Abstract
Plants can aquaire carbon from sources other than atmospheric carbon dioxide (CO
2), including soil-dissolved inorganic carbon (DIC). Although the next flux of CO
2 is out of the root, soil DIC can be taken up by the root, transported within the plant, and fixed either photosynthetically or anaplerotically by plant tissues. We tested the ability of
Pinus taeda L. seedlings exposed to
13C-labeled soil DIC and two NH
2 availability regimes to take up and fix soil DIC. We also measured the concentration and distribution of the fixed soul DIC within the plant and mycorrhizal tissues, and quantified the contribution of soul DIC to whole-plant carbon (C) gain. Seedligns exposed to labeled DIC where significantly enriched in
13C compared with seedlings exposed to unlabeled DIC (6.7 versus -31.7%). Fixed soil DIC was almost evenly distributed between above- and belowground biomass (55 and 45%, respectively), but was unevenly distributed among tissues. Abovegorund, stem tissue contained 65% of the fixed soul DIC but represented only 27% of the aboveground biomass, suggesting either corticular photosynthesis or preferential stem allocation. Belowground, soil DIC had the greatest effect (measured as
13C enrichment) on the C pool of rapidly growing nonmycorrhizal roots. Soil DIC contributed ~0.8% to whole-plant C gain, and ~1.6% to belowground C gain. We observed a slight but nonsignificant increase in both relative C gain and the contribution of soil DIC among tissue types and increased the amount of fixed soul DIC in ectomycorrhizal roots by 130% compared with unfertilized seedlings. Increased NH
4 availability did not increase fixation of soil DIC in nonmycorrhizal roots, suggesting that NH
4 assimilation may be concentrated in ectomycorrhizal fungal tissues, reflecting greater anaplerotic demands. Soil DIC is likely to contribute only a small amount of C to forest trees, but it may be important in C fixation processes of specific tissues, such as newly formed stems and fine roots, an ectomycorrhizal roots assimilating NH
4.
Keywords
anaplerotic fixation,
carbon cycling,
carbon dioxide,
corticular photosynthesis,
dissolved inorganic carbon,
stable isotope
Citation
Ford, Chelcy R.; Wurzburger, Nina; Henderick, Ronald L.; Teskey, Robert O. 2007. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Tree Physiology, Vol. 27: 375-383