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Notes will list main points when not obvious from slides.
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Climate change will have profound implications for aquatic ecosystems and stream thermal regimes are central to how changes will be translated to aquatic species. This talk is the first of two related talks that address how climate change may affect stream temperatures, with special reference to headwater streams in mountainous areas of the western US. The topics covered in this talk are highlighted in blue; topics covered in the second talk are in black.



Metabolic Ecology and Thermal Niches
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Metabolic rates of many organisms are strongly controlled by temperature and this is especially true for ectothermic organisms like fish, which have some of the highest metabolic rates within this group of organisms (upper left panel; blue line). Strong regulation by temperature makes the concept of a “thermal niche” a reality for many stream fishes and curvilinear relationships between temperature and abundance or growth are often apparent, in both laboratory and field settings, when a wide temperature range is observed (upper right panel and lower panels).


Temperature Regulation - Spatial Distributions
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As a result, spatial distributions of many fish species are dictated by the availability of thermally suitable habitats and patterns can be observed at regional, stream, and channel habitat scales. 


Temperature Regulation - Life Cycle
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Temperature also dictates the timing and rate of key developmental metrics in fish populations; including when migration and spawning occur, how fast eggs incubate, and growth rates of young fish. Temperature is fundamental to aquatic ecology and if stream thermal regimes can be both understood and accurately modeled, our ability to predict the effects of climate change on aquatic biotas will be greatly enhanced.


Stream Heat Budgets

ey Ve~
o WL

L

/

' _f"'._&

7o Con‘l'r’ibl.J:}ion

radiation

R&hthun \
¢
v I

ot | i FR+
E = BC+
+ so0 m EV+
— 9_’: SH+
I LW
0.00 + B SWs
o = BC-
- ®EV-
—.50.00-4 u 5H-
8 u LW-
O -
-100.00

Alr convection

" Evaporation/

t::!-:ndanu'llu

: \ .
; U
M Li‘.punn‘wﬂnr flux

Summer Y

Mediated by...
*Topography
*Riparian Vegetation
*Reach discharge

.| Monthlyheat budget -
" Black Ball Stream, England

M J J A S 0] N D J F M A
1995-96

Webb et al. 2008


Presenter
Presentation Notes
Given the importance of temperature to aquatic biotas, it is important to understand stream heat budgets and the mechanisms by which a warming climate could alter thermal regimes. In the summer, most stream heating results from short-wave solar radiation, convective exchanges with atmospheric air temperatures, and conduction from the streambed.
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In the winter, most stream heating results from short-wave solar radiation (assuming snow bridges do not cover the stream) and conduction from the streambed. Heat gains from convective exchanges with the atmospheric are greatly diminished, especially in mountain environments where air temperatures are often well below freezing.


Stream Heat Budgets - Climate Effects
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A warming climate will affect streams through numerous mechanisms and alteration of heating patterns will vary seasonally. Little stream warming is expected in winter when air temperatures are well below freezing, but streams should be warmer in spring, summer, and fall when temperatures are above freezing. Increased warming from short-wave solar radiation could occur in some areas if riparian vegetation is altered by fires, droughts, or insect outbreaks that are becoming more common in association with climate change. Streams may also experience warming during non-winter seasons because night cooling will be reduced under a warmer atmosphere. These are only generalities, however, as the specifics regarding each stream’s heat budget are mediated by local conditions associated with topography, climate, underlying geology, riparian vegetation, and reach discharge.
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There are a variety of macroscale factors operating in the western US related to climate that will systematically accelerate or buffer stream warming. Wildfires have become more common in recent decades as the climate has warmed and can have strong effects on stream heating due to significant reductions of riparian vegetation. Several studies have addressed this topic and sometimes document dramatic stream temperature increases, on the order of 2 – 4 °C, but previous studies have also focused disproportionately on severely burned streams. 
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Warming associated with wildfires may be exacerbated in steep topographies when accompanied by debris flows, which are common in the decade following a fire and often triggered by intense precipitation events. Debris flows make streams more sensitive to heating and retard the post-fire recovery process by widening the channel (which increases solar radiation gains), removing local soils that riparian plants need for re-establishment, and scouring alluvium from the channel. Such scouring reduces the potential for hyporheic exchange that often buffers and cools a stream.


Factors That May Speed Warming
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Several studies also suggest that forests and riparian vegetation in many areas of the western US are changing in response to droughts and beetle infestations. The effects of such shifts on stream thermal regimes have not been well studied, but to the extent that these changes open up riparian areas, either by resetting the serial stage or through permanent conversions to more drought tolerant species shrubs and grasses, some local alteration of stream heat budgets and warming is expected.



Systematic Effects - Air Temperatures
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Air temperatures measured at weather stations across the western US warmed during the last century as predicted from Global Climate Models and these trends are projected to continue until at least the middle of the 21st century (probably longer). This warming trend will result in systematically warmer stream temperatures, although rates of warming will also continue to be spatially heterogeneous. Air temperatures in some locales have warmed 4x faster than others in recent decades and decreases are even observed in other areas (blue circles).


Systematic Effects - Hydrology
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Warmer air temperatures are also reducing snowpacks and advancing the timing of snowmelt across the western US. These trends often decrease summer baseflows later in the year, which may make streams more sensitive to heating because of reductions in flow volume and velocity. 


Factors That May Slow Warming
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Changes associated with a warming climate will most often translate to warmer stream temperatures, but there are also geomorphic contexts in which streams will warm more slowly. Knowing where these areas are is important because the associated stream habitats and aquatic communities may be more resistant to change and could serve as important refuge areas or core habitats around which conservation strategies are built. One factor that may buffer a stream against warming during the summer baseflow period is the amount and source of groundwater inflows. In areas where summer flows are heavily influenced by deep, multiyear groundwater storage (e.g., eastern Snake River plain, Oregon High Cascades), summer baseflows and stream temperatures may change less than in streams that lack this buffering. The relative size of baseflows (when scaled against peak flows) varies considerably across the western US and suggests similar variation in deep groundwater inflows (lower left panel).


Factors That May Slow Warming

Past or present glacial activity
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Stream temperatures may also be buffered against warming in valleys with glacial activity. Streams with active glaciers experience cold influxes of melt water each summer that can suppress stream temperatures. However, thermal responses may also be limited in valleys with only a legacy of past glacial activity because the finely ground rock detritus created by glaciers often fills valley floors and acts as a sort of local aquifer—absorbing large amounts of snowmelt and then releasing this cold meltwater later in the summer. Moreover, glacial valleys typically occur where snow accumulation is greatest, so snowmelt is larger and persists longer in these areas.



Factors That May Slow Warming

Past or present glacial activity
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A study by Hari et al. (2006) in the glaciated landscapes of Switzerland provides an excellent example regarding how glaciers reduce stream temperature sensitivity. Stream temperature records during a recent 25-year period indicate that climatic trends have been warming streams (upper left panel), but the amount of warming is much smaller in the highest elevation streams most heavily influenced by glaciers. Unpublished data from a central Idaho watershed with a legacy of glacial activity (but no extant glaciers) reveals a similar pattern over a shorter time span (upper right panel). Moreover, the amount of glaciation affects the concordance between air and stream temperatures—thermal regimes in unglaciated streams are strongly correlated with air temperatures, while heavily glaciated streams are weakly correlated (bottom panel).



Factors That May Reverse Warming
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In rare instances, there may also be locations where stream temperatures are cooler in the future. These areas will coincide with places where trends toward cooler air temperature continue or in streams below water storage facilities with the capacity for cold water releases.
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The basic projection for most streams, however, will be for temperatures to increase in the future, with most of the warming expected to occur during the seasons of the year when mean air temperatures are above zero (top panel). Future stream warming could occur gradually with long-term trends in air temperature and stream flow (bottom panel) or could occur abruptly with wildfires, severe drought, or other factors that alter riparian vegetation and exacerbate ongoing climatic trends. Whether thermal effects due to these rapid transitions become permanent would depend on whether vegetation and watershed conditions recover to pre-disturbance conditions or move to fundamentally new states. 



Western US - Observed Trends
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There are good reasons to think that stream temperatures will increase in the future, but many of the environmental trends associated with a warming climate have been ongoing in the western US for several decades. Is there evidence that stream temperatures are already increasing?



Observed Temperature Trends in..
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Long-term stream temperature records are relatively rare, but several studies from a variety of geographic locales suggest that warming is occurring in streams. Long-term temperature records dating back to the 1950’s and 1960’s in Georgia streams suggest that regional warming began in the 1970’s (right panel) and many of these trends have become statistically significant in the last decade (bottom left panel).



Observed Temperature Trends in...
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Hari et al. (2006) also documents long-term warming of stream temperatures in Switzerland. Warming was accelerated with a step-change in regional air temperatures associated with a shift in the North Atlantic Oscillation (NAO) in 1988. Climate cycles like the NAO, or the Pacific Decadal Oscillation and the El Nino Southern Oscillation in the western US, will periodically exacerbate and suppress stream warming due to climate change.



Observed Temperature Trends in...
Mainstem Rivers in PNW
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Some of the best long-term stream temperature records in the western US have been collected at dams on large rivers. Where these are available, it is common to find warming trends.



Observed Temperature Trends in...
Small Western Streams
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Long-term records are rare for small western streams; with existing data usually dating only to the early 1990’s when digital temperature loggers first became available. Those that have been examined show warming trends, but the slopes of the relationships vary, suggesting that warming is occurring at different rates in different places. 



Observed Temperature Trends in...
Lakes from 1992-2008
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Warming trends are also documented for western lakes and temperatures in these systems are increasing faster than local air temperatures. These estimates can be obtained for virtually any lake using satellite imagery in conjunction with a few years of lake temperature data for calibration. 
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Site level trend data are important, but we also need to know how stream temperatures may be changing across larger areas to prioritize conservation efforts for aquatic ecosystems. In one recent study that described stream temperature trends across the Boise River network in central Idaho, a large stream temperature database was assembled from data that several natural resource agencies had collected for a variety of purposes. 



Boise River Temperature Models
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These “found” data were available for a 14-year period from 1993-2006 (top panel) and were used to build a spatially explicit statistical model that predicted mean summer stream temperature from a set of climatic and geomorphic predictors (model development details are in Isaak et al., In Press). 
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The temperature model was used to predict stream temperatures throughout the river network by setting the predictor variable inputs to values that represented “average” climatic and riparian conditions at the beginning and end of the study period (blue circles). Trends in summer air temperatures and stream flows were determined from COOP weather stations and USGS flow gages in the basin. Changes in shading associated with changes in riparian vegetation due to wildfires and management activities were estimated from satellite imagery.
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Presentation Notes
Results indicate that mean summer stream temperatures have warmed in all portions of the stream network, with the fastest warming in areas affected by recent wildfires (grey polygons). 



93-06 Stream Temperature Changes

AO.38°C A0.70°C
0.27°C/10y  0.50°C/10y

100% R
) 0O Radiation

Q Air Temperature

30% A Stream Flow

60% -

40% o

3 j
: Basin Scale Burned Areas
= TIsadk et al., In press

29


Presenter
Presentation Notes
Estimates of total warming and rates of change were obtained (values above bars) by averaging across the network. At the basin scale, increases in mean summer air temperature accounted for most stream warming, decreases in summer flow were of secondary importance, and radiation gains associated with wildfires were least important. Within wildfire perimeters, however, radiation gains were more important and stream warming was approximately twice that of the basin average. 
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Presentation Notes
Stream temperature increases in the Boise River network may be similar to changes that have occurred in other western watersheds given the similarities in environmental trends across large areas.



How Were Thermal Habitats Affected?
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Presentation Notes
To determine the potential effects of stream temperature increases in the Boise River on fish habitat, thermal suitability criteria were derived from patterns of fish abundance in central Idaho streams. Bull trout and rainbow trout were used to consider whether species with contrasting thermal preferences might respond differently.



93'-06' Rainbow Trout Habitat Changes
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Presentation Notes
The temperature criteria were applied to delineate portions of the stream network that were suitable at the beginning and end of the study period. Stream warming shifted rainbow trout habitats upstream throughout the network, but no net change in the linear amount of habitat occurred.



93'-06" Bull Trout Natal Habitat Changes
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Presentation Notes
Headwater bull trout habitats, in contrast, are declining because these populations are constrained at their upstream extent by stream size and slope rather than cold water temperatures. As warming occurs, therefore, habitats are lost in downstream areas, but are not offset by gains in upstream areas. 



Are Populations Shifting in Space or Time?
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Presentation Notes
So stream temperatures are warming and thermal habitats are shifting, but are these changes translating to adaptation in species’ behavior or distributions? With warming, we might anticipate shifts in the timing of fish migrations, spawning, hatching, or emergence due to accelerated metabolic rates or selection governed by survival in new environments. In the spatial dimension, distributions should shift up in elevation or northward for populations to remain in suitably cool areas. Both spatial and temporal shifts are well documented for many plant and animal taxa, but case histories for freshwater fishes are relatively rare.



' Monitoring Stream-Scale Distributions

Have brook trout (Salvelinus fontinalis) displaced
ull trout (Salvelinus confluentus) along

Elevation

Stream Distance

55



Presenter
Presentation Notes
We have initiated monitoring to determine whether bull trout populations in central Idaho are shifting up in elevation. The sampling design involves surveying many short reaches along the length of a stream to bracket the lower elevation limit of juvenile bull trout (<150 mm). Sampling is repeated at 10 year intervals to provide time for populations to respond to climate trends.



Bull Trout Distribution Shifts
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Presentation Notes
The change in the lower elevation limit of juvenile fish between the two surveys is the response variable of interest. The initial assessment between 1997 and 2007 suggests that upstream shifts in juvenile bull trout distributions have not occurred consistently in undisturbed streams (nine streams on the left). In streams affected by recent wildfires, however, a consistent shift up in elevation was observed (three streams on the right).



Brown Trout Distribution Shifts
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Presentation Notes
One of the few case histories of freshwater fish distributions changing in response to long-term climatic trends is from Hari’s study in Switzerland. Over 25 years, stream temperature increases facilitated increasing outbreaks of a fish pathogen (bacterial kidney disease). These outbreaks were most prevalent in the warmest streams at the lowest elevations and brown trout populations declined dramatically in these areas (blue line in graph). Population declines were negligible or non-existent in higher elevation streams that were colder. Similar long-term monitoring could help understand how populations respond in western US streams. These efforts will require accurate georeferencing of survey locations and sampling near the edges of population distributions, which are expected to be more sensitive to a changing climate. 



Shifts in Salmon Migration Timing
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Presentation Notes
In contrast to the paucity of long-term records that document climate-induced spatial distribution shifts, more data are available for phenological patterns—specifically the timing of fish migrations—because it is common to count fish as they swim past dams or weirs. On the Columbia and Snake rivers, the migration times of several anadromous salmonids is advancing to avoid steadily warming stream temperatures that often exceed thermal tolerances late in the summer. 



Sockeye Salmon Migration Mortality
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Presentation Notes
Despite these shifts, there is evidence that fish which return later in these rivers, and which experience higher temperatures and cumulative thermal stress, are less successful at completing their migration (top panel). As a result, thermal conditions may now be selectively favoring fish with earlier migration return dates.
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Presentation Notes
Fish typically show some genotypic or phenotypic variation in response to higher temperatures that may facilitate adaptation and continued occupation of changing habitats.  But the capacity to adapt is finite and often limited by other constraints. For example, salmon that migrate earlier may have to wait longer on the spawning grounds before breeding during late summer/early fall. Because stream temperatures are now also increasing during what is already a thermally stressful period, chances are increased that fish will be exposed to lethal temperatures and summer fish kills could become more frequent (top). Similar considerations hold for some non-anadromous species, and it is becoming more common for managers to close or limit fishing seasons in some areas during thermally stressful periods (bottom).
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Presentation Notes
Given the trends in stream temperatures and the potential for biological impacts, it would be useful to know how much stream temperatures will increase in the future. Unfortunately, the amount of stream temperature increase depends on the future climate trajectory and great uncertainty exists in this regard. Whatever future air temperature increases are, however, it is important to note that stream temperatures generally warm more slowly than air temperatures. Notice that in a recent Washington state assessment, most of the stream temperature increases are predicted to be less than 2°C (colored circles), even for the most extreme climate change scenario with an air temperature increase of +4.7°C (bottom left panel).
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Presentation Notes
Additionally, a nationwide assessment by Mohseni of regional variation in stream temperature sensitivity suggests that western streams may be particularly resistant to air temperature increases. The national average suggests stream temperatures warm 67% as much as air temperatures (bottom left panel), but this ratio is only 44% in western streams. This result was attributed to the dominance of snowmelt hydrology in the region and massive seasonal pulses of cold groundwater that buffer streams against warming. If this is accurate, it implies that ongoing declines in snow accumulations driven by climate change could make western streams more sensitive in the future. 
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Presentation Notes
Regardless of whether future stream temperature increases are large or small, the potential impacts to aquatic biotas will depend on the local context. Part of this context is set by the species or communities of concern, with some expected to benefit and gain habitat from future warming and others experiencing losses and being negatively impacted. 
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Another important contextual element is the spatial domain because losses of thermal habitat will occur at different rates and relative to different amounts of baseline habitat. For a thermally sensitive species like bull trout, there are many places where future population persistence could be threatened, but there are also areas with abundant habitat where populations are likely to be secure. 



Context = Restoration Opportunities
Potential to offset warming
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Context is also set by local opportunities for restoration. In streams that are largely intact and fully functional, managers have few options for offsetting future temperature gains. In degraded streams, however, management activities or resource extraction may have already warmed streams as much as, or more than, the future effects of climate change. Habitat restoration in these areas could be beneficial and provide local fish communities with additional resilience, especially if areas were selected strategically as part of a broader conservation strategy. 
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Presenter
Presentation Notes
Finally, the context for future stream temperature increases will also depend on a host of other factors that are either directly or indirectly affected by climate. Making decisions when faced with this complexity will be challenging and tools and monitoring networks are needed to reduce key uncertainties that will make management decisions more tractable in the future.



Key Points:

1)

2)

3. =

Stream temperature is a critical determinant of
aquatic species growth, survival, distribution,
reproduction, etc.

Theory & empirical evidence suggest streams are
warming in response to climate change. Warming rates
are heterogeneous due to variation in climate forcing,
geomorphic factors, and human/vegetative response.

General expectation is that warming will be deleterious
to most coldwater species of concern, but case
histories of bio-thermal effects in wild populations are
relatively rare.

Population sensitivity to warming will depend on the
context. This context is set by species physiology,
habitat amount, quality, and connectivity, disturbance
regimes, presence of non-native competitors, and other
climate-related changes to streams. &
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