Skip to main content
U.S. flag

An official website of the United States government

Strong spatial variability in trace gas dynamics following experimental drought in a humid tropical forest

Formally Refereed
Authors: Tana Wood, W. L. Silver
Year: 2012
Type: Scientific Journal (JRNL)
Station: International Institute of Tropical Forestry
DOI: https://doi.org/10.1029/2010GB004014
Source: Global Biogeochemical Cycles 26:GB3005. doi:10.1029/2010GB004014

Abstract

[1] Soil moisture is a key driver of biogeochemical processes in terrestrial ecosystems, strongly affecting carbon (C) and nutrient availability as well as trace gas production and consumption in soils. Models predict increasing drought frequency in tropical forest ecosystems, which could feed back on future climate change directly via effects on trace gasdynamics and indirectly through changes in nutrient availability. We used throughfall exclusion shelters to determine effects of short-term (3 month) drought on trace gas fluxes and nutrient availability in humid tropical forests in Puerto Rico. Exclusion and control plots were replicated within and across three topographic zones (ridge, slope, valley) to account for spatial heterogeneity typical of these ecosystems. Throughfall exclusion reduced soil moisture in all sites and lowered exchangeable phosphorus (P) on ridges and slopes. Drought decreased soil carbon dioxide (CO2) emissions by 30% in ridge sites and 28% in slope sites, and increased net methane (CH4) consumption by 480% in valley sites. Both valley and ridge sites became net nitrous oxide (N2O) sinks in response to soil drying. Emissions of CO2 and N2O, as well as CH4 consumption were positively related to exchangeable P and the nitrate:ammonium ratio. These findings suggest that drought has the potential to decrease net trace gas emissions from humid tropical forest soils. The differential response of trace gas emissions and nutrients from different topographic zones to drought underscores the complexity of biogeochemical cycling in these ecosystems and the importance of considering spatial heterogeneity when estimating whole system responses.

Keywords

soils, trace gas fluxes, tropical forest, drought, Puerto Rico, nutrient availability, carbon

Citation

Wood, T. E.; Silver, W. L. 2012. Strong spatial variability in trace gas dynamics following experimental drought in a humid tropical forest. Global Biogeochemical Cycles 26:GB3005. doi:10.1029/2010GB004014.
Citations
https://www.fs.usda.gov/research/treesearch/44882