Skip to main content
U.S. flag

An official website of the United States government

Characterization and classification of vegetation canopy structure and distribution within the Great Smoky Mountains National Park using LiDAR

Formally Refereed
Authors: Jitendra Kumar, Jon Weiner, William W. Hargrove, Steve Norman, Forrest M. Hoffman, Doug Newcomb
Year: 2016
Type: Scientific Journal (JRNL)
Station: Southern Research Station
DOI: https://doi.org/10.1109/ICDMW.2015.178
Source: In: Proceedings 15th IEEE International Conference on Data Mining Workshop.

Abstract

Vegetation canopy structure is a critically important habitat characteristic for many threatened and endangered birds and other animal species, and it is key information needed by forest and wildlife managers for monitoring and managing forest resources, conservation planning and fostering biodiversity. Advances in Light Detection and Ranging (LiDAR) technologies have enabled remote sensing-based studies of vegetation canopies by capturing three-dimensional structures, yielding information not available in two-dimensional images of the landscape provided by traditional multi-spectral remote sensing platforms. However, the large volume data sets produced by airborne LiDAR instruments pose a significant computational challenge, requiring algorithms to identify and analyze patterns of interest buried within LiDAR point clouds in a computationally efficient manner, utilizing state-of-art computing infrastructure. We developed and applied a computationally efficient approach to analyze a large volume of LiDAR data and characterized the vegetation canopy structures for 139,859 hectares (540 sq. miles) in the Great Smoky Mountains National Park. This study helps improve our understanding of the distribution of vegetation and animal habitats in this extremely diverse ecosystem.

Citation

Kumar, Jitendra; Weiner, Jon; Hargrove, William W.; Norman, Steven P.; Hoffman, Forrest M.; Newcomb, Doug. 2016. Characterization and classification of vegetation canopy structure and distribution within the Great Smoky Mountains National Park using LiDAR. In: Proceedings 15th IEEE International Conference on Data Mining Workshop. 1478-1485 pp. 8 p. 10.1109/ICDMW.2015.178.
Citations
https://www.fs.usda.gov/research/treesearch/51075