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Appendix B: Additional details for the analysis of the PONSE data set. 

South East Queensland (SEQ) is located on the eastern coast of Australia and is 

approximately 22,999 square km in size. It is a subtropical region with mean annual maximum 

temperatures ranging between 21 and 29 °C (EHMP, 2001) and total annual rainfall ranges 

between 900 and 1800 mm (Pusey et al. 1993).  Elevation ranges between 0 meters in coastal 

areas to 1360 meters in the west along the Great Dividing Range. Regional discharge is 

seasonally variable and is related to elevation, slope, and rainfall (EHMP, 2001). The 

predominant land uses in the region are natural bushland (37%) and grazing (35%).  

The Ecosystem Health Monitoring Program (EHMP) has been collecting indicators of 

biotic structure and ecosystem function throughout SEQ since 2002 (Bunn et al. in press). The 

program aims are to evaluate the condition and trend in ecological health of freshwater 

environments and to guide investments in watershed protection and rehabilitation. Metrics based 

on fish assemblage structure and function are commonly used as indicators of ecological health 

because they are thought to provide a holistic approach to assessment across broad spatial and 

temporal scales (Harris 1995). The EHMP uses ecosystem health indicators based on freshwater 

fish species richness (Kennard et al. 2006a), fish assemblage composition (Kennard et al. 2006b) 

and the relative abundance of alien species (Kennard et al. 2005). In this example, we used a 

model-based fish indicator, the proportion of native fish species expected (PONSE), which is the 

ratio of observed to expected native fish species richness (Bunn et al. in press, Kennard et al. 

2006a). Here, species richness is simply the number of native fish species observed or predicted 
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at a location. Native species richness is a commonly used summary indicator of ecosystem health 

that may reflect a variety of disturbances functioning at a range of spatial and temporal scales. 

Environmental degradation is expected to alter naturally diverse fish communities to simple 

assemblages dominated by only a few tolerant species. Therefore, species richness is expected to 

decline with increasing environmental stress. For example, Kennard and others (2006a) showed 

that native species richness was lower than expected at test sites in SEQ affected by intensive 

watershed land use (clearing, grazing, cropping and urbanization), degraded water quality (high 

diel temperature range, low pH, high conductivity, high turbidity) and riparian and aquatic 

habitat degradation. 

The observed species richness values used to calculate the PONSE scores were based on 

fish assemblage data collected at 86 survey sites during the spring of 2005; hereafter referred to 

as the “observed sites”. Fish assemblages were sampled using a combination of backpack 

electrofishing and seine-netting where possible (Kennard et al. 2006c). Electrofishing was 

conducted using a Smith-Root model 12B Backpack Electroshocker, while seine-netting was 

conducted using a 10m long (1.5m drop) pocket seine of 10mm (stretched) mesh. An attempt 

was made to intensively sample all habitat unit types (pool, riffle, and run) at each site (Kennard 

et al. 2006c). When only one habitat unit type was present, at least two units were fished. The 

average length of fished stream was 75m and data from the entire length were combined to 

obtain an observed species richness value.  

The expected species richness values used to calculate each PONSE score were generated 

using a referential model and represent the number of native species that are expected to be 

present in a physically similar, but undisturbed stream (Kennard et al. 2006a). A regression tree 

was used to partition a large set of minimally-disturbed reference sites into homogenous groups 
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based on environmental characteristics including elevation, distance to the stream outlet, distance 

from the stream source, and the mean wetted stream width (Kennard et al. 2006a). The mean 

species richness for each reference site group was then calculated. The 86 observed sites were 

assigned to reference site groups based on the same environmental characteristics mentioned 

previously. Finally, each observed site was assigned an expected species richness value, which 

was equal to the mean species richness for the reference site group. For additional details about 

the calculation of the expected species richness values, please see Kennard and others (2006a) 

and EHMP (2001).  

We generated the spatial data necessary for geostatistical modeling in a geographic 

information system (GIS) using ArcGIS version 9.2 software (ESRI 2006). The Functional 

Linkage of Waterbasins and Streams (FLoWS) toolset (Theobald et al. 2006) was used to 

construct a landscape network, which is a spatial data structure designed to store topological 

relationships between nodes, directed edges, and polygons (Theobald et al. 2005). Here, we used 

the landscape network to represent stream segments (directed edges) and confluences (nodes). 

The location of additional features, such as survey sites, can also be associated with the data 

structure. We incorporated the 86 observed sites and 137 non-randomly selected “prediction 

sites” (where PONSE scores were not measured) into the landscape network. Scripts written in 

Python version 2.4.1 (Van Rossum and Drake 2003) were used to generate the hydrologic 

distances and spatial weights between all observed and prediction sites based on the topological 

relationships stored in the landscape network. The spatial weights were based on watershed area, 

which was used as a surrogate for discharge. This seemed like a viable alternative since mean 

annual discharge has been shown to be correlated with watershed area in other regions (Vogel et 

al. 1999).  
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Watershed-scale explanatory variables for each observed and prediction site were 

calculated using a combination of FLoWS tools (Theobald et al. 2006) and customized scripts 

written in Python version 2.4.1 (Van Rossum and Drake 2003). The streams data were provided 

by the Moreton Bay Waterways and Catchments Partnership (2005); here we considered a single 

GIS polyline feature as a stream segment. A digital elevation model (Queensland Natural 

Resources and Water 2000) and the Queensland Land Use Mapping Program data set (Bureau of 

Rural Sciences 2002) were used to generate seven watershed explanatory variables (Table B1). 

The EHMP classified streams based on elevation, mean annual rainfall, stream order, and stream 

gradient (EHMP 2001) to create four EHMP regions: Tannin-stained, Coastal, Lowland, and 

Upland, which we also included as a site-scale explanatory variable (Table B1). We checked the 

explanatory variables for collinearity using the variance inflation factor statistic (Helsel and 

Hirsch 1992), which indicated that it was unnecessary to remove explanatory variables. Note that 

all of the statistical analyses described here were performed in R version 2.6.1 (R Development 

Core Team 2008). 

We used a two-step model selection procedure to compare models. First we fixed the 

covariance structure and focused on the explanatory variables. All of the mixed models were fit 

using the exponential tail-up (TU), linear-with-sill tail-down (TD), and Gaussian Euclidean 

(EUC) as component models (formulas for component models are given in Appendix A). The 

choice of autocovariance function for the tail-up and Euclidean components was somewhat 

arbitrary because only one type of spatial relationship is represented by each of the functions 

(flow-connected or Euclidean). Differences in the strength of spatial autocorrelation between 

locations when different autocovariance functions are fit to the data result from the shape of the 

autocovariance function and are likely to be minimal. In the case of the tail-down model the 
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difference in performance between autocovariance functions is attributed to both the shape of the 

function and the way in which flow-connected and flow-unconnected relationships are 

represented. More specifically, the relative strength of spatial autocorrelation for each 

relationship differs depending on the autocovariance function that is used. For example, consider 

a case where there are two pairs of locations. One pair is flow-unconnected and the other is flow-

connected and the distance between pairs is equal (a+b=h).  If the tail-down exponential model 

is fit to the data the strength of spatial autocorrelation between the two pairs is equal. However, 

if the linear-with-sill function is fit to the data the strength of spatial autocorrelation between the 

flow-unconnected pair may be up to 1.5 times that of the flow-connected pair. We chose the 

linear-with-sill tail-down autocovariance function because we wanted to model maximum 

autocorrelation among flow-unconnected sites relative to flow-connected sites. All tail-up 

models have zero autocorrelation among flow-unconnected sites, so any function allows us to 

model minimum autocorrelation among flow-unconnected sites relative to flow-connected sites. 

The combination of linear-with-sill tail-down plus any tail-up model in a mixed model allows the 

most flexible modeling of autocorrelation.  More details may be found in Ver Hoef and Peterson 

(in press).  

We estimated all of the parameters in the first phase of model selection using maximum 

likelihood. Outliers can be overly influential when likelihoods are calculated (Martin 1980) and 

when the covariance function is fit to the data (Cressie 1993). Therefore, a backwards stepwise 

model selection strategy was implemented so that the model diagnostics could be examined for 

every model. Nevertheless, no outliers were identified or removed during the analysis. We 

selected explanatory variables based on the smallest Akaike Information Criterion (AIC) (Akaike 

1974) for the fitted models to determine which had the most support in the data.  
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During the second phase of model selection we focused on selecting the most appropriate 

covariance structure. We used the selected explanatory variable set as described above to 

compare every linear combination of TU, TD, and EUC covariance structure, where four 

different autocovariance functions were tested for each model type. For the TU and TD models, 

these included the spherical, exponential, mariah, and linear-with-sill functions (formulas are 

given in Appendix A). The EUC model included the spherical, exponential, Gaussian, and 

Cauchy functions (Chiles and Delfiner 1999). This resulted in a total of 124 models, each with a 

different covariance structure. In addition, we fit a classical linear model assuming independence 

to compare to models that use spatial autocorrelation. Maximum likelihood may produce biased 

estimates of the covariance parameters and so we used restricted maximum likelihood (REML) 

for parameter estimation (Cressie 1993). Note that REML was not used for parameter estimation 

in the first phase of model selection because a side effect of REML is that information criteria, 

such as AIC, can only be used if the explanatory variable set remains fixed (Verbeke and 

Molenberghs 2000). Once the fitted covariance matrix had been generated using REML, it was 

then used to estimate the fixed effects. This is referred to as “empirical” best linear unbiased 

estimation and is often used in software such as SAS (Littell et al. 1996). 

Leave-one-out cross-validation predictions were generated at the observed sites for each 

of the 124 models using universal kriging (Cressie 1993) and then used to calculate the root-

mean-squared-prediction error (RMSPE),  
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where iẑ  is the prediction of the ith datum after removing it from the observed data set. The 

RMSPE can be thought of as proportional to the prediction interval and its interpretation is fairly 
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straight-forward. For example, if the RMPSE for the best model is one third that of a competing 

model the gain in using the best model is 66%. The RMSPE was used to compare the models 

based on different covariance structures. Other model selection criteria, such as information 

theoretic measures (Burnham and Anderson 1998), could also have been used. The method that 

we chose met our purpose, which was to identify the covariance mixture that provided the best 

predictions and it is not our intention to debate the merits of various approaches here. Once the 

model with the smallest RMSPE was identified, universal kriging was used to make predictions 

at the 137 prediction sites.  

 An empirical semivariogram of the model residuals, divided into flow-connected and flow-

unconnected relationships (Fig. B1), was generated using the classical estimator as given in 

Cressie (1993). We also used the covariance parameter estimates to calculate the percent of the 

variance explained by each of the covariance components (%VC)  

 
2

2 2 2
% *100,TU

TU
TD TU NUG

VC


  


 
 (B.2) 

 

where 2 2 and TU TD   are the partial sill parameters for the TU and TD models and 2
NUG  is the 

nugget effect. Eq. B.2 demonstrates how to calculate the %VC for the TU model, which in this 

example is part of a two-component mixture model. However, the %VC can be calculated for 

any number of model components and the nugget effect. Since it is a percentage, the %VC for all 

of the components should always sum to 100.  

 The lowest RMSPE value was produced by the exponential TU/linear-with-sill TD 

mixture model, which we will hereafter refer to as the final model. The fixed effects for the final 

model are provided in Table B2. Note that the parameter estimates in Table B2 were generated 

using REML during the second phase of model selection, but the specific fixed effects were 

chosen in the first phase of model selection. The final model only contained one explanatory 

variable, mean slope in the watershed, which was positively correlated with PONSE. This 
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statistical relationship may represent a physical relationship between PONSE and an 

anthropogenic disturbance gradient related to land use, water quality, channel or riparian 

condition, or in-stream habitat (Kennard et al. 2006a), rather than slope itself. For example, 

watersheds with steeper slopes might be expected to have less cleared or cropped land and, as a 

result higher PONSE scores. In addition, steep slopes are more likely to be found in headwater 

streams, which may be inaccessible to alien species if they are upstream of barriers to fish 

movement (Kennard et al. 2005). However, we did not have access to extensive information 

about anthropogenic disturbances at EHMP sites and were unable to specifically account for 

these effects in our model.  

An empirical semivariogram of the final model residuals, divided into flow-unconnected 

and flow-connected relationships is shown in Fig. B1. The partial sill and range parameters for 

the TU component were 0.0162 and 1160.56 km, respectively. In contrast, the TD model had a 

larger partial sill (0.0464) and a smaller range parameter (110.67 km) than the TU model. The 

nugget effect was 0.0096. The TU range parameter was substantially larger than the largest flow-

connected separation distance (262.19 km). The magnitude of the TU range parameter simply 

indicates that flow-connected sites are spatially correlated regardless of their location in the 

stream network. Covariance parameters are sometimes visually estimated from the 

semivariogram, but it would not be appropriate in this case since there is no weighting for the 

flow-connected locations. The weights affect the autocorrelation between sites and so there is no 

guarantee that sites close in space have a strong influence on one another if there is a confluence 

between them. Calculating the percent of the covariance explained by each of the components 

provides additional information about the covariance structure of the models. In the final model 

the TU, TD, and NUG components explained 22.43%, 64.32%, and 13.25% of the variance, 

respectively. 

 Our results show that a model based on a mixture of covariances produced the most precise 

PONSE predictions (Fig. B2). Models based on a covariance mixture tended to produce smaller 

RMSPE values than models based on a single covariance type. When more than one covariance 
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type was incorporated, mixture models that included the TD model outperformed other mixture 

types. There appeared to be more within model type variation in the TD model compared to the 

TU and EUC model types (Fig. B2). As we discussed previously, this reflects differences in 

model fit related to both the shape of the autocovariance function and the way that spatial 

autocorrelation is represented between flow-connected and flow-unconnected pairs. All of the 

spatial models out performed the classical linear model, with the final model demonstrating an 

18.86% gain based on the RMSPE. 

 Given that the final model only demonstrated a 1.17% gain in predictive ability on the TD 

model, some might question the usefulness of using a mixture model. Nevertheless, it is unclear 

which covariance type or mixture will provide the best model fit in advance. A geostatistical 

methodology is used to model the spatial structure in the residual error and so the observable 

patterns may not reflect the pattern or scale that would be expected. For example, the 

unexplained variability in fish distribution may be related to a strongly influential explanatory 

variable, such as elevation, that was not proposed during model selection. In that case, Euclidean 

patterns of spatial autocorrelation in fish distribution (resulting from elevation) might be 

observed at broad spatial scales even though fish movement is generally restricted to the stream 

network and some species may not migrate large distances. This is a simple example of how 

environmental factors can produce patterns of spatial autocorrelation; in a freshwater 

environment, extremely complex process interactions occurring within and between the stream 

and the terrestrial environment would be expected. Therefore, we recommend using a full 

covariance mixture (TU/TD/EUC) rather than attempting to make an a priori assumption about 

the covariance structure of the data. Although the full covariance mixture was not the best model 

in this example, the loss in predictive ability was only 0.34% when it was used. These results 

demonstrate an important feature of the covariance mixture approach; namely, that it is flexible 

enough to represent the entire range of covariance structures (i.e., single EUC, TU, or TD or any 

combination of the three). This flexibility also makes the approach suitable for a wide variety of 

data sets collected within a stream network. 
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TABLE B1. Watershed and site-scale explanatory variables considered in the model selection 

procedure.  

 
Explanatory Variable Scale Units Source 
Mean slope Watershed % QNRW 2000 
% Conservation Watershed % BRS 2002 
% Urban Watershed %  BRS 2002 
% Mining Watershed % BRS 2002 
% Water Watershed % BRS 2002 
% Timber production Watershed % BRS 2002 
% Agriculture Watershed % BRS 2002 
EHMP region Site NA EHMP 2001 
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TABLE B2. Fixed-effects estimates for the final mixture model (exponential TU/linear-with-sill 

TD). Parameters were estimated using restricted maximum likelihood (REML). 

 
Effect Estimate Std.Error df t-value p-value 
Intercept 0.6669 0.0792 84 8.4209 0 
Mean slope 0.0094 0.0061 84 1.5391 0.1275 
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FIG. B1. Semivariogram of the final proportion of native species expected (PONSE) model 

(exponential TU/linear-with-sill TD) residuals, which includes the hydrologic distance (km) 

between pairs of sites based on flow-connected (black circles) and flow-unconnected (white 

circles) relationships. Only lags with > 10 pairs are shown and the size of the circles is 

proportional to the number of data pairs that are averaged for each value. 
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FIG. B2. Root mean square prediction error (RMSPE) values, by mixture type, which were used 

to select the covariance mixture during the second phase of model selection. 

  

 
 


