 

interquartile range. Labels that do not share a letter indicate a 

statistically significant difference within a treatment across 

years 

et al. 1990; Brooks et al. 1998; Zogg et al. 2000; Micks 

et al. 2004), which may subsequently be immobilized 

in soil organic matter (Koopmans et al. 1996; Nadel-

hoffer et al. 1999a, b; Magill et al. 2000). As such, 

increased microbial uptake of NH4 
? in concert with 

decreased uptake by plants (Norton and Firestone 

1996), may be responsible for the lack of response in 

NH4 
? availability observed in this study. In addition to 

the large, relatively labile pool of C present in the 

accumulated peat, microbial activity associated with 

fine root mortality following F. nigra decline and 

continued inputs of leaf litter may serve as an 

additional N sink. Both types of plant residues 
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Fig. 8 Mean litterfall mass (upper panel) and litterfall N return 

(lower panel) of dominant overstory species. Error bars 

represent ± one standard error. Labels that do not share a letter 

typically result in net N immobilization during the 

initial stages of decomposition (Aber and Melillo 

1980; McClaugherty et al. 1984; Attiwill and Adams 

1993). Finally, reported N mineralization rates in other 

F. nigra-dominated wetlands of the region are lower 

than surrounding upland forests, as would be expected 

given the frequently anoxic conditions (Zak and 

Grigal 1991). In forested wetland systems where gross 

mineralization rates are low, competition for N is 

strong and thus gross immobilization rates have been 

shown to be similar following disturbance, resulting in 

little change in net mineralization or N availability 

(Westbrook and Devito 2004; Nakagawa et al. 2012). 

The increasing trend in available soil NO3 
- in the 

‘Girdle’ treatment when compared to ‘Ash-Cut’ 

suggests that disturbance mechanism may have also 

played a role in the effects of F. nigra mortality on soil 

N. In addition to inputs of leaf litter and fine roots, 

indicate a statistically significant difference within a treatment 

across years 

coarse woody debris has been shown to serve as a sink 

for available N. Among the potential mechanisms 

proposed by Vitousek and Melillo (1979) for retention 

of N within an ecosystem following disturbance was 

the uptake of NH4 
? by decomposers, particularly 

in situations where disturbance results in large quan-

tities of woody debris onsite. Since that time, the 

importance of N-poor woody debris as a sink for N 

(Laiho and Prescott 2004), reducing soil N availability 

(Zimmerman et al. 1995) and mitigating potential N 

losses (Carlyle et al. 1998; Brais et al. 2006) has been 

well-demonstrated. Within the ‘Ash-Cut’ sites, F. 

nigra stems were allowed to remain onsite after 

felling, and so represent a potentially large sink for 

NH4 
? , as has been observed following harvest when 

woody debris remains on site (Vitousek and Matson 

1984, 1985). As a result, the availability of NH4 
? to 

nitrifiers, which tend to compete poorly in the 

123 

286 Biogeochemistry (2019) 145:275–294



presence of high demand from heterotrophic microor-

ganisms (Hart et al. 1994), may be reduced. Thus the 

role of woody debris as a sink for NH4 
? provides a 

possible explanation for the lack of NO3 
- production 

in the ‘Ash-Cut’ sites compared to the ‘Girdle’ 

treatment (Fig. 2). Analogous effects have been 

predicted to result in the latter stages of MPB 

infestation when snags begin to fall to the forest floor 

(Edburg et al. 2012). 

As NO3 
- is highly mobile in the soil, excess 

production frequently results in export via hydrologic 

pathways, as observed following mechanical distur-

bance of vegetation (Likens et al. 1970; Martin et al. 

1986). Numerous studies have reported increased 

NO3 
- availability in soil following HWA (Jenkins 

et al. 1999; Orwig et al. 2008; Cessna and Nielsen 

2012) and MPB (Clow et al. 2011) infestation. 

Additionally, export losses of NO3 
- in streamwater 

have also been observed following infestation by the 

invasive Lymantria dispar L. (gypsy moth, Webb et al. 

1995; Eshleman et al. 1998) as well as native insect 

outbreaks [e.g. Alosophila pometaria Harris (fall 

cankerworm, Swank et al. 1981)]; Ennomos subsig-

narius Hübner [elm spanworm, (Lewis and Likens 

2007)]. However, denitrification often plays an impor-

tant role in the wetland N cycle (Saunders and Kalff 

2001), and small depressional wetlands may be 

capable of retaining much of the increased NO3 
-

available following harvest (Spoelstra et al. 2010). 

Thus, while soil NO3 
- availability was increasing 

within the ‘Girdle’ sites (Fig. 2) during time periods in 

which water was leaving the wetlands via ephemeral 

streams (Van Grinsven et al. 2017), further research 

will be required to determine if the increase in 

available NO3 
- leads to N losses from the ecosystem. 

Additionally, water tables in ‘Girdle’ and ‘Ash-Cut’ 

sites were significantly higher when compared to 

‘Control’ during the growing season (Van Grinsven 

et al. 2017). It is likely that these changes in the water 

table affect the relative importance of denitrification 

on nitrate availability or export, though quantifying 

these effects will require additional investigation. 

Van Grinsven et al. (2018) reported increased 

fluxes of CO2 in both ‘Girdle’ and ‘Ash-Cut’ treat-

ments in these study sites, providing additional 

evidence for increased demand for NH4 
? by soil 

heterotrophs in these sites. Soil CO2 efflux following 

disturbance is commonly observed to decline, follow-

ing both high-severity disturbances (e.g. forest 

harvest, Mattson and Swank 1989; Striegl and Wick-

land 1998; Kurth et al. 2014) and low-severity 

disturbances (e.g. tree girdling, Nave et al. 2011; 

Levy-Varon et al. 2014). The results of girdling 

studies have been shown to mimic patterns of declin-

ing soil respiration following insect infestation (Nuck-

olls et al. 2009; Moore et al. 2013), which are 

attributed to decreased root activity. Efflux of CO2 

from the soil surface has also been observed to remain 

constant or increase following disturbance; such 

positive effects are frequently ascribed to increased 

microbial activity (Hendrickson et al. 1989; Toland 

and Zak 1994; Lytle and Cronan 1998). 

Foliar nitrogen, LMA, and chlorophyll 

The link between belowground conditions and canopy 

characteristics in modified landscapes is well-estab-

lished, with increased soil N availability associated 

with increased foliar NMASS as a result of experimental 

additions of N (Aber et al. 1998; Gundersen et al. 

1998; Magill et al. 2004), across stands of varying 

disturbance histories (Ollinger et al. 2002), following 

disturbance- or succession-simulating girdling (Nave 

et al. 2011; Levy-Varon et al. 2014), and after insect 

infestation (Griffin et al. 2011). However, distur-

bances that affect the aboveground growing environ-

ment, such as increased light availability in canopy 

gaps, may complicate predictions, as the covariation 

of these conditions may obscure the physiological 

response of remaining vegetation (Fownes and Har-

rington 2004; Kranabetter et al. 2010). 

Foliar morphological and biochemical characteris-

tics of retained overstory species in both ‘Girdle’ and 

‘Ash-Cut’ sites generally reflected expected changes 

resulting from the exchange of shade- for sun-accli-

mated leaves in higher light conditions (Walters 

2005), including decreased NMASS and increased 

LMA (Figs. 4, 6). However, NAREA (Fig. 5) remained 

unchanged, and ChlMASS (Online Resource 1, Fig. A1 

upper panel) showed little response, contrary to 

prediction. Few studies have considered the effect of 

light conditions on both the suite of leaf characteristics 

and species considered here. A positive relationship 

between LMA and light has been reported for both A. 

rubrum (Jurik 1986; Abrams and Kubiske 1990; 

Kloeppel et al. 1993; Gottschalk 1994; Lei and 

Lechowicz 1998) and B. alleghaniensis (Abrams and 

Kubiske 1990; Beaudet and Messier 1998). Decreased 
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NMASS and ChlMASS and increased NAREA with 

increasing light have also been shown in A. rubrum 

saplings (Lei and Lechowicz 1998), and similar 

patterns between NAREA and light for B. alleghanien-

sis have also been observed (Delagrange et al. 2004). 

Thus the absence of an increase in foliar NMASS in 

retained stems may be due in part to the masking 

effects of changes in physical leaf characteristics such 

as LMA in response to light conditions. 

Increased competition between vegetation and soil 

microorganisms may also play a role in the response of 

foliar NMASS. Both foliar NAREA (DeJong et al. 1989) 

and NMASS (Fownes and Harrington 2004) may 

increase with increasing N availability in the soil, 

potentially offsetting the negative correlation between 

NMASS and light availability (Fownes and Harrington 

2004). Given the decreased demand from F. nigra for 

soil N expected in the treated sites, a positive effect of 

increased soil N on foliar N of retained species was 

hypothesized. However, no increase in N availability 

was observed despite a reduction in overall N demand 

from the dominant woody species (see ‘‘Litter mass 

and nitrogen content’’, below), and thus the foliar 

response may have been dominated by the plants’ 

response to changing light conditions. Finally, among 

the described stress responses of plants to a sudden 

change in light environment is chlorotic foliage 

(Sharma et al. 2006). Reduced ChlMASS was observed 

in A. rubrum in the ‘Ash-cut’ sites and the reduction 

was nearly significant in the ‘Girdle’ sites. Though not 

significant, a similar pattern was observed in B. 

alleghaniensis (Online Resource 1, Fig. A1 upper 

panel). While decreased ChlMASS may be expected in 

high-light environments (Walters 2005), these 

responses may also be an indicator of stress in retained 

overstory stems (Sharma et al. 2006). In a related 

study, no change in growth rate of residual overstory 

stems in the first 3 years following treatment was 

observed, which was suggested to be due in part to 

stress resulting from the abrupt change in growing 

conditions (Davis et al. 2017). 

Litter mass and nitrogen content 

The return of nutrients via litterfall is frequently used 

as a proxy for plant demand for soil nutrients (Attiwill 

and Adams 1993; Aerts and Chapin III 1999). As such, 

the decrease in N return via F. nigra litterfall (Fig. 8, 

lower panel) represents a significant reduction in 

demand for soil N by this species. However, due to 

contrasting patterns in litterfall (Fig. 8, upper panel) 

and litter NMASS (Fig. 7), N return via litterfall by A. 

rubrum and B. alleghaniensis remained essentially 

unchanged (Fig. 8, lower panel). These patterns 

indicate an overall reduction in total N demand for 

soil N by the dominant species, which together 

comprise approximately 88% of the overstory basal 

area (Davis et al. 2017). That litter NMASS of A. 

rubrum and B. alleghaniensis was not significantly 

affected by treatment, despite an increase in fresh 

foliage NMASS, is potentially due to inputs of lower 

canopy and sapling litter, from which fresh foliage was 

not sampled. The observed pattern, however, is similar 

to declines in NMASS of fresh foliage (Fig. 4). 

Prior to treatment, both A. rubrum and B. 

alleghaniensis had significantly lower mass-based N 

content than F. nigra (Fig. 3). Should regenerative 

capacity of these species overcome increased herba-

ceous competition (Davis et al. 2017) to become the 

dominant overstory species in a future forested 

wetland, the change in litter quality would likely 

affect the rate and quantity of nutrient cycling in these 

stands (Prescott 2002). A number of controls on litter 

decomposition rates have been investigated, with 

initial lignin and N content of freshly shed litter 

frequently cited as being among the most important 

controls (Melillo et al. 1982). In a mixed species 

forest, the presence of nutrient-rich litter may also 

positively influence combined litter decomposition 

rates of all species (Rothe and Binkley 2001). In 

general, there appears to be a positive effect of N 

content on initial rates of decomposition. As decom-

position proceeds, however, the resulting increase in N 

concentration reduces the rate of decomposition (Berg 

et al. 1996). 

This dual role of initial N concentrations has two 

major consequences for N cycling in forests. First, 

canopy and litter N concentrations tend to be posi-

tively correlated with soil N availability (Vitousek 

1982; Reich et al. 1997; Ollinger et al. 2002), 

suggesting a positive feedback mechanism between 

above- and belowground processes that may enhance 

site fertility. In a review of management implications 

for F. nigra-dominated forests, D’Amato et al. (2018) 

summarized the recommendations for potential F. 

nigra replacement species, based on the results of 

experimental plantings. Though limited information is 

available in the literature, of the deciduous species 
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noted as ‘‘Recommended’’ in this review, only Acer 

saccharinum L. (silver maple) and Tilia americana L. 

(American basswood) have reported litter N concen-

trations [14 mg g -1 (Mungai and Motavalli 2006) and 

15 mg g -1 (Holdsworth et al. 2008), respectively] that 

approached those of F. nigra in this study. Consider-

ation of the biogeochemical role of F. nigra litter 

could prove valuable in selecting potential replace-

ment species in these forests. Absent natural or 

management-mediated transition to such species, the 

loss of N-rich F. nigra litter may reduce N availability 

and thereby growth rates of the future forest, although 

species-specific rates of nutrient use efficiency may 

mitigate the magnitude of these effects (Aerts and 

Chapin III 1999). Secondarily, as compared to N-poor 

litter, N-rich litter is expected to have more residual 

mass remaining in the latter stages of decomposition 

when decomposition rates approach zero (Berg et al. 

1996). Consequently, increased soil organic matter 

accumulation may occur in sites where composition 

shifts towards species with higher initial concentra-

tions of litter N (Berg and Meentemeyer 2002), and is 

similar in effect to that which has been reported 

following experimental N addition (Nave et al. 2009). 

In F. nigra-dominated wetlands, the opposite effect 

may be the case, as the loss of N-rich litter following 

EAB infestation could result in the slowing of organic 

matter accumulation (Berg 2000). However, given the 

importance of the water table in controlling decom-

position in peatlands, additional research is required to 

determine how significant a role litter species N 

content might play in peat formation in these forests. 

Thus, the combined effects of litter quality on site 

fertility and decomposition has the potential to reduce 

carbon accumulation rates in living biomass, while 

also potentially reducing soil carbon storage. 

Conclusions 

In F. nigra–dominated wetlands, the biogeochemical 

responses following EAB infestation are likely to 

fundamentally differ from those observed in other 

forests with Fraxinus components, due to the abun-

dance of F. nigra, the characteristics of their co-

dominant woody species, and the unique nature of 

ecological processes in these forests. In the short-term, 

these responses may have both positive and negative 

effects on ecosystem function. Following application 

of experimental treatments, soil N availability exhib-

ited minimal changes. The abundant organic matter 

that has accumulated on the forest floor and in the soil 

due to the extended periods of inundation during the 

growing season, as well as woody debris in the ‘Ash-

Cut’ treatment, appears to be serving as a sink for soil 

N, mitigating potential changes in availability result-

ing from reduced plant demand. This response may 

have a positive effect on ecosystem function, as it 

reduces the potential for short-term N losses via 

hydrologic export. However, the increased competi-

tion for N may also have negative effects by limiting 

the potential for positive growth responses of remain-

ing vegetation following disturbance, as neither A. 

rubrum nor B. alleghaniensis increased N uptake 

immediately following the treatments. Rather, the 

aboveground effects on foliar and litter characteristics 

of these species have been driven primarily by 

responses to light conditions. Though further study is 

required to determine the longer-term impacts of F. 

nigra mortality, these short-term responses and the 

characteristics of co-occurring species suggest some 

possible future effects. The lack of increased N 

availability to and uptake by remaining woody species 

immediately following disturbance has the potential to 

slow eventual vegetation recovery and the restoration 

of ecosystem services. Additionally, absent manage-

ment intervention, A. rubrum or B. alleghaniensis are 

the species likely to replace F. nigra in these and 

similar systems. Both species have litter that is lower 

in N concentration, which will likely result in a 

reduction of the positive feedback relationships 

between litter quality, decomposition, and site fertil-

ity, which may ultimately have important implications 

for long-term carbon storage. 
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