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Introduction

Quantitative estimates of carbon inventories are needed
as part of nationwide attempts to reduce net release of
greenhouse gases and the associated climate forcing. Nat-
urally, an appreciable amount of uncertainty is inherent in
such large-scale assessments, especially since both science
and policy issues are still evolving (Brown and Adger
1994; Klabbers et al. 1996; IPCC/OECD/IEA 1997a). Deci-
sion makers need an idea of the uncertainty in carbon
estimates in order to consider tradeoffs between known
effects, possible outcomes, and preferred consequences.
While an ultimate goal of assessments is to minimize
uncertainty, a more immediate concern is to adequately
quantify existing uncertainty. The goal of this chapter is
to present some useful considerations for the interpreta-
tion and subsequent use of information from probabilistic
assessments of uncertainty.

Forests store a large portion of the carbon in terrestrial
ecosystems; therefore the extensive and largely managed
timberlands of the United States represent a potential
for producing offsets to carbon dioxide emissions (Bird-
sey 1992; Heath et al. 1996; Sohngren and Haynes 1997).
Carbon content is a function of the state of forests: size,
age, composition, productivity, and area, for example.
These, in turn, are dependent on histories of management,
utilization, weather, disturbance, and land use. Finally,
all of these variables can be manipulated in many ways
to fit differing scientific modeling approaches, as dem-
onstrated by other chapters in this volume and citations
therein. Decision makers faced with such complexity are
likely to want information about uncertainty.

Uncertainty is a natural element of scientific under-
standing and therefore also an element of simulation
modeling. This is the case for many forest-system models
where uncertainty is sometimes explicitly quantified,
sometimes disregarded, but most often discussed in gen-
eral qualitative terms. Uncertainty in models is some-
times poorly characterized because the primary purposes
of many models are to present best estimates or evaluate
cause-and-effect relationships, not emphasize what is
unknown. Additionally, “uncertainty” itself is sometimes
a poorly defined, or elusive, quantity (Morgan and Hen-
rion 1990; Shackley and Wynne 1996). A complete quanti-
tative estimate of total uncertainty in forest carbon budget
projections is beyond the scope of this chapter. Fortu-
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nately, models of uncertainty are useful, even when they
do not provide a “bottom line” (Morgan and Henrion
1990; Cullen and Frey 1999).

Decisionmakers, or anyone using quantitative assess-
ments of uncertainty, will likely face the need for pooling,
comparing, or otherwise synthesizing such assessments.
Because such actions are essentially modeling, some
understanding of the process may be beneficial. Here, we
particularly emphasize the consequences of summariz-
ing uncertainty, as well as how such summaries can affect
the perception of uncertainty in subsequent use of the
information. Our discussion is oriented toward providing
decision makers with an overview of some links between
the form assigned to uncertainty and the perception of
that uncertainty. Examples are presented from our current
forest carbon budget modeling efforts where we employ
probabilistic definitions of uncertainty in Monte Carlo
simulations. The method of summarizing model results
can affect perceived uncertainty, and summing uncer-
tainty without considering covariability among parts can
create a false estimate of uncertainty. Details on methods
of analysis are in Smith and Heath, (in press) and data are
summarized from Heath and Smith (2000).

A Forest Carbon Budget Model:
FORCARB

The model FORCARB was developed to estimate carbon
budgets for U.S. forests (Heath and Birdsey 1993; Plant-
inga and Birdsey 1993; Birdsey and Heath 1995; Heath et
al. 1996). Carbon budgets, as used here, are essentially esti-
mates of size for various pools of carbon inventory as well
as net changes over time. Net change in carbon inventory
is referred to as flux. FORCARSB is linked to a system of
models (Mills and Haynes 1995; Birdsey and Heath 1995)
developed as part of the periodic Resources Planning Act
timber assessments (Haynes et al. 1995). Inputs to FOR-
CARB from other models include landscape-scale projec-
tions of age-structure, volume, and area (Mills and Kincaid
1992), and as such, they implicitly contain a wide array of
uncertainties. The focus in these simulations was on uncer-
tainty within the FORCARB model, thus all inputs from
other models were assumed known with certainty.

Functional relationships are used to estimate carbon
pool sizes for hardwood trees, softwood trees, understory,
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forest floor, and soil based principally on age and volume
inputs. An example of such a relationship is shown as the
solid line in figure 7.1. Here, forest floor carbon inventory is
estimated from stand age. Subsequent reference to a “FOR-
CARB parameter” refers to this type of functional relation-
ship. Carbon pools are then expanded to total carbon for
large areas of similar forest-type and productivity within a
region. These large areas are termed “forest management
units” (10° to 107 ha with a median of 180,000 ha for the
1990 inventory). Regional subtotals are formed and, finally,
summed to a national total. Private timberlands in the
48 contiguous states are represented by results presented
here, which include 216 forest management units. Carbon
budget projections are presented in greater detail in Heath
and Smith (2000). The basic sequence of a FORCARB simu-
lation is illustrated in figure 7.2.

Uncertainty

Some level of uncertainty is usually a part of any
model, assessment, or decisionmaking whether or not it
is an explicitly considered part of the process. A widely
used and potentially general term such as “uncertainty”
can be confusing or misleading unless it is adequately
defined (Hattis and Burmaster 1994; Shackley and Wynne
1996). At its simplest level, uncertainty can be the state of
not knowing, or the inability to quantify something with
a single discrete value. Sources of uncertainty can vary
widely, and as a consequence, attempts to narrow the def-
inition can require reference to variability, ignorance, sys-
tematic error, unknowns, expert opinion, semantics, or
misapplication of a model (Morgan and Henrion 1990;
Hattis and Burmaster 1994; Rowe 1994; Ferson and Ginz-
burg 1996; Cullen and Frey 1999). In earlier literature
(largely stemming from Knight 1921), scientists were care-
ful to define the risk of an event by a probability based
on documented frequencies of occurrence. Risk was con-
trasted with uncertainty where such probabilities could
not be assigned. However, current applications employ a
range of definitions for uncertainty, including probability;
furthermore, valid definitions of probabilities can include
observed frequency or even subjective expectation (Hoff-
man and Hammonds 1994; Reckhow 1994; Dakins et al.
1996; Schimmelpfennig 1996; Paoli and Bass 1997; Haynes
and Cleaves 1999). We use a probabilistic definition of
uncertainty.

An unknown, but unique, inventory of carbon exists
within a given forest management unit for a particular
year. Our inability to precisely specify that value is the
general definition of uncertainty we employ here. This
concept of uncertainty implies that we can specify a range
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Figure 7.1—An example of a typical functional relationship (or
FORCARB model parameter) used to project forest floor carbon
inventory based on stand age (solid line). Probability bands
illustrate our meaning and use of uncertainty in “FORCARB
parameters” for this analysis. The bands indicate the 5", 25",
50" (expected value), 75", and 95" percentiles (bottom to top
respectively) of the probability distribution around the dependent
variable. (Relationship is from a Douglas fir forest management
unit.)

of possible values and an associated likelihood for values
within that range. This describes a probability distribu-
tion, or more properly, a probability density function
(PDF). Thus, we use PDFs as convenient quantitative
and graphical representations of uncertainty (Vose 1996;
Cullen and Frey 1999).

The effect of this definition of uncertainty, applied to
estimating carbon for a given subset of a forest manage-
ment unit, is illustrated in figure 7.1. The broken lines
are probability bands indicating specific points on depen-
dent variable PDFs—or uncertainties—about exact values
of carbon per unit area. These probabilities reflect uncer-
tainty in predicting carbon from stand age. Normally
distributed PDFs were assumed to describe uncertainty
about FORCARB parameters (details in Heath and Smith,
2000). No assumption of normality was required for this
model: its use was simply a convenience for describing
assumed expected values with symmetrical distributions.
Analyses would ideally address all sources of uncertainty
relevant to policymakers” questions about forest carbon
inventory and flux. However, as mentioned above, a prag-
matic first step is to focus on uncertainty internal to FOR-
CARB. Therefore, uncertainties presented here are limited
to this portion of the potentially much larger system of
models that describe forests.
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FORCARB simulations:

Considerations for Interpreting Probabilistic Estimates of Uncertainty of Forest Carbon
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Figure 7.2—Graphic depicting organization of FORCARB simulations to estimate carbon inventory for individual forest management
units (leftmost box), regional subtotals (upper right), and the national total (lower right). FORCARB estimated five carbon pools that
were summed for total carbon inventory per forest management unit. A total of 216 such simulations were made for the national total.

Method of Simulating
Uncertainty

An uncertainty analysis is a modeling process that is
implemented for two related purposes—estimating uncer-
tainty and identifying influences on that uncertainty
(Morgan and Henrion 1990; Cullen and Frey 1999). We
estimate uncertainty in the FORCARB model by employ-
ing Monte Carlo simulations with Latin Hypercube sam-
pling (Morgan and Henrion 1990; Vose 1996; Cullen and
Frey 1999). This is but one of a number of approaches to
uncertainty analysis, and we apply the method here to
estimate uncertainty in forest carbon budgets.
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A Monte Carlo simulation is produced through repeat-
ing a basic model simulation for a large number of iter-
ations. One value is randomly selected from each input
PDF for each iteration. For example, random selection
from a PDF describing the parameterized relationship
shown in figure 7.1 would produce estimates of forest
floor carbon inventories ranging between approximately
10 and 16 Mg C per ha for 15-year-old stands. A different
single value would be randomly selected for each itera-
tion of the Monte Carlo simulation with most selections
being near 13 Mg C per ha. Each iteration produces a sin-
gle-valued model result. An accumulation of many such
individual results produces a distribution representing
the results of the Monte Carlo simulation. Latin Hyper-
cube sampling is simply a stratified sampling procedure
in which distributions are sampled from equal-probable
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intervals, without replacement, thus reducing the sam-
pling required to fully represent PDFs. The number of
iterations included in a simulation affects precision of
resulting distributions. Results provided here were from
100 iterations, which were adequate to define the shape of
distributions for the quantities we examined.

We employ Monte Carlo simulation for uncertainty
analysis because it features four principal advantages:
1) expressions of likelihood; 2) analysis of influences; 3)
flexibility; and 4) explicit representation of covariability
among parts (Morgan and Henrion 1990; Joint Climate
Project 1992; Dakins et al. 1996; Morgan and Dowlata-
badi 1996; Vose 1996; Cullen and Frey 1999). Although
a first question often asked about uncertainty concerns
identification of possible extreme events, this can quickly
lead to a need to identify the likelihood of specific events
between the extremes. Results as PDFs specify the range
of possible outcomes together with their respective prob-
abilities—both central tendencies and extreme events.
The second factor is an advantage because influences on
results are usually not evenly distributed among the com-
ponents of a model. Identifying most-influential compo-
nents as they affect overall uncertainty or even a tendency
toward extreme results has utility for both model devel-
opers and policy analysts. Third, questions asked of an
analysis are likely to change, and the same is true for
information going into an analysis. This is a simple and
flexible approach relatively free of restrictive assump-
tions. For example, although normal distributions were
input for model parameters as a convenience, there were
no required assumptions about distributions nor any
need to know central moments. Finally, Monte Carlo sim-
ulation explicitly accounts for covariability among all
derived PDFs. The third and fourth characteristics are of
most interest here: minimal assumptions and explicit rep-
resentation of relatedness among parts of the model.

Results and Discussion

Values for carbon budgets and uncertainty presented
here are based on results of Heath and Smith (2000) and
represent preliminary estimates for private timberlands.
This chapter is intended to illustrate links between sum-
mary values extracted from PDFs and the perception of
uncertainty associated with use of the summaries. Results
are presented in three parts. First, we discuss consid-
erations for avoiding the loss of important information
when forming tabular summaries of PDFs. These results
underscore the usefulness of need-specific summaries
and careful definition of terms so that summaries reflect
the interests of users. Second, we discuss additional con-
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Figure 7.3—Estimate of carbon inventory (billion metric tons)
of private timberlands for 2000. Model results presented as a
histogram and smoothed probability density produced by Monte
Carlo simulation. The central 95 percent of the distribution may
be considered analogous to a 95 percent confidence interval.
Arrows indicate carbon levels for the 10", 50", and 90™ percen-
tiles, commonly used to summarize low, median, and high simu-
lation results, respectively.

siderations necessary when combining a number of PDFs.
Here, disparity in size and dependencies (or covariability)
among PDFs become important. Finally, we discuss some
implications of these results for expanding the uncer-
tainty analysis to the larger system of models.

Tabular Summaries from Continuous
Distributions

Frequency distributions of model results are initial
products of Monte Carlo simulations. A result of uncer-
tainty in FORCARB projections of carbon on private tim-
berlands for the year 2000 is shown in figure 7.3. The
figure shows both a histogram of individual results from
the many iterations of the Monte Carlo simulation and
the smoothed distribution fit to the histogram. PDFs are
formed from frequency distributions by normalizing the
distribution, or setting the total area under the smoothed
histogram to equal one (the cumulative probability of all
values).

Probability densities are easily interpretable graphics
of quantitative expressions of uncertainty. The likelihood
that total carbon inventory will be within a given range,
for example, is in proportion to the appropriate area under
the PDF. Graphical presentations facilitate quick compar-
isons among a few such expressions of uncertainty, and
numerical comparisons among whole distributions are
similarly possible. However, interest in uncertainties in
integrated assessments can often focus on specific values
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such as thresholds or ranges. As such, summarizing PDFs
using a few numbers is often desirable when integrating
large amounts of information.

Uncertainty represented in tabular form is usually
presented as either individual points or an interval along
the PDF. Such summaries do not convey the exact shape
of the distribution, but they do reduce discussion to a
few key values. The use of individual points is shown
in the carbon budget summary presented in table 7.1.
A percentile indicates the portion of the PDF less than
the given value; this can also be interpreted as the prob-
ability of results less than or equal to that value. For
example, uncertainty in the model suggests that carbon
inventory in 2000 will be less than 23.3 billion metric tons
(Pg) with a probability of 0.90 (table 7.1 and fig. 7.3). Dis-
tribution percentiles such as the 10*, 50", and 90™ are
commonly used to summarize low, median, and high
simulation outputs, respectively. Intervals can be based
on select percentiles (10" to 90" percentiles, for exam-
ple) or formed around a central value such as the mean
or median. Intervals around a central value can be
expressed as relative or absolute values. For example, a
symmetrical interval about the median carbon inventory
in 2000 can be given as +10 percent or +2.2 Pg C—relative
or absolute, respectively.

Tabular representations of uncertainty can be useful
simplifications of results from uncertainty analyses. How
uncertainty is summarized and presented should reflect
the key features necessary for subsequent use of the infor-
mation. There are two somewhat obvious, but important,
caveats to note when using tabular summaries of uncer-
tainties. The first is the link between the shape of the dis-
tribution and the interval. Selection of either interval or
level of confidence determines the value of the other with-
out reference to properties of a standard distributional
form (also known as a parametric PDF, such a normal or
lognormal, for example). An implication of this is that the
interval of +1 standard deviation about the mean does not
necessarily enclose 68 percent of the distribution as would
be the case under an assumption of normality for a PDF.
However, a PDF obtained through Monte Carlo simula-
tion can be represented by a close equivalent parametric
PDF with the amount of information lost proportional to
the closeness of the fit. The importance of such a com-
promise depends on the information represented by the
PDF and its subsequent use. The second consideration is
the distinction between representing uncertainty as a rel-
ative or an absolute interval. Both are reasonable repre-
sentations of uncertainty, yet the dual definitions can be a
source of confusion when making comparisons. The same
absolute average range when applied to different median
values can produce very different relative ranges. For
example, the approximate +4 percent of median inventory
given in table 7.1 represents a considerably larger amount
of carbon than the approximate +15 percent of median
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Table 7.1—Estimated total carbon inventory for private timber-
lands for 1990 and 2000, and average annual net carbon flux
for the interval. Values are from the 10", 50", and 90" percen-
tiles of the respective probability densities produced through
Monte Carlo simulation. Positive flux indicates that carbon is
being sequestered in the forest. Tg =1 million metric tons.

Total inventory (Pg C) Flux (TgCy™)
Percentile 1990 2000 1990-2000
10 20.7 21.4 63
50 21.7 22.4 74
90 22.6 23.3 86

flux. Simple and clear definition of how uncertainty is
summarized can eliminate most confusion.

Choice of interval (or subset of PDF) to represent uncer-
tainty presumably depends on the needs of the individ-
ual user. Here, an expression of confidence is simply the
summed probability along this interval, obtained directly
from the distribution. The relationship between an inter-
val and confidence is determined by the shape of the
probability distribution. These ideas are illustrated by
figure 7.3. The interval analogous to the 95 percent confi-
dence interval is between the 2.5 percentile and the 97.5
percentile (p([20.8,23.7])=0.95). This same interval can be
expressed as averages of +7 percent or +1.5 Pg C around
a median value of 22.4 Pg C. Here, the choice of a 95
percent level of confidence (probability=0.95) implicitly
determined the size of the interval. Similarly, the choice
of an interval, such as +5 percent of the median, is simply
the reverse of this process. Plus or minus five percent of
the median value (1.1 Pg C) comprises about 86 percent of
the distribution (p([21.3,23.5])=0.86). Note that the “plus
or minus” values we present are averages of the two
intervals for the nearly-symmetrical distributions, and
methods of establishing confidence intervals vary among
applications (Morgan and Henrion 1990; Cullen and Frey
1999).

A single example can usefully reiterate the ideas pre-
sented in the two preceding paragraphs. Simply stating
that a level of uncertainty is +10 percent: 1) ignores much
of the information from a PDF such as change in expec-
tation across that range; 2) implies that uncertainty is
strictly a function of the size of the expected value; and
3) says nothing about confidence in the range provided.
Level of ambiguity in specifying uncertainty does not
imply any level of “correctness” for an analysis, but it
can influence confidence. Simply put, tabular summaries,
even “+10 percent,” can be entirely appropriate; however,
the key issue is information provided or lost. Understand-
ing both the information needed and the information
available can lead to informed choices about tradeoffs.

USDA Forest Service Gen. Tech. Rep. RMRS—GTR-59. 2000.



Considerations for Interpreting Probabilistic Estimates of Uncertainty of Forest Carbon

The benefit of summarizing PDFs should exceed the rela-
tive cost of lost information.

Summing 216 Forest Management Units for
an Aggregate Total Uncertainty

Results from the carbon budget model presented here
are aggregate uncertainties that represent the sum of PDFs
from 216 forest management units. While our examples
are taken from a simulation model, decisionmakers are
likely to face similar considerations with multiple PDFs.
Information is commonly acquired from a number of sep-
arate sources, and this can present the need for comparing
or summing a number of results. Therefore, considering
relatedness among PDFs is an appropriate addition to a
discussion of PDF summaries. The simplest procedure
for summarizing and summing many PDFs is probably
through application of the central limit theorem (Morgan
and Henrion 1990; Cullen and Frey 1999). This assumes
relatively balanced contributions among each of the PDFs
summed and independence among PDFs. Under these
conditions, the sum is expected to be normally distrib-
uted, and the variance of the sum is equal to the sum of
the variances.

Disparity among size of the 216 forest management
unit carbon inventory pools can influence control over
total carbon and total uncertainty. If most of the total
carbon inventory is attributable to a few large forest units,
then research to improve the parameter estimates of these
units will usually contribute more to improve estimates
of total carbon inventory than improving the parameters
of smaller forest management units. The larger 12 percent
of the private timberland units simulated for this study
account for more than two-thirds of the total carbon (fig.
7.4). That is, only 12 percent of the management units
exceed 0.2 Pg C (the second size class in fig. 7.4), yet
they account for over two-thirds of the total C inventory.
The uncertainty of parameters of the smaller units would
have to be extremely large to produce greater absolute
uncertainty than the large units. The disparity in size
among the 216 forest management units suggests that
the PDF of an aggregate total could not be determined
through simple application of the central limit theorem.

Determination of independence, or conversely depen-
dence, among PDFs depends on both prior knowledge
of the values and the modeling process. The meaning
assigned to uncertainty of input PDFs, or FORCARB
parameters, becomes critical as the separate pools are
summed. We use uncertainty as an expression of our
expected level of ignorance. For example, uncertainty
includes our inability to translate an independent vari-
able such as an exact volume of timber on an exactly
specified area of land to a precise quantity of carbon
in the system. If our ability to make that estimate is sim-
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Figure 7.4—Histograms illustrating the disparity in size of carbon
inventories among the 216 forest management units contributing
to the national estimate for the year 2000, in terms of (a) number
of forest management units per size category and (b) total carbon
(sum of units) per size category (billion metric tons).

ilar across forest types and regions then the estimates
of uncertainty would be jointly related or highly corre-
lated. However, as the estimates become more dependent
on elements of biology, management, ecology, or biogeo-
chemistry of the respective forests, the degree of indepen-
dence among the separate estimates will tend to increase.
Similarly, if we view uncertainty as simply random vari-
ability, then the separate estimates made for different
forest types would also be considered independent.
Assumptions about covariability among 216 separately
determined forest carbon pools can have a tremendous
effect on the apparent uncertainty of the total. FORCARB
simulations in Heath and Smith (2000) reflected a rel-
atively high degree of joint correlation-generally with
coefficients of correlation between 0.60 and 0.98. Figure
7.5 shows the possible effects of covariability among
the forest management units. The 216 distributions were
specified as having joint correlations with coefficients of
correlation of approximately 0.05, 0.50, and 0.95 (low to
high covariability) based on modifying their rank orders
from the Monte Carlo simulation (Iman and Conover
1982). This was simply a numerical manipulation to dem-
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Figure 7.5—Hypothetical estimate of carbon inventory (billion
metric tons) of private timberlands for the year 2000 as affected
by covariability among PDFs for each of the 216 forest manage-
ment units. Before summing the separate PDFs, correlation coef-
ficients were set at approximately 0.05, 0.50, and 0.95 to produce
narrowest to widest distributions for the total, respectively.
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onstrate the effect of covariability on apparent uncer-
tainty. The probabilities of high-valued samples are
largely canceled out by low-valued samples when the
summed distributions are considered largely indepen-
dent (with coefficient of correlation, r=0.05). This central
tendency produces a relatively narrow distribution in
contrast to high correlation where factors leading to
higher-valued samples of carbon in one system would
also lead to higher-valued samples in another. The inter-
val between the 10" and 90" percentiles was 4.5 times
greater with r=0.95 than with r=0.05. We emphasize that
manipulations done here were simply a means of dem-
onstrating the consequences of covariance terms and the
importance of any assumption about independence.
Average annual carbon flux is based on the difference
between PDFs representing carbon inventory estimates
(fig. 7.6). Here too, the value of the covariance term is
important. With independence between the two invento-
ries, uncertainty of the flux estimate is directly propor-
tional to uncertainty in the two distributions. However,
non-zero covariance affects the size of the flux PDF, as
illustrated in figure 7.6 by manipulations of the coefficient
of correlation between the two inventory PDFs. In gen-
eral, range of uncertainty in estimated average annual flux

r T T T 1

20000 21000 22000 23000 24000

2000 - Garbon inventory (Tg C)

Net annual carbon flux (Tg C/yn)

Figure 7.6—Examples of the effects of covariability between estimates of carbon inventory (million metric tons) on average annual
net flux (million metric tons per year) uncertainty. Estimates for carbon inventory of private timberlands for years 1990 and 2000 were
based on joint correlations among forest units set at r=0.5. Hypothetical average annual flux PDFs were calculated using correlation
coefficients between years set at 0.50 and 0.95, producing wide and narrow distributions, respectively. Flux calculations were based
on annualized difference between 1990 and 2000 distributions. Positive flux indicates that carbon is being sequestered in the forest.
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is inversely proportional to covariance between invento-
ries. If similar information was used to estimate carbon in
each of the two years then the two distributions would be
highly correlated. This was the case here (table 7.1) where
age and volume were specified without uncertainty and
FORCARB model parameters (similarly applied in each
year’s estimate) were the only sources of uncertainty.

Sums and differences of related PDFs depend on addi-
tion and subtraction of covariance terms, respectively.
These are straightforward calculations if complete vari-
ance-covariance tables are readily available. Such infor-
mation may be provided with original data sets, or it
can be explicitly simulated within models. However, full
knowledge of covariances is not a very realistic expecta-
tion when facing separately acquired estimates of uncer-
tainty from independent sources. Nevertheless, even
simple qualitative information can be usefully applied to
sorting through post-analysis PDFs. For example, simply
knowing that some positive, but unspecified, level of cor-
relation exists between a pair of variables would lead
an analyst to place more confidence in summaries where
values were jointly drawn from similar regions of the
respective PDFs. Another example of information pro-
vided by even limited knowledge of covariability is the
effect of uncertainty in two inventory PDFs on uncer-
tainty in estimated flux. The assumption of indepen-
dence between inventories is a conservative assumption
leading to large uncertainty in flux. Any knowledge of
relatedness between the two inventories will reduce flux
uncertainty, even without reducing uncertainty of the
respective inventory PDFs.

Implication for a Larger External System

Decisionmakers are seldom provided probabilistic esti-
mates of uncertainty without any accompanying infor-
mation applicable to its use or context. Similarly, they are
unlikely to be faced with summing 216 separate PDFs.
The modeling examples were provided here to illustrate
considerations for summarizing PDFs as descriptions of
uncertainty. The effects of tabular summaries and relat-
edness are also useful when addressing issues of many
uncertainties in a complex system.

The system defined by the FORCARB model is clearly
a subset of a larger integrated system. Concern over the
prospect of rapidly growing uncertainties as more ele-
ments are brought into an analysis cannot be quanti-
tatively addressed without comprehensive uncertainty
analyses. However, the results provided here do illus-
trate: 1) the effects of covariability among parts; and 2)
how the definition of an interval affects the perception
of uncertainty. For example, the interval between the 10"
and the 90" percentiles of the 1990 carbon inventory PDF
for the Northeastern Forest Industry Maple-Beech-Birch
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forest management unit (result not shown) is about 10
percent of the median. The corresponding interval for
the national total, after adding the additional 215 forest
management units, is only about 9 percent of the median
(table 7.1). The same interval could range from 3 and
12 percent of the median by simply adopting different
assumptions about covariability among forest manage-
ment units as illustrated in figure 7.5. Relative uncertainty
(one definition of an interval) decreased while absolute
uncertainty (another definition of an interval) increased
as forest units were summed under an assumption of
independence. This was because both median and vari-
ance terms increased linearly making the 10* to 90" per-
centile interval (which increased in proportion to the
square root of the variance) an increasingly smaller pro-
portion of the median.

Models structured to serve as accounting systems (for
example, total forest carbon inventory) can be naturally
organized into two sequential steps. First, determine a
per-unit value of the quantity (for example, carbon per
pool per hectare), and second, sum these units across
an appropriate index (for example, forest area). This pat-
tern appears in models (Nilsson and Schopfhauser 1995;
Heath et al. 1996) and national summaries (Birdsey and
Heath 1995; Kurz et al. 1995) as well as IPCC recommen-
dations for greenhouse gas inventories (IPCC/OECD/
IEA 1997b). Choices and assumptions made in the course
of modeling affect the form and relatedness of intermedi-
ate PDFs, and these can affect final results.

Recommendations for pooling uncertainties often con-
tainimplicit but not clearly stated assumptions of indepen-
dence (for example, Volume 1, p. A1.5, IPCC/OECD/IEA
1997b). Such relationships among uncertainties may be
reasonable and accurate but could easily and inadver-
tently be hidden in assumptions as models are iteratively
analyzed and revised. Clearly, issues of uncertainty con-
tinue to change and are unlikely to be entirely resolved-the
state of science and the questions society asks of science
change continuously. Therefore, a model structure that
clearly and as simply as possible states basic assumptions
is essential for subsequent use of uncertainty.

Decisions are seldom made on the basis of a single
uncertainty analysis; generally, multiple influences need
to be considered and merged by decisionmakers (Joint
Climate Project 1992; Reckhow 1994; Klabbers et al. 1996;
Paoli and Bass 1997). Probabilistic expressions resulting
from analyses are useful to decisionmakers for consider-
ing multiple influences (Hoffman and Hammonds 1994;
Morgan and Dowlatabadi 1996). A systems perspective
is even more important when the array of external influ-
ences, and accompanying uncertainties, are considered.
Global change will affect forest composition and growth
as well as management practices and timber markets.
Climate sensitivity and forest sector projections contain
additional uncertainties that we plan to incorporate in

109



Smith and Heath

our analyses. Where and how these added uncertainties
appropriately link with the existing model can strongly
influence rate of propagation.

Considerations for Interpreting Probabilistic Estimates of Uncertainty of Forest Carbon

eling or using the results from modeling. These are not
complicated sets of rules but examples of the need for
clear statements of definitions and assumptions.

Summary
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Probabilities are commonly employed to quantify
uncertainty. Discussion in this chapter focused on how
summaries of probability distributions, or their subse-
quent use, can affect the interpretation of uncertainty.
Model results presented here represent preliminary esti-
mates of a portion of the uncertainty in carbon budgets
for private U.S. timberlands.

Tractable use of results from uncertainty analyses often
require tabular summaries of probability density func-
tions (PDFs). The utility of a simpler format for expressing
uncertainty should exceed the likely loss of information
from a continuous distribution. Obviously, such summa-
ries should still reflect the essential information desired
by users. In other words, summarizing is fine, and under-
standing the form of the summary can help assure a net
benefit. The relatively brief set of results we present here
illustrate some basic considerations for ensuring this link
and are summarized as follows:

¢ Tabular summaries (for example, “+10 percent”) do
not fully define distributions resulting from probabilis-
tic simulations. Thus, summaries should focus on spe-
cific aspects of PDFs.

* Absolute and relative levels of uncertainty are useful
summaries, yet they are distinctly different measures.
Comparisons among estimates of uncertainty can be
confusing unless definitions are clearly stated.

* A specified range for uncertainty includes an implicit
assumption of likelihood based on the PDF. This should
be explicitly stated as a range and associated confi-
dence, for example.

* The use of a number of PDFs sometimes requires
including additional characteristics in the summary,
especially when summing a total uncertainty from
separately obtained estimates. Size disparity and
covariability among parts then become important con-
siderations.

Probabilistic models, such as the implementation of
FORCARB referenced here, explicitly account for such
characteristics of PDFs. These guidelines are applicable
whenever uncertainty is described in terms of probabili-
ties, including policy and management decision making.
That is, the use of probabilistic definitions of uncertainty
requires many of the same considerations whether mod-

110

Birdsey, R.A. 1992. Carbon storage and accumulation in United States
forest ecosystems. Gen. Tech. Rep. WO-59. Washington, D.C.: U.S.
Department of Agriculture, Forest Service. 51 p.

Birdsey, R.A.; Heath, L.S. 1995. Carbon changes in U.S. forests. In: Joyce,
L.A., ed., Productivity of America’s forests and climate change. Gen.
Tech. Rep. RM-271. Fort Collins, CO: U.S. Department of Agricul-
ture, Forest Service, Rocky Mountain Forest and Range Experiment
Station: 56-70.

Brown, K.; Adger, W.N. 1994. Economic and political feasibility of
international carbon offsets. Forest Ecology and Management. 68:
217-229.

Cullen, A.C.; Frey, H.C. 1999. Probabilistic techniques in exposure assess-
ment. Plenum Press, New York, NY. 335 p.

Dakins, M.E.; Toll, J.E.; Small M., [et al.]. 1996. Risk-based environmen-
tal remediation: Bayesian Monte Carlo analysis and expected value
of sample information. Risk Analysis. 16: 67-79.

Ferson, S.; Ginzburg, L.R. 1996. Different methods are needed to propa-
gate ignorance and variability. Reliability Engineering and System
Safety. 54: 133-144.

Hattis, D.; Burmaster, D.E. 1994. Assessment of variability and uncer-
tainty distributions for practical risk analyses. Risk Assessment. 14:
713-730.

Haynes, RW.; Adams, D.M.; Mills, J.R. 1995. The 1993 RPA timber
assessment update. Gen. Tech. Rep. RM-259. Fort Collins, CO: U.S.
Department of Agriculture, Forest Service, Rocky Mountain Forest
and Range Experiment Station. 23 p.

Haynes, RM.; Cleaves, D.A. 1999. Uncertainty, risk, and ecosystem
management. In: Johnson, N.C.; Malk, A].; Sexton W.T., Szaro, R,
eds. Ecological Stewardship: a Common Reference for Ecosystem
Management. Elsevier Science Ltd., Oxford: 413-429.

Heath, L.S,; Birdsey, R.A. 1993. Carbon trends of productive temperate
forests of the conterminous United States. Water, Air, and Soil Pollu-
tion. 70: 279-293.

Heath, L.S,; Birdsey, R.A.; Row, C., [et al.]. 1996. Carbon pools and
fluxes in U.S. forest products. In: Apps, M.].; Price, D.T., eds. Forest
ecosystems, forest management and the global carbon cycle. NATO
ASI Series I: Global Environmental Change, Vol. 40, Springer-Verlag,
Berlin: 271-278.

Heath, L. S.: Smith, J. E. 2000. An assessment of uncertainty in forest
carbon budget projections. Environmental Science and Policy. 3:
73-82.

Hoffman, FO.; Hammonds, J.S. 1994. Propagation of uncertainty in risk
assessments: the need to distinguish between uncertainty due to lack
of knowledge and uncertainty due to variability. Risk Analysis. 14:
707-712.

Iman, R.L.; Conover, W.J. 1982. A distribution-free approach to inducing
rank correlation among input variables. Communications on Statis-
tics—Simulation and Computing. 11: 331-334.

IPCC/OECD/IEA. 1997a. Programme on National Greenhouse Gas
Inventories. Expert group meeting on biomass burning and land-use
change and forestry. 1997 September 15-18; Rockhampton, Austra-
lia. 21 p.

IPCC/OECD/IEA. 1997b. Revised 1996 Guidelines for national green-
house gas inventories, Volumes 1-3. IPCC/OECD/IEA, Paris. 950 p.

USDA Forest Service Gen. Tech. Rep. RMRS—GTR-59. 2000.



Considerations for Interpreting Probabilistic Estimates of Uncertainty of Forest Carbon

Joint Climate Project. 1992. Joint climate project to address decision
makers’ uncertainties: report of findings. Sponsored by, Electric
Power Research Institute and U.S. Environmental Protection Agency.
Science and Policy Associates, Inc. Washington, DC. 160 p.

Klabbers, J.H.G.; Swart R.J.; Janssen, R., [et al.]. 1996. Climate science
and climate policy: Improving the science/policy interface. Mitiga-
tion and Adaptation Strategies for Global Change. 1: 73-93.

Knight, EN. 1921. Risk, uncertainty, and profit. Reprinted by the London
School of Economics, series of reprints of scarce tracts in Economics.
Boston: Houghton-Mifflin Co. 381 p.

Kurz, WA.; Apps, M.].; Beukema, S.J., [et al.]. 1995. 20* century budget
of Canadian forests. Tellus. 47B: 170-177.

Mills, ].R.; Kincaid, J.C. 1992. The aggregate timberland assessment sys-
tem—ATLAS: A comprehensive timber projection model. Gen. Tech.
Rep. PNW-281. Portland, OR: U.S. Department of Agriculture, Forest
Service, Pacific Northwest Research Station. 160 p.

Mills, J.R.; Haynes, RW. 1995. Influence of climate change on supply
and demand for timber. In: Joyce, L.A., ed., Productivity of Amer-
ica’s Forests and Climate Change. Gen. Tech. Rep. RM-271. Fort
Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky
Mountain Forest and Range Experiment Station: 46-55.

Morgan, M.G.; Henrion, M. 1990. Uncertainty: A guide to the treatment
of uncertainty in quantitative policy and risk analysis. Cambridge
University Press, New York. 332 p.

Morgan, M.G.; Dowlatabadi, H. 1996. Learning from integrated assess-
ment of climate change. Climatic Change. 34: 337-368.

USDA Forest Service Gen. Tech. Rep. RMRS—GTR-59. 2000.

Smith and Heath

Nilsson, S.; Schopfhauser, W. 1995. The carbon-sequestration potential
of a global afforestation program. Climatic Change. 30: 267-293.
Paoli, G.; Bass, B. 1997. Editorial: Climate change and variability, uncer-
tainty and decision-making. Journal of Environmental Management.

49: 1-6.

Plantinga, A.].; Birdsey, R.A. 1993. Carbon fluxes resulting from U.S. pri-
vate timberland management. Climatic Change. 23: 37-53.

Reckhow, K.H. 1994. Importance of scientific uncertainty in decision
making. Environmental Management. 18: 161-166.

Rowe, W.D. 1994. Understanding uncertainty. Risk Analysis. 14:
743-750.

Schimmelpfennig, D. 1996. Uncertainty in economic models of climate-
change impacts. Climatic Change. 33: 213-234.

Shackley, S.; Wynne, B. 1996. Representing uncertainty in global climate
change science and policy: Boundary-ordering devices and author-
ity. Science, Technology, & Human Values. 21: 275-302.

Smith, J.E.; Heath, L.S. [accepted for publication]. Characterizing com-
ponents of input uncertainty in a forest carbon budget model. Envi-
ronmental Management.

Sohngren, B.L.; Haynes, R.W. 1997. The potential for increasing carbon
storage in United States unreserved timberlands by reducing forest
fire frequency: An economic and ecological analysis. Climatic
Change. 35: 179-197.

Vose, D. 1996. Quantitative risk analysis: a guide to Monte Carlo simula-
tion modelling. John Wiley & Sons, Chichester, England. 328 p.

111



	Introduction
	A Forest Carbon Budget Model: FORCARB
	Uncertainty
	Method of Simulating Uncertainty
	Results and Discussion
	Summary
	Literature Cited



