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Introduction Table 2. Twenty-eight temperature metrics were calculated
Temperatures of flowing waters control many physicochemical processes and affect the ecology of aquatic organisms and from the records of mean daily temperatures at the 226 sites o e —
communities. Knowledge of thermal regimes, characterized as the annual sequence of water temperatures specific to unique to describe thermal regimes characteristics. The metrics TE'mpE'raturE { C]
locations within river networks, is key to understanding natural conditions and diagnosing anthropogenic impairments but the belonged to one of five general categories associated with 15
limited availability of annual temperature records has slowed broad development and adoption of thermal regime concepts magnitude, variability, frequency, timing, or duration as FIGURE 5a. To understand how water temperatures varied temporally within central Idaho over
comparable to those that have long proven useful for flow regimes. Here, we use annual temperature records that spanned a five- defined below. the five vear studyv period. PCA was also conducted on the mean dailv water temperature values at
: ) i : : y y ’
year period and were compiled from several natural resource agencies in central Idaho river networks to characterize thermal — e p— Defmition the 226 sites. This analysis suggested that two PCs accounted for 98% of the temperature variation
regimes. Principal Components Analysis (PCA) was used to describe redundancy among metrics that were used to summarize Nagmitode M1 Mean anmval femperatare  Average of mean dally temperatures during a year 12 among the stream and river sites, with PC1 accounting for the largest portion of this variation
regime properties, identify distinct aspects of thermal regimes based on orthogonal PCA axes, and assess water temperature M2. Mean winter temperature  Average of mean daily temperatures during December, Janvary, and February 6.7%) and PC2 accounting for a much smaller portion (1.3%). After that analysis was complete
responses to climatic variation associated with annual cycles in air temperature and stream discharge. E-Eeansprmg temperature iverage o:mean :a;iyrtmperanHes:ur:_ng?da:ch; Tmlid May 10 mean daily air temperature and discharge values from the high- and low-elevation monitoring
M4, Mean summer temperature verage of mean daily temperatures dunng June, July, and August . . . . . .
MS. Mot Avgust seupecatore.  Average of moan daily tempessturcs ducing August stations were aligned with the time-series of water temperature PC scores for comparison. PC1
M6. Mean fall temperature Average of mean daily temperatures duning September, October, and B scores were StrOngly COFI’ElatEd With ail’ temperature Variation (r = 0.92), Wher'eaS PCZ scores were
November strongly correlated with discharge variation (r = 0.84).
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