PERPETUAL SUCCESSION OF STREAM-CHANNEL VEGETATION IN A SEMIARID REGION

C. J. CAMPBELL and WIN GREEN Rocky Mountain Forest and Range Experiment Station¹ Forest Service — U.S. Department of Agriculture

INTRODUCTION. — Riparian vegetation in its mesophytic environment in the Southwest undoubtedly uses large amounts of water, but thus far, the various species and communities associated within confines of mountain reaches have not been extensively investigated.

Flood plain vegetation of major rivers at relatively low elevations in the Southwest — the Colorado, Salt, Gila, Rio Grande, and Pecos — has been surveyed and mapped with varying degrees of intensity. Large acreages bordering these rivers, special management problems created by exotic species such as *Tamarix pentandra*² and *Elaeagnus angustifolia*, potential water savings by vegetation eradication, and economic value of reclaimed flood plain land, have stimulated research and management of flood plain vegetation. Recently, standardized techniques of sampling these areas have been outlined by Horton, Robinson, and McDonald (1964), which include some aerial techniques developed by Turner and Skibitzke (1952).

Shreve (1915, 1919, 1922, and 1951), Martin and Fletcher (1943), Wallmo (1955) and others, have contributed to the ecology of vegetation in Arizona, but surveys of channel vegetation along arroyos, streams, and rivers of foothills and mountains in the Southwest are lacking. No reliable estimates of area, species composition, or density of stream-channel vegetation have been made.

Whittaker and Niering (1964, 1965) give an ecological classification of the Santa Catalina Mountains of south-central Arizona following life forms deveoped by Raunkiaer (1934). Nichol (1952) discusses *Prosopis juliflora* and associated species in bosques of the desert region, but does not mention stream-bank vegetation of higher elevations. Hastings and Turner (1965) briefly consider the vegetation restricted to water courses between 4,000-6,500 feet, which they term "gallery forests." They mention that plants within this type characteristically span a greater elevational range than on adjacent uplands, and provisionally attribute this to homogenity of temperature resulting from cold-air drainage and additional moisture at all elevations. Lowe (1964) lucidly defines "riparian association" as "one which occurs in or adjacent to drainageways and/or their flood plains and which is further characterized by species and/or life-forms different from that of the immediately surrounding non-riparian climax." Lowe also recognizes that all species along a stream channel are not necessarily confined to this zone, but may be indigenous to the semiarid environment of adjacent channel slopes.

In this paper we separate riparian from the proposed term "pseudoriparian," thus making riparian of an obligate nature and pseudoriparian facultative. Pseudoriparian would apply to the woody plants capable of completing their life cycle in relatively xeric or mesic sites, but which achieve maximum size and density when additional subsurface moisture is available. For example, Prosopis juliflora, Cercidium microphyllum, Acacia greggii, Quercus turbinella, Juniperus osteosperma, and Pinus edulis found on certain sectors of Sycamore Creek, central Arizona, where the data for this study were collected would be classified as pseudoriparian. These species as well as a majority of the shrubs sampled probably become established within canyon bottoms from seed plants on adjacent slopes. Their geographical range is not extended within the channel beyond source of seed introduction. Seeds of pseudoriparian species are disseminated by wind, gravity, or animals. Obviously, the classification of flood-plain species as either riparian or pseudoriparian has limitations. Attempts to pigeonhole species often lead to oversimplification of evolutionary adaptations and complex interaction between species, but despite problems of interspecific interactions, ranges of adaptability, and frequent disturbance of stream-channel vegetation, most trees and shrubs are easily classified as riparian or pseudoriparian (Appendix I).

Concerning succession, Lowe (1964) maintains that the riparian association is not "merely a temporary unstable seral community" but should be regarded as "a distinctive climax biotic community." On Sycamore Creek, however, large-scale changes in habitats caused by recurring floods, erosion, and deposition determine to a large extent the resulting

¹Central headquarters at Fort Collins, Colorado, in cooperation with Colorado State University. Research reported here was conducted at Tempe, Arizona, in cooperation with Arizona State University.

³Identification and nomenclature follows Kearney and Peebles (1960). Identifications were verified using specimens from the Arizona State University Herbarium and the U. S. Forest Service Herbarium, Forest Hydrology Laboratory, Tempe, Arizona. See Appendix I for list of common and scientific names and authorities of plants listed in text, and classification of shrubs and trees by the authors as either riparian (R), or pseudoriparian (P) species.

Figure 1.—Sycamore Creek watershed encompasses approximately 121,000 acres in the Mazatzal Mountains, central Arizona. The channel reach is subdivided into six approximately 7-mile lengths with a total flood plain area of approximately 3,000 acres.

vegetation complex. Because of this vegetation flux, immature stages of species development is commonplace. Our data and observations indicate this riparian association, including the pseudoriparian species, probably never reaches a climax hierarchy because of these physiographic factors.

STUDY AREA. — Sycamore Creek heads near Mt. Peele in the Mazatzal Mountains in eastern Maricopa County, Arizona, at an elevation of about 5,500 feet, and joins the Verde River some 25 miles northeast of Phoenix (Fig. 1). The Creek flows south except for the lower 8 miles of the reach, which flows generally southwest. The watershed has a total area of approximately 121,000 acres and a flood-plain area of about 3,000 acres, excluding all tributaries. Sycamore Creek is about 42 miles long. Channel gradient on the lower 21-mile sector is about 40 feet per mile. Average gradient on the upper 21-mile sector is about 155 feet per mile, with the upper 7 miles of this sector having a gradient of approximately 235 feet per mile.

The upper 21-mile sector of Sycamore Creek is in mountainous terrain primarily of granite, schist, and volcanic material, and small amounts of consolidated alluvial sediments. Small, discontinuous deposits of unconsolidated alluvial material occur along the

stream channel, or in some areas the stream channel is cut on bedrock. The lower 21-mile sector of the watershed has primarily low relief and gentle slopes of consolidated alluvium consisting of sandstone, siltstone, conglomerate, and sandy clay. The channel is underlain by unconsolidated gravel, sand, silt, and clay to various depths (Thompson and Schumann, 1964). Intermittent flowing water or stagnant pools characterize the upper 21-mile sector in the spring and summer months, with continuous flow in the fall and winter. On the lower 21-mile sector in areas where the stream channel is constricted, surface water may flow only at night during summer months, presumably because evapotranspiration (ET) losses reduce flows during the day. In the deep, unconsolidated alluvium characteristic of the lower 8 miles, surface flow occurs at flood peaks but seldom reaches the Verde River.

A vegetation-type map of the Sycamore Creek watershed shows a marked change in vegetation on upland slopes at about 3,000 feet, approximately 21 miles above the Sycamore-Verde confluence (Troxel, *et. al.*, 1965). At this and higher elevations, upland slopes are dominated by chaparral species instead of desert grassland or desert shrub.

CLIMATE. — Average annual precipitation on the watershed varies between 9 inches at the Verde-Salt River confluence to 22 inches at Mt. Ord at an elevation of 7,000 feet (Fig. 1). The Mt. Ord station is located on an exposed peak, and therefore is probably influenced by prevailing high-velocity southwesterly winds, because precipitation is considerably below measurements at similar elevations on surrounding mountains. Actual precipitation at the Mt. Ord station is probably between 25 to 30 inches annually, based on a State isohyetal map of precipitation data from 1931-60. The 13-year average at Sunflower (3,500 feet) is about 20 inches annually. The ratio of summer to winter precipitation is about 40:60 throughout the reach. Late-summer convectional storms cause periodic flooding and high sediment movement, while winter precipitation is generally from lowintensity and long-duration storms, primarily in the form of rain below 4,000 feet and snow and sleet at higher elevations. Snow usually melts or sublimates within 1 day after falling, except on north-facing slopes.

METHOD. — For sampling purposes, the 42-mile reach was arbitrarily divided into 7-mile lengths, with the first sector nearest the Sycamore-Verde confluence (Fig. 1). On the 42-mile reach, 402, 0.05-acre stratified, randomly located quadrats were used to determine numbers and heights of each species of shrubs and trees. The number of quadrats on each 7-mile reach was determined statistically, depending on homogenity of dominant species. Selected quadrat size was believed to be large enough to reduce the objections posed by Greig-Smith (1964, p. 33). Slopes of adjacent canyon walls or terraces exceeding 15 percent were not sampled, and thus determined lateral boundaries of quadrat locations. Species with a frequency of less than approximately 20 percent were probably unavoidably undersampled. Supplemental data, such as d.b.h. of trees, ocular estimates of cover, site elevations, slope and aspect of canyon walls, channel slope, and surface soil type were noted for each quadrat.

One hundred and fifty permanently located 9.6square-foot quadrats were used to estimate percent cover of forbs and grasses throughout the 42-mile reach during one summer and winter. Twenty-five quadrats on a terrace containing between 2 to 10 acres represented forb and grass vegetation on each 7-mile sector. Adequacy of this sample number was not determined statistically. Species were ranked into classes from 1 to 5, depending upon estimation of cover of each. Crown cover percent of shrubs and trees above each quadrat was recorded.

RESULTS AND DISCUSSION. — A total of 29 species of trees was recorded on the 0.05-acre quadrats on the entire 42-mile reach. Three species occurred only in the lower 21 miles, 14 only in the upper 21

miles, and 12 in both. A chi-square test suggests that differences this great might occur in the sample by chance while no real differences in composition existed between the two sectors. On empirical grounds, however, it can be stated that some species actually do occur in the upper and not in the lower, and vice versa.

Sixty-five species of shrubs were recorded on the 0.05-acre quadrats on the entire 42-mile reach (Table 1). Eight species occurred only in the lower 21 miles, 44 species only in the upper 21 miles, and 17 in both. Species found within the lower and upper areas did not occur together as often as expected by chance $(X^2=15.33^{**})$.

Density of shrubs was much greater on the lower sector (average 6.1 per quadrat) than on the upper (1.5). Density of trees did not differ greatly (1.4 and 1.7). Likewise, average frequency of shrubs on the lower and upper sectors was 41.7 and 29.5, respectively, while average frequency of trees was 32.5 and 35.6. Thus trees appeared to be more evenly distributed along the reach than shrubs.

High summer temperatures common to this semiarid region cause correspondingly high potential ET

Site characteristics	-*	Range	in elevation	(feet) of six	sectors		Ent	ire area
and type	1400-1550	1550-1950	1950-2250	2250-3300	3300-3850	3850-5500	(42-n Total	Average
Distance from confluence (mi.)	0-7	7-14	14-21	21-28	28-35	35-42		
Mean channel gradient (ft. per mi.)	21	57	43	150	78	236		
SHRUBS:								
Number of species	14	12	17	35	25	40	65	10.8
Average density	2.9	8.2	7.2	1.7	1.8	1.1		3.8
Average frequency	48.2	36.5	40.3	22.6	33.3	32.7		35.6
TREES:								
Number of species	6	. 11	13	16	15	20	29	4.8
Average density	1.1	9	2.2	1.6	2.7	.9		1.6
Average frequency	38.7	20.0	38.7	30.3	48.1	28.4		34.1
TOTAL SHRUBS AND TREES:								·
Number of species	20	23	30	52	41	60	94	15.7
Average number of species per sample	5.3	3.7	4.7	8.3	11.1	11.3		7.4
Percent cover	38	29	56	46	66	64		50.0
Number of quadrats	43	50	69	73	71	96	402	67.0

Table 1. Summary of shrubs and trees sampled on Sycamore Creek floodplain. Elevation: 1,400-5,500 feet. Density and frequency values are for plants occurring on 10 percent or more of quadrats. Density = Number plants per unit area. Circular quadrats are 0.05 acre.

October 1968

losses. However, high temperatures within the channel of Sycamore Creek are buffered somewhat by cold-air drainage, thus factor interaction causing increased available moisture may help to account for range extension of some riparian species. Some common trees of the Transition Zone (6,500-8,500 feet), such as Pseudotsuga menziesii and Pinus ponderosa, occurred along the stream channel to elevations as low as 4,500 feet (Fig. 2). Platanus wrightii and Juglans major frequently occurred within the channel proper below 3,000 feet where night temperatures were low but summer day temperatures often exceeded 100°F. Other trees common in the Upper Sonoran Zone such as Fraxinus pennsylvanica, Sambucus mexicana, Salix gooddingii and Populus fremontii are not restricted in distribution by high day temperatures. These plants occur below 1,300 feet on the Salt River flood plain where maximum temperatures frequently exceed 110°F in summer months. Riparian species of shrubs, e.g. Baccharis glutinosa, Pluchea sericea, and Salix exigua are only found on wet sites in Sycamore Canyon and, when within the Salt River Valley at elevations below 1,300 feet, on rivers and unlined canal banks. Pseudoriparian species of shrubs from

the chaparral type invade the stream channel proper from adjacent canyon walls and hillsides. Once established, they neither migrate down nor upstream. Migration downstream is probably limited because transpiration exceeds maximum rate of water absorbed by roots. The limiting factor of up-channel migration is provisionally attributed to the lower winter temperatures at the higher elevations especially as influenced by cold air drainage.

Most shrub species sampled have a wider ecological amplitude than trees with respect to variation in soil moisture. Ninety-five percent of the shrub species occur on both relatively mesic and xeric sites thus classified as pseudoriparian versus only 52 percent of the trees.

In summary, riparian vegetation on Sycamore Creek does not have a distinct zonation at approximately 3,000 feet where the stream channel bisects a sharply demarked vegetation zone on adjacent canyon walls, but rather the species appear to be diffused and spread either down or up the channel. A similar conclusion was drawn on the Rio Grande in New Mexico (Campbell and Dick-Peddie, 1964). Pseudoriparian

Figure 2.—Presence data showing distribution of common flood plain species in relation to elevation on Sycamore Creek. These data represent only localized conditions as they occur on this reach. species, however, particularly the shrubs, do show this zonation along the stream channel at an elevation of about 3,000 feet.

Combined counts of forb and grass species both summer and winter are highly significant $(X^2 =$ 36.14**) between the lower 21-mile and the upper 21-mile sectors (Table 2). Of a total of 32 species sampled on the lower sector, 20 (62.5 percent) also occurred above; on the upper 21-mile sector, of a total of 95 species recorded, about 21 percent were also found below. Herbs, with the exception of aquatics, found within the channel proper were also found on adjacent slopes. Throughout the year, forbs on all sites were more predominate than grasses. Summer forbs, such as Euphorbia spp., Pectis papposa, and Cassia baubinioides characterized all sites, while winter forbs, such as Erodium circutarium, Plagiobothrys arizonicus, and Amsinckia intermedia characterized the lower six sectors. In the summer, no individual grass species was common to all sectors, but Bouteloua aristidoides was present on the lower

35 miles of the reach. In the winter, *Schismus barbatus* was common on the lower 35 miles, with 100 percent frequency on one of the sectors.

Because of disturbances in the flood-prone channel, species form mosaics of seral stages of communities with different combinations of species dominating each stage; thus, the vegetation probably never reaches a "climax" hierarchy. Some riparian species recorded on Sycamore Creek appear to have become established primarily because geomorphological conditions influenced the microclimate. Factors such as steep, north-facing bluffs or high ridges parallel to the south of the channel reduce absorbed radiation, thus lower potential ET. Also, constrictions in the channel or a stream sector cut on bedrock, create aquifers of various size which retain water in sufficient quantities to support riparian vegetation during dry cycles. The alluvium deposited in eddies created by rocks, debris, and stream meandering often supports numerous seedlings after floods (Fig. 3). Depending on the degree of protection, one or more

Table 2. Summary of forbs and grasses sampled on Sycamore Creek floodplain. Elevation: 1,400-5,500 feet. Circular quadrats are 9.6 square feet.

Site characteristics	1 (00 1000	Rang	ge in elevatio	n (feet) of	six sectors		Enti (42-mi	re area le reach)
and type data	1400-1550	1550-1950	1950-2250	2250-3300	3300-3850	3850-5500	lotal	Average
Distance from confluence (mi.)	0-7	7-14	14-21	21-28	28-35	35-42		
Mean channel gradient (ft. per mi.)	21	57	43	150	78	236		
GRASSES:								
Number of species -								
Summer	2	4.	4	4	8	1	11	1.8
Winter	1	4	2	2	4	1	7	1.2
Present all year	0	2	0	1	3	0	4	.7
Total	3	6	6	-5	9	2	13	2.2
Percent cover —	22	2		26	(0			
Summer	>> _	5	>>	36	40	13		. 30
Winter	1	>	. 11	24	15	20		14
Average number of species per sample —								
Summer	0.5	0.4	0.6	0.6	1.1	0.3		0.6
Winter	0.7	1.0	1.0	1.6	0.8	0.1	,	0.9
FORBS: Number of species —								
Summer	7	7	10	8	26	29	67	11.2
Winter	9	11	9	9	22	8	- 37	6.2
Present all year	1	2	2	1	7	0	9	1.5
Total	15	16	17	16	41	37	95	15.8
Percent cover —						57	,,,	19.0
Summer	53	79	38	37	60	83		58
Winter	43	78	84	66	67	39		63
Average number of species per sample —								
Summer	1.6	1.5	2.0	1.6	3.8	2.9		2.2
Winter	3.6	3.5	2.5	2.4	2.7	0.4		2.5

October 1968

species will inhabit the site until the stream channel changes course. Apparently, establishment of a species depends not only on its ecological amplitude, but also on chance factors such as time of year of flooding, stem-sprouting ability of the species, and viable seeds deposited on the site. Once established, factor interaction between species for light, water, or nutrients does not appear to cause major changes in species composition. More important to a species survival than competitive exclusion is its ability to recover from periodic torrential flows where stems are damaged by debris, covered by sediment, or whole plants are uprooted and redeposited farther downstream.

Vegetation communities on Sycamore Creek are not well defined or easily delineated, although some generalities can be made. In the lower 21-mile sector, the channel is bordered by 1 or more terraces 3 to 15 feet above the channel floor (Fig. 4). Species with the highest frequency in the lower 21 miles were Prosopis juliflora, Hymenoclea monogyra, Acacia greggii, and Baccharis glutinosa. The frequency of Prosopis juliflora tended to increase laterally away from the channel onto the first or second terrace. It developed best on the first terrace, where its deep tap root probably draws on ground-water supplies. Its degree of dependence on ground water is not known, but leaf drop has been observed on these sites when the water table was known to be more than 45 feet below the surface, presumably because of soil-moisture stress. Undoubtedly, physiographic factors such as good soil aeration and flood protection account for Prosopis juliflora's higher abundance on terraces than within the channel proper. Hymenoclea monogyra occurred most frequently within the channel proper. Its ability to propagate from buried stems and rootstock no doubt helps to account for its success in flood-prone areas. Baccharis glutinosa was restricted to sites near the surface water or where ground water

Figure 3.—Reinvasion of *Populus fremontii* and *Baccharis glutinosa* (arrow) in October following flood flows in channel of Sycamore Creek at an elevation of about 3,200 feet. High water flows frequently wash out these riparian species in this straight channel except on adjacent (protected) terraces.

was approximately 6 feet or less from the surface. Adjacent to the ribbon formed by *Baccharis glutinosa*, individuals of *Salix gooddingii*, *Celtis reticulata*, *Platanus wrightii*, or *Fraxinus pennsylvanica* were irregularly spaced, depending on degree of flood protection. Because riparian trees were taller and had a higher density than adjacent desert shrubs, trees formed a conspicuous vegetation type.

In the upper 21 miles of Sycamore Creek, Prosopis juliflora continued to be a common but not conspicuous species. Acacia greggii, associated with Prosopis juliflora in the lower three sectors, was replaced almost entirely by Mimosa biuncifera. These, as well as many shrub species common to the chaparral zone, formed a rather dense understory beneath the canopies or in the openings between Platanus wrightii, Populus fremontii, Salix gooddingii, Juglans major, Fraxinus pennsylvanica, Quercus arizonica, Q. emoryi, and Cupressus arizonica (Fig. 5). Juniperus osteosperma, a common but small tree, was frequently found beneath canopies of large trees.

Percentages of association between species of trees and shrubs that occur on approximately 20 percent or more of the quadrats are shown in Tables 3-7. Because of changing species, elevation, and climate, association indexes (Dice, 1945) and chi-square tests of frequency of occurrence of species were computed for each 7-mile sector. Tabular data from the second 7-mile sector have been omitted because only 4 species were sampled in sufficient numbers to be analyzed. and of these, only Hymenoclea monogyra and Acacia greggii occurred together in numbers greater than expected by chance. Species are listed in Tables 3-7 in order of decreasing numbers of occurrence to indicate their relative densities by sector. The ecological amplitude of species, geomorphological barriers, or small sampling numbers could influence values of relative densities.

Figure 4.—Low, relatively stable stream channel on Sycamore Creek at approximately 2,200 feet containing Cynodon dactylon sod and mixed community of Prosopis juliflora, Acacia greggii, scattered Populus fremontii on the terrace, and Baccharis glutinosa along channel banks. Young Baccharis glutinosa dot the channel bed, but will be washed out or covered by sediment during the next flood flow.

Figure 5.—Sycamore Creek in July at approximately 3,300 feet, showing typical mixed stand of *Platanus wrightii* (a), *Populus fremontii* (b), *Fraxinus pennsylvanica* (c), and *Cupressus arizonica* (d) on a relatively stable stream channel.

Table 3.	Association index converted to percentages of shrub and tree species occurring on approximately 20
	percent or more of the floodplain plots in the first 7-mile sector above the Sycamore-Verde confluence.
	Elevation: 1,400-1,500 feet.

		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
(1)	Hymenoclea monogyra		77	81	69 ¹	75	64	50 ⁴	80	80
(2)	Prosopis juliflora	*71		74	88²	75	71	86	60	50
(3)	Acacia greggii	65	65		54	55	64	64	60	80
(4)	Lycium andersonii	531	74²	52		70	64	79	50	60
(5)	Larrea tridentata	44	48	41	54		64 ¹	50	20	20
(6)	Franseria deltoidea	26	32	33	38	501		29	20	30
(7)	Condalia lycioides	214	39	33	42	35	29		30	30
(8)	Baccharis sarothroides	24	19	22	19	10	14	21		40
(9)	Cercidium floridum	24	16	30	23	10	21	21	40	

*The association index Hymenoclea/Prosopis indicates that, on 71 percent of the plots where Hymenoclea monogyra occurs it is associated with Prosopis juliflora; likeswise, when Prosopis occurs, Hymenoclea occurs 77 percent of the time (Inverse Association Index, Prosopis/Hymenoclea=77 percent).

Greater than percentages expected from chance: 1 (P=.05), 2 (P=.01).

Less than percentages expected from chance: 3 (P=.05), 4 (P=.01).

Table 4.	Association index converted to percentages of shrub and tree species occurring on ap- proximately 20 percent or more of plots on the third 7-mile sector beginning approx- imately 14 miles above the Sycamore-Verde confluence. Elevation: 1,950-2,250 feet.

		(1)	(2)	(3)	(4)	(5)	(6)
(1)	Prosopis juliflora		82	79	90	100 ¹	100
(2)	Baccharis glutinosa	78		87	90	57⁴	60¹
(3)	Hymenoclea monogyra	52	60		57	48	40
(4)	Salix gooddingii	33	35	32		14	20
(5)	Acacia greggii	36¹	22 ⁴	26	14		531
(6)	Celtis reticulata	26	16¹	16	14	38¹	

Greater than percentages expected from chance:

On the lower 7-mile sector, the association indexes (A.I.) Lycium/Hymenoclea of 69 percent and Lyceum/Prosopis of 88 percent are significant and highly significant, respectively (Table 3). Field observations indicated Lycium andersonii existed only beneath the shade of associated species, and preferred Prosopis juliflora. Lycium was recorded in sectors 2 and 3, although not in numbers great enough to be analyzed. As elevation increased, Lycium began to exist in open sites and be less dependent upon shade of neighboring plants. Apparently, microclimate beneath canopies of some plants on the first sector created an environment suitable for Lycium, and a resulting range extension of the species. Density and foliage production of many herbs also tended to increase with increased shade of the overstory. This was especially noticeable in the lower 3 sectors in the spring, when annuals exposed to full radiation died several weeks before plants of the same species growing beneath trees. The range extension of Lycium to lower elevations, and longer growing period of annuals beneath trees, is attributed to factor interaction of lower temperatures, which reduces transpiration by understory species and extends the period of available soil moisture.

The A.I. Larrea/Franseria of 50 percent was significantly greater association than by chance. Both species occupied similar ecological zones and have similar growth forms. Larrea tridentata apparently occupied Franseria deltoidea sites slightly more often than the reverse.

On the second 7-mile sector, only 4 species were recorded in numbers great enough to be analyzed, therefore the table is not reproduced. Pertinent in this sector is the significant A.I. Acacia/Hymenoclea of 73 percent. Apparently, Hymenoclea monogyra occurred on sites occupied by Acacia greggii more often than the reverse — the inverse association index (I.A.I.) Hymenoclea/Acacia, was 40 percent.

The 100 percent A.I. Acacia/Prosopis and the 36 percent I.A.I. (Table 4) indicates complete dependence of Prosopis juliflora to sites occupied by Acacia greggii, yet Prosopis had the highest density on this sector. On the fourth sector (Table 5) the same significant relationship exists between Prosopis and Acacia, with Prosopis again having the highest rela. tive density. This indicates Acacia was limited to a more restricted range of environmental conditions than Prosopis, and probably on Sycamore Creek the limiting factor was available soil moisture.

Species association on the upper 21 miles of Sycamore Creek are indicated in Tables 5, 6, and 7. The problem of understanding the vegetation relationships in this area is complicated by the fact that channel flooding, scouring, and deposition continually introduce new seral stages of community developments. These disturbances within the channel are influenced by intensity and duration of rainfall, geomorphological characteristics of the watershed and channel, channel gradient, and vegetation types. For instance, in the "V" type channel near the head of Sycamore Creek and the "narrows" created by water erosion some 21 miles above the confluence with the Verde River, the occasional destructive floods create vegetation communities whose entire population is relatively immature. Presumably because of the above factors, the d.b.h. and height of trees recorded on quadrats in the upper 21-mile sector decreased with increased elevation. Riparian and pseudoriparian species (Tables 5 and 7), when significant are generally negatively associated. Riparian, or pseudoriparian species, are usually positively associated with like types. For example, in Table 5, the A.I. between a riparian and pseudoriparian species (Fraxinus pennsylvanica/Acacia greggii=22) indicates significantly lower association than expected by chance. The association of two pseudoriparian species (Prosopis juliflora/Acacia greggii=45) was significantly higher than by chance.

SUMMARY. — The community aspects of channel vegetation with respect to changing elevation on Sycamore Creek, Maricopa County, Arizona, were studied by means of association indexes of dominant species. Data were collected from 402 stratified random, 0.05-acre quadrats to determine shrub and tree composition, while 150 permanently located 9.6square-foot quadrats were used to determine grass and forb composition. Ninety-five percent of the shrub species sampled and approximately 50 percent of the tree species are indigenous to the semiarid mountain slopes, and are not dependent upon additional subsurface moisture in the channel for survival. These species, which have a wide ecological amplitude with respect to variation in soil moisture, are termed 'pseudoriparian''; they invade the channel sites perpendicularly from adjacent slopes. Pseudoriparian species remain confined to their area of introduction; they neither migrate upstream nor downstream beyond major vegetation types of adjacent slopes. The riparian

94

 $⁽P=.05), ^{2} (P=.01).$

Less than percentages expected from chance: P=.05, P=.01.

Table 5. Association index converted to percentages of shrub and tree species occurring on approximately 20 percent or more of plots on the fourth 7-mile sector beginning approximately 21 miles above the Sycamore-Verde confluence. Elevation: 2,250-3,300 feet.

		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
(1)	Prosopis juliflora		41 ³	681	70 ¹	82²	41 ³	72 ¹	78²	75 ¹	65	60	79 ¹	234	44
(2)	Fraxinus pennsylvanica	38³		49	641	39	89²	32³	52	45	95²	55	58	82 ²	69
(3)	Celtis reticulata	631	49		70 ²	93²	41	52	74²	95²	45	40	79²	32 ³	44
(4)	Platanus wrightii	581	571	62²		64²	56	36	651	70²	65¹	60	79²	27³	44
(5)	Juniperus osteosperma	58²	30	70²	55²		154	36	65²	100 ²	35	30	79²	5 ⁴	25
(6)	Salix gooddingii	28 ³	65²	30	45	14 ⁴		20 ³	39	15 ³	70 ²	45	32	68 ²	50
(7)	Acacia greggii	451	22 ³	35	27	32	19³		39	30	10 ⁴	35	26	18	13 ³
(8)	Mimosa biuncifera	45²	32	46²	45 ¹	54²	33	36		55²	45	40	47	14 ³	13
(9)	Berberis baematocarpa	381	24	51²	42²	71²	11 ³	24	48²		25	30	63²	5²	19
(10)	Baccharis glutinosa	33	51²	24	391	25	52²	8⁴	39	25		451	37	36	501
(11)	Aplopappus laricifolius	30	30	22	36	22	33	28	35	30	45 ¹		32	9³	31
(12)	Juglans major	381	30	41 ²	45²	56²	22	20	39	60²	35	30		18	19
(13)	Cephalanthus occidentalis	134	49²	19³	18^{3}	44	56²	16	13 ³	5²	40	10 ³	21		56²
(14)	Populus fremontii	18	30	19	21	14	30	8 ³	9	15	40 ¹	25	16	41 ²	

Greater than percentages expected from chance: 1 (P=.05), 2 (P=.01). Less than percentages expected from chance: 3 (P=.05), 4 (P=.01).

Table 6. Association index converted to percentages of shrub and tree species occurring on approximately 20 percent or more of plots on the fifth 7-mile sector beginning approximately 28 miles above the Sycamore-Verde confluence. Elevation: 3,300-3,850 feet.

		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
(1)	Juniperus osteosperma		89	88	84	95²	89	94 ¹	931	81	951	90	95	90	87
(2)	Rhus trilobata	82		84 ¹	82	84	93²	83	93²	81	78	83	9 0	100^{2}	91
(3)	Mimosa biuncifera	80	84 ¹		80	82	85	81	84	81	81	80	80	95	87
(4)	Platanus wrightii	75	80	79		80	83	72	81	83	70	73	65	90	78
(5)	Celtis reticulata	85²	82	80	80		87²	72	84	74	86	77	90	95¹	83
(6)	Quercus turbinella	67	77 ²	70	69	73² .		64	77	64²	59	57	70	86¹	70
(7)	Opuntia engelmannii	561	54	52	47	47	50		53	55	62 ¹	70 ²	65	57	65
(8)	Rhamnus crocea	66¹	71²	64	64	65	72	64		64	65	73	60	86²	52
(9)	Fraxinus pennsylvanica	56	61	61	64	56	59²	64	63		51	60	55	62	61
(10)	Prosopis juliflora	571	52	54	47	58.	48	64 1	56	45		63	65	57	61
(11)	Berberis haematocarpa	44	45	43	40	42	37	58²	51	43	51		40	43	39
(12)	Cupressus arizonica	31	32	29	24	33	30	36	28	26	. 35	27		43	35
(13)	Ceanothus greggii	31	38²	36	35	36¹	391	33	42 ²	31	32	30	45		30
(14)	Juglans major	33	38	36	33	35	35	42	28	33	38	30	40	~ 33	

Greater than percentages expected from chance: 1 (P=.05), 2 (P=.01)

Less than percentages expected from chance: 8 (P=.05), 4 (P=.01)

	(1)	(2)	(3)	(4)	(2)	(9)	(1)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(11)	(18)
(1) Platanus wrightii		86	85	89	85	95²	88	80³	. 86	96	744	74³	87	1001	92	684	92	87
(2) Rhamnus californica	65		73	76²	87²	831	563	76	791	96²	97²	851	47*	56	75	96²	96²	354
(3) Juglans major	63	70		62	721	65	72	74	58	79	811	78	67	56	50	76	92²	74
(4) Vitis arizonica	67	75²	63		69	73	64	72	68	68	71	74	57	56	88²	72	60	52
(5) Quercus arizonica	62	832	711	67		77²	541	741	66	96²	844	89²	50	56	67	841	96²	48
(6) Rhus radicans	68²	781	63	70	752		56	61	74	93²	71	63	374	404	75	72	84²	354
(7) Quercus turbinella	52	44³	58	51	44^{1}	47		54	50	43	48	56	73²	52	33³	44	40	741
(8) Rhamnus crocea	443	55	55	52	561	47	50		47	57	68²	59	47	40	38	76²	64	61
(9) Amelanchier mormonica	40	471	35	41	41	47	38	39		54	39	33	33	28	33	44	44	35
(10) Rosa fendleri	32	42²	35	30	44²	43²	24	35	39		42	26	7*	123	29	40	722	13
(11) Quercus emoryi	274	47²	401	35	434	37	30	46²	32	46		59²	20	16^{1}	33	68²	521	22
(12) Arctostaphylos pungens	24³	361	34	32	39²	28	30	35	24	25	52²		33	28	334	52	36	30
(13) Mimosa biuncifera	31	224	32	27	25	184	44²	30	26	74	19	37		64²	17	24	44	61²
(14) Cupressus arizonica	301	22	23	22	23	174	26	22	18	11^{3}	131	26	532		25	16	°00	30
(15) Parthenocissus inserta	26	28	19	332	26	30	16^{3}	20	21	25	26	304	13	24		20	16	17
(16) Garrya flavescens	204	38²	31	29	341	30	22	41²	29	36	55²	48	20	16	21		40	22
(17) Robinia neomexicana	27	382	37²	24	394	352	20	35	29	64²	42 ¹	33	34	81	17	40		13
(18) Rbus trilobata	24	134	27	19	18	134	34^{1}	30	21	11	16	26	47²	28	17	20	12	
Greater than percentages expe	cted from	chance	: 1 (P=	.05), 2	(P=.01													1

96

Table 7. Association index converted to percentages of shrub and tree species occurring on approximately 20 percent or more of plots on the sixth 7-mile sector beginning approximately 35 miles above the Sycamore-Verde confluence. Elevation: 3,850-5,500 feet.

3

JOURNAL OF THE ARIZONA ACADEMY OF SCIENCE

Vol. 5

Less than percentages expected from chance: ^a (P=.05), ⁴ (P=.01).

October 1968

CAMPBELL-GREEN --- STREAM-CHANNEL VEGETATION

species exist only where additional subsurface moisture is available in addition to annual precipitation. Riparian species are found along the stream channel in a relatively narrow band that sometimes bisects sharply demarked vegetational zones. The channel vegetation probably never reaches a climax hierarchy due to periodic flood disturbances such as erosion, inundation, and deposition. As a result, mosaics of various seral stages with different dominant species characterize the vegetation communities.

APPENDIX I Trees and Shrubs

	Common Name	Class
Acacia greggii Gray	catclaw acacia	Р
Alnus spp.	alder	R
Amelanchier mormonica	Mormon serviceherry	р
Ablo bat bus laricitalius Grav	turpentine bush	P
Anctostathylos hungens	turpentine bush	1
H. B. K	pointleaf manzanita	Ρ
Baccharis glutinosa Pers.	seepwillow baccharis	R
Baccharis sarothroides Gray	broom baccharis	Р
Berberis haematocarpa		
Wooton	red mahonia	Р
Ceanothus greggii Gray	desert ceanothus	Р
Celtis pallida Torr.	spiny hackberry	Р
Celtis reticulata Torr.	netleaf hackberry	Р
Cephalanthus occidentalis L.	common buttonbush	R
Cercidium floridum Benth.	blue paloverde	R
Cercidium microphyllum (Torr.)		
Rose & Johnston	Littleleaf paloverde	Р
Chilopsis linearis (Cav.) Sweet	desertwillow	R
Condalia lycioides (Gray) Weberb.	Southwestern condalia	Р
Cupressus arizonica Greene	Arizona cypress	Р
Elaeagnus angustifolia L.	Russian-olive	Р
Franseria deltoidea Torr.	bur-sage	Р
Fraxinus pennsylvanica	-	
Marshall	green ash	ĸ
Garrya flavescens S. Wats.	yellowleaf silktassel	Р
Hymenoclea monogyra Torr. & Gray	singlewhorl burrobrush	R
Juglans major (Torr.) Heller	Arizona walnut	R
Juniperus osteosperma (Torr.) Little	Utah juniper	Р
Larrea tridentata (DC.) Coville	Coville creosotebush	Р

Lycium andersonii Gray Mimosa biuncifera Benth. Opuntia engelmannii Salm-Dyck Pinus edulis Engelm. Pinus ponderosa Lawson Platanus wrightii Wats. Pluchea sericea (Nutt.) Coville Populus fremontii Wats. Prosopis juliflora (Swartz) DC. Pseudotsuga menziesii (Mirb.) Franco Quercus arizonica Sarg. Quercus emoryi Torr. Quercus turbinella Greene Rhamnus californica Eschsch. Rhamnus crocea Nutt. Rhus radicans L. Rhus trilobata Nutt. Robinia neomexicana Gray Rosa fendleri Crepin Salix exigua Nutt. Salix gooddingii Ball Salix spp. Sambucus mexicana Presl Tamarix pentandra Pall. Amsinckia intermedia Fisch. & Meyer Cassia baubinioides Gray Erodium circutarium (L.) L'Her. Euphorbia spp. Pectis papposa Harv. & Grav Plagiobothrys arizonicus (Gray) Greene Bouteloua aristidoides (H. B. K.) Griseb. Cynodon dactylon (L.) Pers. Schismus barbatus (L.) Thell. Parthenocissus inserta (Kerner) K. Fritsch

Anderson wolfberry R catclaw mimosa Ρ Ρ Engelmann pricklypear Ρ pinyon R ponderosa pine Arizona sycamore R R arrowweed pluchea Fremont cottonwood R Ρ common mesquite Douglas-fir R Ρ Arizona white oak Emory oak Ρ Ρ shrub live oak Ρ California buckthorn Ρ hollyleaf buckthorn poison-ivy, poison oak skunkbush sumac Ρ Ρ New-Mexican locust Ρ Fendler rose covote willow R R Goodding willow willow R Mexican elder R five-stamen tamarisk. salt cedar R Forbs fiddleneck senna

> alfileria euphorbia

cinchweed

blood-weed

Grasses

needle grama Bermudagrass

Mediterraneangrass

Vines

thicket creeper R Vitis arizonica Engelm. canyon grape R

Ρ

LITERATURE CITED

- CAMPBELL, C. J., and W. A. DICK-PEDDIE, 1964. Comparison of phreatophyte communities on the Rio Grande in New Mexico. Ecology 45:492-502.
- DICE, L. R., 1945. Measures of the amount of ecological association between species. Ecology 26:297-302.
- GREIG-SMITH, P., 1964. Quantitative Plant Ecology. Butterworths, London. 256 pp.
- HASTINGS, J. R., and R. M. TURNER, 1965. The Changing Mile. Univ. Ariz. Press, Tucson. 317 pp.
- HORTON, J. S., T. W. ROBINSON, and H. R. MCDONALD, 1964. A Guide for Surveying Phreatophyte Vegetation. U.S. Dep. Agr., Agr. Handb. 266, 37 pp.
- KEARNEY, T. H., and R. H. PEEBLES, 1960. Arizona Flora. Univ. Calif. Press, Berkeley. 1085 pp.
- Lowe, C. H., 1964. (Ed.) The Vertebrates of Arizona. Univ. Ariz. Press, Tucson. 259 pp.
- MARTIN, W. P., and J. E. FLETCHER, 1943. Vertical zonation of great soil groups on Mt. Graham, Arizona, as correlated with climate, vegetation, and profile characteristics. Ariz. Agr. Exp. Sta. Tech. Bull. 99:89-153.
- NICHOL, A. A., 1952. The Natural Vegetation of Arizona. Ariz. Agr. Exp. Sta. Tech. Bull. 127, 230 pp.
- RAUNKLAER, C., 1934. The Life Forms of Plants and Statistical Geography; Being the Collected Papers of C. Raunkiaer. Oxford, Clarendon Press. 632 pp.
- SHREVE, F., 1915. The Vegetation of a Desert Mountain Range as Conditioned by Climatic Factors. Carnegie Inst., Wash. Publ. 217, 112 pp.

- _____, 1922. Conditions indirectly affecting vertical distribution on desert mountains. Ecology 3:269-274.
- gie Inst., Wash. Publ. 591, 192 pp.
- THOMPSON, B. W., and H. H. SCHUMANN (August), 1964. Water resources of the Sycamore Creek, watershed, Maricopa County, Arizona. A Progress Rep., typed, unpub. U.S. Geol. Surv. Dep. Interior.
- TROXEL, W. C., A. A. LEVEN, H. D. KENT, and J. F. ARNOLD (December), 1965. Water resources of Sycamore Creek (a hydrologic survey), typed, unpub. rep. U.S. Dep. Agr., Forest Serv.
- TURNER, S. F., and H. E. SKIBITZKE, 1952. Use of water by phreatophytes in 2,000-foot channel between Granite Reef and Gillespie Dams, Maricopa County, Arizona. Phreatophyte Symp., Amer. Geophys. Union Trans. 33: 66-72.
- WALLMO, O. C., 1955. Vegetation of the Huachuca Mountains, Arizona. Amer. Midland Natur. 54:466-480.
- WHITTAKER, R. H., and W. A. NIERING, 1964. Vegetation of the Santa Catalina Mountains, Arizona. I. Ecological classification and distribution of species. J. Ariz. Acad. Sci. 3:9-34.
- ———, and ——, 1965. Vegetation of the Santa Catalina Mountains, Arizona: A gradient analysis of the south slope. Ecology 46:429-452.

Vol. 5