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Patterns of pollen dispersal are central to both the ecology
and evolution of plant populations. However, the mechan-
isms controlling either the dispersal process itself or our
estimation of that process may be influenced by site-specific
factors such as local forest structure and nonuniform adult
genetic structure. Here, we present an extension of the
AMOVA model applied to the recently developed TWOGENER

analysis of pollen pool structure. This model, dubbed the
Stepwise AMOVA (StAMOVA), focuses on determining to
what extent ecological, demographic, and/or environmental
factors influence the observed genetic variation in spatially
separated pollen pools. The analysis is verified for efficacy,
using an extensive battery of simulations, illustrating: (1) how

nonuniform adult genetic structure influences the differentia-
tion of spatially separated pollen pools, and (2) how
effectively the Stepwise analysis performs in carrying out
the appropriate corrections. Finally, the model is applied to a
Quercus alba data set, from which we have prior evidence
that the adult genetic structure is nonuniformly distributed
across the sampling landscape. From this data set, we show
how the Stepwise model can be applied to remove the
effects of spatial adult genetic structure on pollen pool
differentiation and contrast these results with those derived
from the original TWOGENER analysis.
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Introduction

Pollen-mediated gene movement plays a critical role in
the evolutionary dynamics of plant populations (Harper,
1977). To understand the process of pollen-mediated
gene movement, we must understand the extent to
which adult spatial, ecological, and genetic heterogeneity
might influence the mechanisms of pollen dispersal as
well as our estimations of pollen dispersal distances.
Theoretical models describing wind-dispersed pollen
typically assume a highly skewed, or leptokurtic, form
(eg, Levin and Kerster, 1974; Okubo and Levin, 1989).
Smouse et al (2001) recently proposed the TWOGENER

analysis that utilizes spatially separated mothers to
sample the pollen pool, with the aim of quantifying
ongoing gene flow in terms of the mean pollen dispersal
distance and the genetic effective number of pollen
donors. Under this model, any increase in dispersal
distance will result in lower among-mother genetic
divergence in sampled pollen pools.

Assuming specific pollen dispersal distributions, Aus-
terlitz and Smouse (2001a) show that the mean pollen
dispersal distance (d) can be derived from the TWOGENER

analysis and is inversely proportional to the observed
genetic structure of spatially separated pollen pools
(FFT). Furthermore, Austerlitz and Smouse (2001b)
showed that while fine-scale adult structure, as is often
found in plant populations, can influence our estimates
of dispersal distance, the overall magnitude of spatially
autocorrelated adults is rather small. All of these models
estimate pollen movement as though it were similar
across all individuals, a supposition that is unlikely to be
true in natural populations. In fact, one might expect
extensive heterogeneity of the dispersal environment,
due both to ecological and genetic factors that vary
across the landscape. However, we do not know whether
such heterogeneity actually affects the process of pollen
movement, and if so, what is the extent that effect has on
our estimates.

One factor that can influence genetic differentiation
among spatially separated pollen pools is heterogeneity
in the distance that the pollen is dispersed. Both intrinsic
factors, such as pollen morphology, release height, and
settling velocity (Levin and Kerster, 1974), as well as
external factors such as wind direction and speed, local
density of pollen donors, and forest structure (Dyer and
Sork, 2001) can significantly influence pollen dispersal
distance. The external factors have a greater opportunity
to be nonuniformly distributed across the landscape,
causing a greater influence on pollen dispersal distance.Received 14 June 2002; accepted 6 October 2003
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For example, Okubo and Levin, 1989, provide a
theoretical framework within which dispersal distance
can be characterized in terms of diffusion processes and
advection, taking into consideration the effects of local
air turbulence. Their models predict that increases in
local air turbulence will result in a significant reduction
in pollen dispersal distance. Consistent with these
hypotheses, Dyer and Sork, 2002) show that genetic
diversity within spatially separated pollen pools for
Pinus echinata is inversely related to the density of all
canopy species and independent of P. echinata density.
They argue that the high density of all canopy species on
site impedes the movement of pollen both within as well
as into the stand. If true, then dispersal distance is not
constant across the landscape and may result in an
increase in the among-mother component of variance
because the mothers are sampling different-sized pollen
donor populations.

The distribution and abundance of local pollen donors
can also influence the genetic structure of pollen pools.
Austerlitz and Smouse (2001a) have shown that FFT is
insensitive to changes in the spatial separation of sampled
mothers, provided that the separation of mothers is
sufficiently large, B5d, where d is the average distance
that the pollen is dispersed. However, clumping or
nonuniform distributions of pollen donors can have a
significant influence on spatial genetic structure (eg,
Dolgez et al, 1998). Further, several studies of forest tree
mating systems have reported the effects of local pollen
donor density on pollen pool composition (eg, Farris and
Mitton, 1984; Knowles et al, 1987; Shea, 1987; Murawski
and Hamrick, 1991). Additional factors such as flowering
phenology (Sampson et al, 1990), adult allele frequency
gradients (Dyer and Sork, 2002), elevation gradients
(Loechelt and Franke, 1996), and inbreeding and spatial
autocorrelation among adult individuals (Austerlitz and
Smouse, 2001b) also act to increase the genetic divergence
among sampled pollen pools. If any of these factors have a
significant influence on pollen pool composition, then
estimates of pollen dispersal distance will be biased
downward. Our understanding of the role of pollen-
mediated gene movement in the evolutionary dynamics
of plant populations will be sharpened by identifying
those factors that influence pollen dispersal, either directly
through modification of dispersal distance or indirectly as
a result of local demographic or genetic processes.

In this paper, we present a multivariate analysis of
pollen pool differentiation based on the TWOGENER

analysis. This novel model, dubbed the Stepwise
Analysis of MOlecular VAriance (StAMOVA) identifies
and partitions out the effects of external variables on
pollen pool differentiation. In doing so, this model
provides a robust statistical methodology, by means of
a general linear model, which quantifies the effects that
ecological and spatial covariates have on the composition
of spatially separated pollen pools. Following an
introduction to the analysis, we evaluate its effectiveness
in detecting one category of external factors that can
significantly influence the pollen pool genetic structure,
the nonuniform distribution of adult genetic structure.
The effects of broad-scale adult genetic structure on
pollen pool composition were examined via an extensive
battery of simulations, wherein a multilocus genetic
structure is imposed upon the pollen donor population.
We then contrast the results of the Stepwise analysis with

those provided by the TWOGENER analysis. Finally, this
analysis is applied to the Quercus alba data set presented
in the original TWOGENER paper (Smouse et al, 2001),
where previous analyses have identified multivariate
genetic structures in the adult population. We show that
removing the effects imposed on the observed differ-
entiation in sampled pollen pools by the gradient in the
adult genetic structure not only increases the accuracy of
dispersal distance estimates but also serves as a signal to
the investigator of an underlying nonuniformity in the
adult genetic structure. We close by commenting on
the general applicability of the StAMOVA model for the
analysis of the population genetic structure. While this
model is currently being applied to contemporary pollen
movement dynamics under the TWOGENER model, the
StAMOVA is just as readily applied to analyses of adult
genetic structure, a topic we return to in a later
manuscript (Dyer et al, in preparation).

Methods

The main goal here is to use the observed genetic
structure of spatially separated pollen pools to draw
inferences about the mean pollen dispersal distances and
effective pollination neighborhood sizes. However, the
observed differentiation of spatially separated pollen
pools may be a function of factors other than the distance
that pollen is dispersed from the pollen donor. For
example, if the pollen donor population has a gradient in
allele frequencies (across elevation for example), the
differentiation of pollen pools will be exacerbated,
because maternal trees separated along the gradient will
be drawing from pollen donor pools that differ system-
atically in their allele frequency profiles (Dyer and Sork,
2002). The task at hand is to develop a method that
allows us to determine the extent to which the observed
genetic variation among sampled pollen pools is due to
pollen dispersal distance, as opposed to factors either
affecting the dispersal distance directly, as is expected for
spatial variation in stand density, or indirectly, as would
be expected from changes resulting from an allele
frequency gradient.

The Stepwise analysis is a multivariate general linear
model conforming to the AMOVA analysis of Excoffier
et al (1992). In fact, the AMOVA analysis is a special case
of the more general Stepwise model, where one is only
interested in decomposing the genetic variance into
within- and among-strata components. For this reason,
we abbreviate the Stepwise model as StAMOVA to draw
attention to its extension of the original AMOVA model.
The TWOGENER analysis of pollen pool structure (Smouse
et al, 2001) also utilizes the AMOVA model for the
analysis of pollen structure.

In general terms, the AMOVA analysis (and the
TWOGENER analysis as well as the StAMOVA by exten-
sion) relies upon the multilocus pair-wise genetic
distance matrix, D. The D matrix has the form:

D ¼

d2
11 d2

12 � � � d2
1N

d2
21 d2

22 � � � d2
2N

..

. ..
. . .

. ..
.

d2
N1 d2

N2 � � � d2
NN

2
66664

3
77775

ð1Þ

where dij
2 is the additive, pair-wise genetic distance

between the ith and jth pollen haplotypes. The elements
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of the D matrix, dij
2, are 0 when i¼ j, and may be non-

negative when iaj, the exact value of which depends
upon the pollen haplotypes i and j. The StAMOVA model
does not use distance matrices, rather it focuses on
variance/covariance matrices in a more traditional
statistical sense. The D matrix can easily be transformed
into a genetic variance/covariance matrix, following
Gower (1966). We refer to this variance–covariance
matrix as YY0, and specifically use this notation to draw
attention to the fact that it is identical to the Sums of
Squares and CrossProducts (SSCP) matrix in a Q-mode
analysis (ie, the differences between N individuals, not
p-variables). The sums of squares and crossproducts for
traditional multivariate analysis are estimated from
the Y0Y matrix (SSCP is p� p in size; an R-mode
analysis), whereas we have the YY0 matrix (SSCP is
N�N; Q-mode analysis). The overall variation in either
SSCP matrix is given by the trace, tr[]. Since tr[XY]¼
tr[YX], the analysis can be carried out using the outer-
product matrix (YY0) in exactly the same way as the
traditional multivariate analysis does with the inner-
product matrix (Y0Y). It should be noted that much larger
matrices are being manipulated in Q-mode, requiring
more computational resources for large data sets. The
code for this analysis is provided and is available from
RJD upon request.

The predicted values of any linear model are
given by

Ŷ ¼ Xb

¼ HY
ð2Þ

where the (N�N) matrix H is symmetrical and
idempotent, given by

H ¼ XðX0XÞ�1
X ð3Þ

(Johnson and Wichern, 1992), with X being the multi-
variate design matrix. The structure of X follows that for
a traditional analysis of dummy variables among K strata
(see Johnson and Wichern, 1992).

Returning to decomposition of the linear model, the
outer product matrix of predicted values, ŶŶ0, can now
be estimated as

^
Y

^
Y
0
¼ H0ðYY0ÞH
¼ H0ðYY0Þ

ð4Þ

following [1]. Since the H matrix is idempotent (ie,
HH¼H0 ¼ (H)�1¼H), we can drop the second multi-
plication for the purposes of computational efficiency.
The outer product matrix of the residuals (ie, that
variance/covariance matrix not accounted for by the
model up to this point) is

RR0 ¼ ðI � HÞðYY0ÞðI � HÞ
¼ ðI � HÞðYY0Þ

ð5Þ

where I is the N�N identity matrix.
Using the trace of the outer-product matrices, we

decompose the total variation among pollen haplotypes
into components representing the variation explained by
the model and the remaining variation (ie, the residual or
error variance) as:

tr½YY0	 ¼ tr½ŶŶ
0
	 þ tr½RR0	

SSTotal ¼ SSModel þ SSError

ð6Þ

The outer-product matrix formulation outlined above
translates the AMOVA framework used in the TWOGENER

analysis directly into its underlying multivariate linear
model form. With this formulation, we not only retain
the ability to extract the exact same total, model, and
residual sums of squares from the analysis but we also
gain the advantages of a generalized linear model, from
which we may extract additional information in terms of
covariates as well as construct sampling designs more
detailed than simple hierarchical nesting of populations
within regions.

Stepwise decomposition of variation

Adopting a stepwise approach (Draper and Smith, 1981;
Searle, 1997) allows assessment of the variation in the
observed pollen pools that can be accounted for by
external factors, such as maternal position on the
landscape (assessing the effects of allele frequency
gradients in the adult population) or ecological variables
(such as stand characteristics). Following the removal of
variation explained by external variables, we then
estimate the among- and within-strata components
yielding a F-statistic corrected for the influence of
external variables. This stepwise treatment follows
Henderson’s Method 2 procedure, as outlined in Searle
(1997).

To demonstrate the stepwise approach, consider the
case where only one external predictor variable is
influencing pollen pool composition. For the purposes
of this discussion, consider the maternal y-coordinate, as
the simulations conducted below impose an allele
frequency gradient on the adults, along the y-axis. First,
standardize the y-coordinate to mean zero to remove the
necessity of an intercept term. Call this vector XE where
the subscript E denotes the external, predictor variables,
assumed to be fixed effects and measured without error.
Substituting XE into (1) provides the external hypothesis
matrix, HE. Substituting HE into (2) and (3), the trace of
the component matrices of (5) estimates the variation
explained by the predictor variables, tr[ŶŶ0], as well as
the residual variation not accounted for by the predictor
variables. The significance of the XE is evaluated by
examining the reduction in the sums of squares, denoted
R(XE), attributable to that variable. The reduction in the
sums of squares due to fitting XE to the model is:

RðXEÞ ¼ tr½YY0	 � tr½HEðYY0Þ	 ð7Þ

Under the null hypothesis of no variation in the pollen
pool, other than that attributable to pollen dispersal
distance, the expectation is that the residual variation is
zero, E[R(XE)]¼ 0. In other words, the null hypothesis
states that the reduction in the sums of squares
associated with XE is invariant with respect to the
pairing of pollen donor haplotypes and the elements of
XE. If the null hypothesis were true, the observed value
of R(XE) would be equally likely under random
permutation of XE among strata. Therefore, the null
distribution of R(XE) is constructed by permuting the
elements of XE among sampled females and recalculating
the R(XE-Perm). Comparing the observed R(XE) to the
distribution of permuted R(XE-Perm) allows determina-
tion of a ‘tail probability’ significance to be ascertained.
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This is exactly the same procedure for testing the
significance of population level differences in the original
AMOVA analysis. If there is more than one external
variable of interest (ie, if XE is (N�G) with G41), this
framework is easily extended by simply increasing the
number of predictor variable columns in the XE matrix.
Higher-order polynomials and interaction terms are
added just as in a regular multiple regression analysis
(Draper and Smith, 1981).

Once the relationships between the external variables
and the pollen donor haplotypes have been established,
the maternal design matrix, XM (from [3]) is entered into
the model and the TWOGENER analysis is performed,
following [5], with the exception that the YY0 matrix is
replaced by the RERE

0 matrix of residual variation, after
removing the effects of external predictor variables.
The reduction in the sums of squares due to fitting the
mothers, following the removal of variation due to
the external variables is:

RðXMjXEÞ ¼ tr½YY0	 � tr½HMðRER0
EÞ	 ð8Þ

Note that there is no interaction term in the model,
since the sums of squares associated with the mothers
(XM) is calculated from residual variation after removing
the G external variable(s). Zelen (1968) and Searle (1968)
equate this method to Henderson’s (1953) ‘fitting con-
stants’ formulation.

Decomposition of the variance components and estima-
tion of the F-statistics from the among-mother component
of variation follow the methods outlined in Excoffier et al
(1992), with one exception. The error degrees of freedom
need to be adjusted to take into account the external
variables (G of them) that have already been entered into
the model (see Table 1). If the external variables are
random effects, then the variance components for these
effects can be partitioned following Searle (1968).

Simulation methods to evaluate stepwise
model

Simulations were used to highlight the effects that
spatially organized pollen donor genotypes have on the
among-mother component of genetic variation, sA

2 , as
well as to evaluate the utility of the Stepwise model. A
total of 10 000 adults were simulated on a 100� 100
square lattice (adult density is 1 individual per map
unit), following Smouse et al (2001). Pollen dispersal was
simulated by drawing pollen donors from a bivariate
exponential distribution with a mean pollen dispersal

distance equal to 5 map units (see Smouse et al, 2001).
The allele frequency gradients, qp, were set to p¼ 0.00
(no gradient) and qp¼ [0.10, 0.20, 0.30] (hereafter
gradient populations). In populations where an allele
frequency gradient was imposed upon the adult popula-
tion, the strength of the allele frequency gradient was
quantified as the allele frequency change from one end of
the lattice to the other. All starting allele frequencies were
set to p¼ q¼ 0.5, prior to the application of the gradient.
All adults were assigned 10 polymorphic loci, with two
alleles per locus, the frequency of which was determined
by (1) the individuals spatial location along the y-axis,
and (2) the strength of the allele frequency gradient, qp.

A total of 49 maternal trees were spread uniformly
across the landscape, in seven rows of seven individuals.
Each maternal individual produced 10 outcross off-
spring. To provide confidence intervals around the
variation due to the gradient, as well as the among-
mother component of genetic variation, 1000 iterations of
490 simulated matings were run and analyzed for each
level of the allele frequency gradient. During each
iteration, the entire adult population was recreated to
randomize the placement of pollen donors.

The pollen donor haplotypes sampled by each of the
maternal individuals during each simulation were
analyzed using two methods. First, the TWOGENER

analysis was performed under the alternative hypothesis
that the differentiation among mothers was simply due
to the pollen dispersal distance. Second, the Stepwise
treatment was applied to the same data set, using the
maternal location along the simulated allele frequency
gradient as the external variable. Variance partitioning
due to the spatial variable and the among-mother
components were estimated as above.

Case study: Q. alba in a Missouri Ozark
Forest

We applied the Stepwise analysis to a data set consisting
of 35 maternal Q. alba trees and 1024 multilocus
offspring. These data are a subset of offspring analyzed
for the first TWOGENER Analysis paper (see Smouse et al,
2001). Offspring have been assayed for eight allozyme
loci, yielding an exclusion probability of PE¼ 0.707.
Single-locus adult genetic structure within this popula-
tion shows no significant differentiation (Koop, 1996),
but multivariate analysis of adult genetic structure
revealed a significant gradient in allele frequencies
running roughly north–south (Figure 1; AL Koop and
VL Sork, unpublished). Furthermore, Gram and Sork
(1999, 2001) reported significant correlations between
multilocus genetic variables and both multivariate forest
structure and local population densities. The Stepwise
analysis was applied to this data set, considering only
the north–south gradient in allele frequencies. We first
present the differentiation in sampled pollen pools in the
uncorrected data set, using the TWOGENER analysis. We
then present the Stepwise analysis, using the maternal
north–south coordinate, hereafter ‘northing’, as the
external predictor variable. We also test the east–west
coordinate as a second spatial variable, although there
was no a priori reason to suspect a gradient in adult
genetic structure along this axis. All analyses were tested
for significance by permuting offspring among mothers

Table 1 Stepwise analysis of molecular variance table for G external
variables, J maternal individuals

Source df SS E[MS]

External G tr[HE(YY0)]
Among strata J-G-1 tr[HM(RR0)] sW

2 +KsA
2

Error N-J tr[(I�HM)(RR0)] sW
2

Total N-1 tr[(YY0)]

Matrix notation for sums of squares follow notation in text and tr[]
denotes the trace. The coefficient K is equal to the number of
offspring sampled from each mother, assuming equality of sample
size. With unequal sample sizes, the coefficient should be adjusted
according to Searle (1997).
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1000 times and constructing the null distribution of the
sampling statistic described above.

Results

The simulations show that the estimate of the among-
mother component of genetic variation, sA

2 , increases
significantly with gradients in pollen allele frequencies
(Figure 2, filled boxes), as shown previously in Dyer and
Sork (2001). The simulation results show a 2.5-fold
increase in sA

2 , observed between simulated matings in
populations with uniform allele frequencies and those
with an allele frequency gradient of qp¼ 0.30. While the
overall range of allele frequency gradients, qp¼ 0.00 vs
0.30, is exceedingly large and perhaps exaggerated,
relative to what may be observed in natural populations,
it clearly shows how the genetic constitution of the
pollen donors influences the observed pollen pool
differentiation.

While the bias in sA
2 , due to the spatial genetic

heterogeneity of the adults is significant, the magnitude
of the differences is relatively small when translated into
standardized variance among strata, FFT. Translating the
sA

2 values in Figure 2 into FFT yields an absolute
difference of 0.02 (two-sample t; t¼ 38.81; Po0.001).
Therefore, in the most extreme case given by these
simulations, where the allele frequency change is
qp¼ 0.30, the calculated differentiation between pollen
pools may be small. However, even with the smallest
allele frequency gradient, qp¼ 0.10, the increase in sA

2 is
large enough to differentiate FFT,qp¼ 0.00 and FFT,qp¼ 0.10

(two-samples t, t¼ 3.402, P¼ 0.0003). The differences in
FFT before and after removal of the environmental
‘covariate’ are relatively small and may be of dubious
biological relevance in terms of how it influences future
genetic structure. However, their significance in explain-
ing the observed distribution of pollen donor structure
across the landscape is arguably more important than the
magnitude of their effects. The significant retention in the
StAMOVA model suggests a functional relationship that

has the ability to modify the patterns and influences of
pollen-mediated gene flow.

The StAMOVA analysis successfully partitioned total
variation into that corresponding to the gradient in adult
allele frequencies, and that due to differences among
mothers (Figure 2). Without removing the effects of the
allele frequency gradient in the adult population, the
additional sums of squares associated with the gradient
remained within the among-mother component. How-
ever, under the StAMOVA, the sums of squares are
partitioned between that due to the gradient and that
due to the among-mother component. As a result, the
among-mother variance is unaffected by the presence of
the allele frequency gradient in the adults, provided one
accounts for the latter. The analysis of the external
variable in simulations without an allele frequency
gradient (qp¼ 0.00) was nonsignificant (ie, the reduction
in the sums of squares due to the external variable in the
cases where there was no allele frequency gradient was
not significant). In these cases, it is not appropriate to
retain the external variable in the model, and the
StAMOVA analysis reduces to the original TWOGENER

analysis. The addition of the spatial location perpendi-
cular to the allele frequency gradient was also not
significant, as would be expected since there is no
systematic change in allele frequencies along this axis.
With the StAMOVA, simulations where qp¼ [0.10, 0.20,
0.30] showed no significant increase in sA

2 over that for
qp¼ 0.00, once the effects of the external variable were
removed. Subsequent estimates of g (the mean dispersal
distance) were unaffected by qp once the spatial covariate
was removed and were not significantly different than
the values entered into the simulation study (data not
shown).

Stepwise model applied to Q. alba

The StAMOVA was applied to a subset of the Q. alba
progeny arrays used in the original TWOGENER paper
(Smouse et al, 2001). Differentiation between the 35
sampled pollen pools was comparable to that from the
analysis of the full data set, FFT¼ 0.063 (Po0.001;
Table 2a) here, vs FFT¼ 0.061 in Smouse et al (2001).

Figure 1 Distribution of Q. alba maternal trees (represented as open
circles) in an Ozark secondary forest. Significant multivariate
gradient in the adult genetic structure is marked by dashed lines
(AL Koop and VL Sork, unpublished).

Figure 2 Estimated among-mother components of variation, A
2 (ie,

that attributable to the effects of dispersal distance), across a
nonuniform adult genetic structure gradient, qp¼ [0.00, 0.10, 0.20,
0.30]. TWOGENER results are represented as closed boxes, whereas
the Stepwise results are represented by open circles.
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However, after removing the effects of maternal position
along the north–south gradient, the differentiation
among pollen pools was reduced to FFT¼ 0.056
(Po0.001; Table 2b). The reduction in the sums of
squares due to the variable northing was significant
(Po0.012), but the addition of the east–west coordinate
was, as expected, not significant (P40.21; data not
shown). The reduction in the differentiation among Q.
alba mothers translates into a 13% increase in the estimate
of the area from which each mother sampled pollen.
Prior to removing the influence of the maternal north–
south position in the landscape, each mother was
estimated to sample pollen from donors within an area
of roughly 839 m2. Following the removal of maternal
position within the landscape, mapping the multivariate
gradient in the adult genetic structure, each mother was
estimated to sample from pollen donors within an area of
952 m2. Furthermore, removing the effects caused by
northing resulted in a 6% increase in the estimate of the
average pollen dispersal distance (17.4 vs 16.3 m; after
Smouse et al, 2001).

Discussion

This paper introduces a novel modification of the
AMOVA model applied to the TWOGENER analysis of
gene flow. This model, while not limited in its applica-
tion to TWOGENER-type analyses, allows the identification
of, and gauges the extent to which, external variables can
influence sampled genetic structure. The Stepwise model
casts the AMOVA model in terms of a generalized
multivariate linear model, allowing addition of any
number of variables hypothesized to influence the pollen
pool structure. The main benefit of adopting a linear
model for the analysis of pollen pool differentiation, as
we have done here for the TWOGENER analysis, is the
wide range of sampling designs available to quantify
the extent to which external factors can influence the
distribution of genetic structure. This paper demon-
strates the effects of removing the covariation between
adult genetic structure and pollen pool genetic structure,
but alternate designs focusing on other biological or
spatial factors may just as easily be applied.

The Stepwise analysis extends the utility of the
TWOGENER analysis, but retains the same underlying
assumptions. The coding of multilocus genotypes for the
Stepwise analysis for either offspring sampled from
angiosperms, where the paternal contribution may be
ambiguous when offspring and mothers share the same

heterozygotic state, or for conifers, where the maternal
haplotype is available within the megagametophyte, is
exactly the same as presented in Smouse et al (2001;
Table 1). Furthermore, the effects of genetic marker
resolution, inter-female sampling distance, fine-scale
adult autocorrelative structure, adult inbreeding, and
pollen donor density, as presented in Smouse et al (2001)
and Austerlitz and Smouse (2001a, b), apply to the
Stepwise treatment as well.

The simulation results show that deviations from
genetic uniformity of adults across the landscape can
significantly bias the estimation of pollen pool differ-
entiation. While linear allele frequency gradients were
used as an example here, mostly for simplification of the
simulations, any deviations from uniform adult genetic
structure would yield similar results. For example,
Austerlitz and Smouse (2001b) have recently shown that
adult inbreeding and spatially correlated coancestry both
increase pollen pool differentiation. In general terms, any
factor that influences adult genetic structure in a
nonuniform manner across the landscape, such as
microsite selection, variation in population size, local
population density, and fragmentation (Ledig, 1992;
Allard et al, 1993; Ellstrand and Elam, 1993; Gram and
Sork, 1999, 2001) will increase the variation among
spatially separated pollen pools.

In addition to adult genetic structure, pollen pool
differentiation may be influenced by a number of other
factors, such as the degree of spatial heterogeneity in
natural populations. For example, many authors have
suggested that the density of local pollen donors can
significantly influence outcrossing rates in forest trees
(eg, Farris and Mitton, 1984; Knowles et al, 1987; Shea,
1987; Murawski and Hamrick, 1991). In stands with few
pollen donors, the pollen pool surrounding each mater-
nal individual will have a higher proportion of her own
pollen, possibly increasing the probability of producing
selfed offspring. With only a modest increase in
sampling effort, both ecological and spatial variables
can easily be collected for each maternal individual, and
can be added to the analysis.

By incorporating these additional factors into the
sampling design, the array of testable hypotheses is
broadened. Instead of asking what the mean dispersal
distance is for a given taxa, hypotheses targeting the
factors that influence the average dispersal distance can
be tested. Hypotheses of this type are becoming increas-
ingly important for the development of conservation and
management practices. For example, in natural stands of

Table 2 Pollen pool differentiation in Q. alba in the Ozark Mountains of southern Missouri, USA

Source df MS Variance component F P

(a) Comparison of among-mother differentiation using the TWOGENER analysis
Mothers 34 2.8254 0.0641 0.063 o0.001
Error 989 0.9571 0.9571
Total 1023

(b) Stepwise analysis of pollen pool structure while taking into account the underlying north–south gradient in adult genetic structure
(northing)
Northing 1 7.3041 0.013
Mothers 33 2.6909 0.0585 0.056 o0.001
Error 989 0.9571 0.9571
Total 1023

Data extracted from Smouse et al (2001).
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P. echinata, the density of all canopy tree species has
a significant effect on pollen pool diversity, whereas
the density of P. echinata individuals within the stand
had no detectable effect (see Figure 4 in Dyer and Sork,
2001). A StAMOVA decomposition of the P. echinata data
shows that the density of heterospecifics, in addition to
being influential on the diversity of sampled pollen
pools, also influences the genetic differentiation among
pollen pools. Dyer and Sork (2001) originally found
FST¼ 0.10 for the among-site component of genetic
differentiation. After removing the effects variation due
to heterogeneity in physical stand architecture, FST was
reduced to 0.09 (P¼ 0.027, RJ Dyer, unpublished StA-
MOVA results). Again, the extent to which forest
architecture influences pollen dispersal is small yet
significant. For a species whose pollen dispersal distance
is much greater than that for its seeds, such as P. echinata,
these results suggest that forest structure can have
significant influences on the transmission of genes. From
these results, specific hypotheses can be formulated
regarding how alterations of forest structure influence
pollen movement, in terms of pollen pool heterogeneity,
the diversity of sampled pollen donors, and the
propensity to produce inbred offspring (RJ Dyer, in
preparation).

The StAMOVA approach can be used to estimate the
magnitude and relative importance of several factors
simultaneously. The simulation and Q. alba examples
presented here only highlight a single external variable
of interest. However, since the StAMOVA is a general
linear model, any number of additional external factors
and interactions among external factors can be easily
added to the model just as in a multiple regression
analysis. For example, in addition to the density of local
pollen donors, the degree of phenological overlap has
also been shown to influence pollen pool composition
significantly (eg, Sampson et al, 1990; Adams and Birkes,
1991). By sampling across a range of densities in the
degrees of phenological overlap, one could isolate the
importance of each of these factors as well as their
interaction in shaping the distribution of genetic struc-
ture within spatially separated pollen pools.

Perhaps the most important benefit of the StAMOVA
approach is highlighted by the results of the Q. alba
analysis. It is clear from the partitioning of genetic
variation in Table 2 that the maternal position within the
landscape is predictive of differentiation among sampled
pollen pools. This result is important on two counts.
First, this immediately suggests that there may be an
underlying adult structure. While the specific nature of
the adult structure requires further inquiry, the fact
remains that inferences can be drawn with respect to
adult genetic structure by examination of sampled pollen
pools. Second, the StAMOVA analysis allows the
simultaneous analysis of the interaction between genetic
and nongenetic variables. In this case, the nongenetic
variable was the maternal position within the landscape.
The significant covariate highlighted the extent to which
the environment in which gene flow occurred influences
the distribution of genetic structure. As long as the
spatial separation of maternal individuals from which
samples are drawn is sufficiently large, relative to the
mean dispersal distance (see Austerlitz and Smouse,
2001a, b), the structure in local pollen pools will reflect
that of local pollen donors.

While the model presented here builds upon the
original AMOVA analysis of Excoffier et al (1992), the
TWOGENER formulation presented by Smouse et al (2001),
as well as the theoretical framework provided by
Austerlitz and Smouse (2001a, b), there remain a number
of key issues regarding the analysis of pollen pool
genetic structure that have yet to be explored. Up to this
point, we have focused on determining whether the
means of the pollen pools sampled by each maternal
individual are significantly different. In essence, both the
TWOGENER and the Stepwise analyses test the hypothesis
that the average pollen donor, or in other words, the
centroid of the multivariate pollen pool, is the same
across all mothers. From these results, the average
dispersal distance and the genetic effective neighbor-
hood size are easily estimated. However, variation in
sampled pollen pools across mothers may be just as
important. In terms of transferring genetic variation from
one generation to the next, the differences in the
variation observed within pollen pools is arguably more
important than the mean differences among the means of
the pollen pools. A method for testing the equality of
variance, or heteroscedasticity, in sampled pollen pools
could aid in identifying sites of high genetic diversity
among the surrounding adults (RJ Dyer, in preparation).

Furthermore, these models have been constructed
under the assumption of isotropic pollen movement (ie,
pollen dispersal is equal in all directions). For coastal
communities or populations in areas with predominant
wind directions, directional pollen movement should be
considered. Down-wind mothers will sample a signifi-
cantly more diverse set of pollen donors than their
upwind counterparts. This increase in diversity may lead
to a significant increase in differentiation between down-
and up-wind mothers, attributable entirely to the
directionality of pollen dispersal. Similarly, we have
consistently assumed, during the development of the
TWOGENER analysis, that wind is the primary dispersal
agent, restricting our inquiries to only a subset of plant
taxa. Trap lining by insect or animal pollinators can
significantly influence the heterogeneity of sampled
pollen. At this time, we do not know how these
behaviors would influence our interpretations of pollen
movement, although there is active work in this area. The
TWOGENER model has provided a means of testing
hypotheses regarding the movement of pollen across
landscapes. By extending the TWOGENER model (and
underlying AMOVA analysis) to a generalized linear
model, we gain the ability to investigate other factors
affecting pollen pool differentiation and pollen dispersal.
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