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Abstract

This tutorial demonstrates the application of piecewise regression to bedload data to 
define a shift in phase of transport so that the reader may perform similar analyses 
on available data. The use of piecewise regression analysis implicitly recognizes dif-
ferent functions fit to bedload data over varying ranges of flow. The transition from 
primarily low rates of sand transport (Phase I) to higher rates of sand and coarse 
gravel transport (Phase II) is termed “breakpoint” and is defined as the flow where 
the fitted functions intersect. The form of the model used here fits linear segments to 
different ranges of data, though other types of functions may be used. Identifying the 
transition in phases is one approach used for defining flow regimes that are essen-
tial for self-maintenance of alluvial gravel bed channels. First, the statistical theory 
behind piecewise regression analysis and its procedural approaches are presented. 
The reader is then guided through an example procedure and the code for generating 
an analysis in SAS is outlined. The results from piecewise regression analysis from a 
number of additional bedload datasets are presented to help the reader understand 
the range of estimated values and confidence limits on the breakpoint that the anal-
ysis provides. The identification and resolution of problems encountered in bedload 
datasets are also discussed. Finally, recommendations on a minimal number of sam-
ples required for the analysis are proposed.
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Introduction

Bedload transport in coarse-bedded streams is an irregular process influenced 
by a number of factors, including spatial and temporal variability in coarse 
sediment available for transport. Variations in measured bedload have been 
attributed to fluctuations occurring over several scales, including individual 
particle movement (Bunte 2004), the passing of bedforms (Gomez and others 
1989, 1990), the presence of bedload sheets (Whiting and others 1988), and 
larger pulses or waves of stored sediment (Reid and Frostick 1986). As a result, 
rates of bedload transport can exhibit exceptionally high variability, often up to 
an order of magnitude or greater for a given discharge. However, when rates of 
transport are assessed for a wide range of flows, there are relatively predictable 
patterns in many equilibrium gravel-bed channels.

Coarse sediment transport has been described as occurring in phases, where 
there are distinctly different sedimentological characteristics associated with 
flows under different phases of transport. At least two phases of bedload 
transport have been described (Emmett 1976). Under Phase I transport, rates 
are relatively low and consist primarily of sand and a few small gravel particles 
that are considerably finer than most of the material comprising the channel 
bed. Phase I likely represents re-mobilization of fine sediment deposited from 
previous transport events in pools and tranquil areas of the bed (Paola and 
Seal 1995, Lisle 1995). Phase II transport represents initiation and transport of 
grains from the coarse surface layer common in steep mountain channels, and 
consists of sand, gravel, and some cobbles moved over a stable or semi-mobile 
bed. The beginning of Phase II is thought to occur at or near the “bankfull” 
discharge (Parker 1979; Parker and others 1982; Jackson and Beschta 1982; 
Andrews 1984; Andrews and Nankervis 1995), but the threshold is often poorly 
or subjectively defined.

Ryan and others (2002, 2005) evaluated the application of a piecewise 
regression model for objectively defining phases of bedload transport and 
the discharge at which there is a substantial change in the nature of sediment 
transport in gravel bed streams. The analysis recognizes the existence of 
different transport relationships for different ranges of flow. The form of the 
model used in these evaluations fit linear segments to the ranges of flow, though 
other types of functions may be used. A breakpoint was defined by the flow 
where the fitted functions intersected. This was interpreted as the transition 
between phases of transport. Typically, there were markedly different statis-
tical and sedimentological features associated with flows that were less than or 
greater than the breakpoint discharge. The fitted line for less-than-breakpoint 
flows had a lower slope with less variance due to the fact that bedload at these 
discharges consisted primarily of small quantities of sand-sized materials. In 



2 USDA Forest Service RMRS-GTR-189.  2007

contrast, the fitted line for flows greater than the breakpoint had a significantly 
steeper slope and more variability in transport rates due to the physical breakup 
of the armor layer, the availability of subsurface material, and subsequent 
changes in both the size and volume of sediment in transport.

 Defining the breakpoint or shift from Phase I to Phase II using measured 
rates of bedload transport comprises one approach for defining flow regimes 
essential for self-maintenance of alluvial gravel bed channels (see Schmidt 
and Potyondy 2004 for full description of channel maintenance approach). The 
goal of this tutorial is to demonstrate the application of piecewise regression 
to bedload data so that the reader may perform similar analyses on available 
data. First we present statistical theory behind piecewise regression and its 
procedural approaches. We guide the reader through an example procedure and 
provide the code for generating an analysis using SAS (2004), which is a statis-
tical analysis software package. We then present the results from a number of 
examples using additional bedload datasets to give the reader an understanding 
of the range of estimated values and confidence limits on the breakpoint that this 
analysis provides. Finally, we discuss recommendations on minimal number of 
samples required, and the identification and resolution of problems encoun-
tered in bedload datasets.

Data

Data on bedload transport and discharge used in this application were 
obtained through a number of field studies conducted on small to medium sized 
gravel-bedded rivers in Colorado and Wyoming. The characteristics of channels 
from which the data originate and the methods for collecting the data are fully 
described in Ryan and others (2002, 2005). Flow and rate of bedload transport 
are the primary variables used in the assessment of the breakpoint. Bedload 
was collected using hand-held bedload samplers, either while wading or, more 
typically, from sampling platforms constructed at the channel cross-sections. 
Mean flow during the period of sample collection was obtained from a nearby 
gaging station or from flow rating curves established for the sites.

Statistical Theory

When analyzing a relationship between a response, y, and an explanatory 
variable, x, it may be apparent that for different ranges of x, different linear rela-
tionships occur. In these cases, a single linear model may not provide an adequate 
description and a nonlinear model may not be appropriate either. Piecewise 
linear regression is a form of regression that allows multiple linear models to be 
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fit to the data for different ranges of x. Breakpoints are the values of x where the 
slope of the linear function changes (fig. 1). The value of the breakpoint may or 
may not be known before the analysis, but typically it is unknown and must be 
estimated. The regression function at the breakpoint may be discontinuous, but 
a model can be written in such a way that the function is continuous at all points 
including the breakpoints. Given what is understood about the nature of bedload 
transport, we assume the function should be continuous. When there is only one 
breakpoint, at x=c, the model can be written as follows:
 y = a

1 
+ b

1
x	 for	x≤c

 y = a
2 
+ b

2
x	 for	x>c.

In order for the regression function to be continuous at the breakpoint, the two 
equations for y need to be equal at the breakpoint (when x = c):

a
1 
+ b

1
c	=	a

2 
+ b

2
c.

Solve for one of the parameters in terms of the others by rearranging the 
equation above:

a
2 
= a

1
	+	c(b

1
 - b

2
).

Then by replacing a
2 
with the equation above, the result is a piecewise regres-

sion model that is continuous at x	=	c:

 y = a
1 
+ b

1
x		 for	x≤c

 y = {a
1
	+	c(b

1
 - b

2
)} + b

2
x	 for	x>c.

Nonlinear least squares regression techniques, such as PROC NLIN in SAS, 
can be used to fit this model to the data.

Figure 1—Example of a 
piecewise regression fit 
between discharge and 
bedload transport data 
collected at St. Louis 
Creek Site 2, Fraser 
Experimental Forest 
(Ryan and others 2002).
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Tutorial Examples

In order to run the examples from these tutorials the user must have some 
knowledge of SAS, such as the ability to move around in the SAS environment 
and import data. SAS version 9.1.3 was used to implement these programs. 
Most of this code will work with SAS versions beginning with 8.2, but it is 
important to note that the nonlinear regression procedure used to fit the models 
was modified between versions 8.2 and 9, and this can produce slight differ-
ences in the final results.

Little Granite Creek Example

Data from Little Granite Creek near Jackson, Wyoming were collected by 
William Emmett and staff from the U.S. Geological Survey from 1982 through 
1992. Sandra Ryan of the U.S. Forest Service, Rocky Mountain Research 
Station collected additional data during high runoff in 1997. This dataset has 
over 120 observations from a wide range of flows (Appendix A) (Ryan and 
Emmett 2002).

Estimating starting parameters
The first step in applying piecewise regression to bedload and flow data is 

to graph the data and estimate where the breaks appear to occur. Applying a 
nonparametric smooth to the data, such as a LOESS fit (box 1), can help the 
user determine where these breaks manifest themselves. Using figure 2, we 
visually estimate the breakpoint to be somewhere between 4.0 and 8.0 m3 s-1.

Box 1. Apply a nonparametric smooth to the data and generate figure 2.

* -- USE LOESS PROCEDURE TO GET SMOOTHED NONPARAMETRIC FIT OF DATA -- *;
PROC LOESS DATA=ltlgran;
 MODEL Y=X;
 ODS OUTPUT OUTPUTSTATISTICS=LOESSFIT;
RUN;
* -- PLOT DATA AND THE LOESS FIT -- *;
SYMBOL1 f=marker v=U i=none c=black;
SYMBOL2 v=none i=join line=1 w=3 c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=LOESSFIT;
 PLOT DEPVAR*X=1 PRED*X=2 / OVERLAY FRAME VAXIS=AXIS2;
RUN;

A standard linear regression model is then fit to the entire data range (fig. 3, 
box 2). It is apparent the linear model is a poor fit over the entire range of 
discharges because the values obtained at lower flows do not fall along the line. 
The results from this model (box 2) will be used as a baseline to compare with 
the piecewise model. To be acceptable, the piecewise model should account for 
more variability than the linear model.
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Box 2. Apply a linear regression model to the data and generate figure 3.

* -- APPLY LINEAR REGRESSION MODEL TO THE DATA -- *;
PROC REG DATA=ltlgran;
 MODEL Y=X;
 OUTPUT OUT=LINEARFIT P=PRED;
RUN;
* -- PLOT DATA AND THE LINEAR REGRESSION FIT -- *;
SYMBOL1 f=marker v=U i=none c=black;
SYMBOL2 v=none i=join line=1 w=3 c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=LINEARFIT;
 PLOT Y*X=1 PRED*X=2 / OVERLAY FRAME VAXIS=AXIS2;
RUN;

Analysis of Variance – Linear Model
   Sum of  Mean
 Source  DF  Squares  Square  F Value Pr > F
 Model  1  4.25406  4.25406  138.95  <.0001
 Error  121  3.70441  0.03061
 Corrected Total  122  7.95847

 Root MSE  0.17497  R-Square  0.5345
 Dependent Mean  0.12540  Adj R-Sq  0.5307
 Coeff Var  139.53045

Starting parameters (a
1
, b

1
, b

2
,	c) are needed in the PROC NLIN procedure 

to give the program a place to begin fitting the model. Poor starting parameters 

Figure 2—Loess fit 
between discharge 
and bedload transport 
data collected at Little 
Granite Creek.
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may result in non-convergence, so this is an important step. Starting parameters 
are provided by estimating a simple linear model separately above and below 
the estimated breakpoint location (fig. 4, box 3). Because the estimated break-
point appears to be somewhere between 4.0 and 8.0 m3 s-1 (from fig. 2), it is 
best to estimate starting parameters at multiple points between 4.0 and 8.0, and 
then choose the model with the best fit (in other words, has the smallest mean 

Figure 4—Linear fits 
between discharge and 
bedload transport data 
below and above an esti-
mated breakpoint of 4.0. 
Data from Little Granite 
Creek.

Figure 3—Linear fit 
between discharge and 
bedload transport data 
collected at Little Granite 
Creek.
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squared error). We obtained initial starting parameters for models where the 
breakpoint was 4.0, 6.0 (half-way), and 8.0.

Box 3.  Apply two linear regression models to the data and generate figure 4.

* -- APPLY LINEAR REG MODEL TO DATA BELOW ESTIMATED BREAKPOINT -- *;
PROC REG DATA=ltlgran;
 MODEL Y=X;
 OUTPUT OUT=FITBELOW P=PREDBELOW;
 WHERE X <= 4.0;
RUN;
* -- APPLY LINEAR REG MODEL TO DATA ABOVE ESTIMATED BREAKPOINT -- *;
PROC REG DATA=ltlgran;
 MODEL Y=X;
 OUTPUT OUT=FITABOVE P=PREDABOVE;
 WHERE X > 4.0;
RUN;
* -- COMBINE DATASETS -- *;
DATA FITBOTH;
 SET FITBELOW FITABOVE;
RUN;
* -- PLOT DATA AND THE TWO LINEAR REGRESSION FITS -- *;
SYMBOL1 f=marker v=U i=none c=black;
SYMBOL2 v=none i=join line=1 w=3 c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=FITBOTH;
 PLOT Y*X=1 PREDBELOW*X=2 PREDABOVE*X=2 / OVERLAY FRAME VAXIS=AXIS2;
RUN;

 Linear Fit Below Estimated Breakpoint=4.0

 Parameter  Standard
 Variable  Label  DF  Estimate  Error  t Value  Pr > |t|
 Intercept  Intercept  1  -0.00422  0.00307 -1.37  0.1749
 X  Discharge (cubic meters/sec)  1  0.00473  0.00128  3.70  0.0005

 Linear Fit At and Above Estimated Breakpoint=4.0

   Parameter  Standard
 Variable  Label  DF  Estimate  Error  t Value  Pr > |t|
 Intercept  Intercept  1  -0.45074  0.08280  -5.44  <.0001
 X  Discharge (cubic meters/sec)  1  0.10221  0.01174  8.71  <.0001

The estimated starting parameters for the piecewise model,

 y = a
1 
+ b

1
x		 for	x≤c

 y = {a
1
	+	c(b

1
 - b

2
)} + b

2
x		 for	x>c.

and the methods used to obtain them are shown in table 1.
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Fitting the model
The starting parameters are then used to fit the piecewise regression model 

with PROC NLIN procedure in SAS (fig. 5, box 4).

Table 1—Estimated piecewise regression starting parameters for a breakpoint at 4.0.

  Estimated starting
 Parameter parameter How obtained

 a
1
 -0.00422 Intercept of linear fit to data below estimated breakpoint.

 b
1
 0.00473 Slope of linear fit to data below estimated breakpoint.

 b
2
 0.10221 Slope of linear fit to data above estimated breakpoint.

 c 4.0 Estimated breakpoint from LOESS plot.

Figure 5—Piecewise 
regression between 
discharge and bedload 
transport data collected 
at Little Granite Creek. A 
power function is shown 
for comparison.
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Box 4. Apply a piecewise and power model to the data and generate figure 5.

* -- FIT THE PIECEWISE MODEL USING NONLINEAR PROCEDURE -- *;
PROC NLIN DATA=ltlgran MAXITER=1000 METHOD=MARQUARDT;
 PARMS a1=-0.00422 b1=0.00473 c=4 b2=0.10221;
 Xpart = a1 + b1*X;
 IF (X > c) THEN DO;
  Xpart = a1 + c*(b1-b2) + b2*X;
  end;
 MODEL Y = Xpart;
 OUTPUT OUT=PIECEFIT R=RESID P=PRED;
RUN;
* -- FIT THE POWER MODEL (FOR COMPARISON) USING NONLINEAR PROCEDURE -- *;
PROC NLIN DATA=ltlgran MAXITER=1000 METHOD=MARQUARDT;
 PARMS a1=0.01 b1=0.01 b2=1.0;
 MODEL Y = a1 + b1*X**b2;
 OUTPUT OUT=POWERFIT R=PWR_RESID P=PWR_PRED;
RUN;
* -- COMBINE OUTPUT FROM BOTH MODELS -- *;
DATA ALL; 
 SET PIECEFIT POWERFIT;
RUN; 
* -- PLOT DATA, PIECEWISE REGRESSION FIT, AND POWER MODEL FIT -- *;
SYMBOL1 f=marker v=U i=none c=black;
SYMBOL2 v=none i=join line=1 w=3 c=black;
SYMBOL3 v=none i=join line=2 w=3 c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=ALL;
 PLOT Y*X=1 PRED*X=2 PWR_PRED*X=3 / OVERLAY FRAME VAXIS=AXIS2;
RUN;

Little Granite Creek
Piecewise Regression Fit

The NLIN Procedure
Dependent Variable Y

Method: Marquardt
Iterative Phase

      Sum of
 Iter  a1 b1 c  b2 Squares
 0 -0.0150  0.00949  6.0000  0.1081  3.2790
 1 -0.0150  0.00949  4.9368  0.1081  2.8875
 2 -0.00484  0.00485  4.9114  0.1104  2.8825
 3 -0.00377  0.00432  4.8794  0.1100  2.8822
 4 -0.00223  0.00355  4.8340  0.1094  2.8820
 5 -0.00223  0.00355  4.8341  0.1094  2.8820
 NOTE: Convergence criterion met. 
   Sum of Mean Approx
 Source  DF  Squares  Square  F Value  Pr > F
 Model  3  5.0765  1.6922  69.87  <.0001
 Error  119  2.8820  0.0242 
 Corrected Total  122  7.9585 
   Approx
 Parameter  Estimate  Std Error  Approximate 95% Confidence Limits
 a1 -0.00223  0.0423  -0.0860  0.0815
 b1 0.00355  0.0141  -0.0244  0.0315
 c 4.8341  0.4977  3.8486  5.8197
 b2 0.1094  0.0115  0.0867  0.1320
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Under the “Iterative Phase” of the output, there is a note indicating 
“Convergence criterion met.” This means the model converged and a break-
point of 4.83 and a mean squared error (MSE) of 0.0242 were estimated. If we 
repeat the above series of steps for breakpoints at 6.0 and 8.0, we get models 
that converge with breakpoints at 4.83 (with MSE=0.0242), which is the same 
model produced with an initial breakpoint of 4.0, and 8.27 (with MSE=0.0246), 
respectively. The models that converged with a breakpoint of 4.83 have the 
smallest MSE and therefore the best fit.

The results from the piecewise regression model are then compared with 
those from the linear model (fig. 3). An extra sums of squares test (Neter and 
others 1990) can be used to determine if the piecewise regression model is 
an improvement over the linear model. Other models can also be compared, 
such as a power model (also shown in fig. 5) commonly used in fitting bedload 
data (Whiting and others 1999). However, there is no formal test available that 
allows the direct comparison of a piecewise regression model to a power model, 
but one can compare the results using the model standard error, also known as 
the square root of the mean squared error. This is the average distance of each 
observation from the fitted model and smaller values indicate an improved fit. 
The results from curve fits to the Little Granite Creek data are compared in 
table 2.

Table 2—Model standard errors for the linear, power, and 
piecewise regression models for Little Granite Creek.

 Least squares model Model standard error

 Linear: y = a
1 
+ b

1
x 0.0306

 Power: y = a
1 
+ b

1
xb2 0.0230

 Piecewise 0.0242

Based on comparisons of the model standard error and the visual fit, the 
linear model is clearly not the best fit. However, the model standard error for 
the piecewise linear model isn’t substantially different from the power model. 
Justification for using the piecewise regression model in this case would be 
based on scientific reasons (Bates and Watts 1988). That is, if the piecewise 
regression model has approximately the same goodness of fit as a different 
model, then scientific reasoning could be used to select the model. In this case, 
we choose the piecewise model to objectively determine the onset of different 
phases of bedload transport that have been shown to exist in many gravel bed 
rivers.

Testing model assumptions
The next step is to ensure that the assumptions of the model have been met. 

The first assumption in regression analysis is the independence of the residuals 
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(which are the actual-y minus predicted-y values), meaning the value of one 
residual is unrelated to the value of the next. As an example of dependence, 
bedload samples are often taken in the field over relatively short time intervals 
(hours to days), causing potential correlation between discharge values due to 
time. If the values of x are correlated, then the residuals will be correlated. 
Neter and others (1990) state that if the data are correlated, the regression 
coefficients are still unbiased but may be inefficient, and the mean squared 
error and standard deviations of the parameters may be seriously underesti-
mated. A plot of the residuals over time should show no trends, otherwise the 
assumed independence of the x values is violated. The Little Granite Creek 
dataset contains data ranging from April through July for 1985 through 1997. It 
is difficult to show trends on a single plot for such a lengthy period of record, 
so for simplicity we plot the data sequentially assuming equal distance between 
the measurements (box 5).

Box 5. Check residuals for independence by generating figure 6.

* -- SORT THE DATA BY TIME -- *;
PROC SORT DATA=PIECEFIT;
 BY date;
RUN;
* -- ADD A DUMMY TIME VARIABLE TO MAKE PLOTTING EASIER -- *;
DATA PIECEFIT;
 RETAIN TIME 0;
 SET PIECEFIT;
 TIME = TIME + 1;
RUN;
* -- PLOT THE RESIDUALS OVER TIME IN ORDER TO CHECK FOR INDEPENDENCE -- *;
SYMBOL1 f=marker v=U i=join c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=PIECEFIT;
 PLOT X*TIME=1 / FRAME VAXIS=AXIS2;
RUN;

From the graph of the residuals over time (fig. 6), it is apparent there may 
be some correlation because the residuals are not randomly scattered above 
and below zero. For instance, around time 100 there are nine consecutive data 
points below zero and then eleven consecutive data points above zero. One 
way to check for correlation is to model the residuals using an autoregressive 
[AR(1)] variance structure, which takes into account that a particular observa-
tion is correlated with the previous observation (box 6). In other words, we can 
better predict the value of the current observation if we use the value of the 
previous observation. If there is a substantial difference between this adjusted 
MSE (which is the valid MSE for the model) and the MSE from the original 
piecewise regression model, then the implication is that the residuals are corre-
lated. Setting SUBJECT=year tells SAS there is no correlation between years. 
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The data for this particular site represent approximately April through July of 
each year and we would not expect the July measurement to be correlated with 
April measurement of the following year. Assuming only the correlation within 
each year, the estimate for the correlation parameter is 0.6194 (box 6), and the 
Wald Z-test shows a significant p-value (p<0.0001). This means the residuals 
are significantly correlated, and the MSE is actually 0.0226. The MSE from the 
piecewise regression model was 0.0242, which is only a 7 percent difference so 
we assume the effects of correlation are not substantial.

Box 6. Apply an autoregressive model to the residuals.

*-- SORT THE DATA BY TIME -- *;
PROC SORT DATA=PIECEFIT;
 BY date;
RUN;
* -- MODEL THE RESIDUALS AS AN AR(1) -- *; 
PROC MIXED DATA=PIECEFIT;
 MODEL RESID=;
 REPEATED / SUBJECT=year TYPE=AR(1);
RUN;

Little Granite Creek
GET MSE ADJUSTED FOR CORRELATION

Convergence criteria met. 
Covariance Parameter Estimates

    Standard  Z
 Cov Parm  Subject  Estimate  Error  Value  Pr Z  Alpha  Lower  Upper
 AR(1)  YEAR  0.6194  0.06630  9.34  <.0001  0.05  0.4895  0.7493
 Residual   0.02256  0.004031  5.60  <.0001  0.05  0.01635  0.03313

Figure 6—Piecewise regres-
sion residuals for Little 
Granite Creek plotted 
sequentially to check for 
independence.
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A second assumption is that the residuals exhibit normality. This means the 
error in the model prediction, which is the distribution of the residuals, should 
appear to be a bell-shaped curve (a normal distribution) with many “average” 
sized residuals and fewer large and small residuals. Too many extreme values, 
small or large, suggest a skewed distribution. A visual way to determine if the 
residuals follow the normal distribution is to generate a QQ-plot, which is a 
graph of the quantiles of the normal distribution against the quantiles of the 
data (box 7). If the data closely match the quantiles of the normal distribution, 
then the data are normal. With a piecewise regression model, which consists of 
two linear models, we examine the residuals below and then above the break-
point (fig. 7).

Box 7. Check residuals for normality and generate figure 7.

* -- CHECK RESIDUALS FOR NORMALITY BELOW THE BREAKPOINT -- *;
SYMBOL1 f=marker v=U i=none c=black;
PROC UNIVARIATE DATA=PIECEFIT NORMAL;
 WHERE (X <= 4.83);
 VAR RESID;
 QQPLOT RESID / NORMAL(MU=EST SIGMA=EST);
RUN;
* -- CHECK RESIDUALS FOR NORMALITY ABOVE THE BREAKPOINT -- *;
PROC UNIVARIATE DATA=PIECEFIT NORMAL;
 WHERE (X > 4.83);
 VAR RESID;
 QQPLOT RESID / NORMAL(MU=EST SIGMA=EST);
RUN;

Tests for Normality
Checking for Normality Below the Breakpoint

 Test  -------Statistic--------  -----------p Value-----------
 Shapiro-Wilk  W  0.659789 Pr < W  <0.0001
 Kolmogorov-Smirnov  D  0.24104  Pr > D  <0.0100
 Cramer-von Mises  W-Sq  1.268588  Pr > W-Sq  <0.0050
 Anderson-Darling  A-Sq  7.403709  Pr > A-Sq  <0.0050

Tests for Normality
Checking for Normality Above the Breakpoint

 Test  --------Statistic-------  -----------p Value-----------
 Shapiro-Wilk  W  0.970409  Pr < W  0.2869
 Kolmogorov-Smirnov  D  0.113803  Pr > D  0.1387
 Cramer-von Mises  W-Sq  0.068001  Pr > W-Sq  >0.2500
 Anderson-Darling  A-Sq  0.424133  Pr > A-Sq  >0.2500

The visual interpretation of the two plots suggests that the residuals of the 
data below the breakpoint (fig. 7a) are not normal, while the data above the 
breakpoint (fig. 7b) exhibit a near one-to-one relationship between the data 
and the normal distribution. Another way to check for normality is to use the 
Shapiro-Wilk test (among others in box 7). The results from this test show that 
the residuals below the breakpoint are, indeed, not normal (p<0.0001), but we 
cannot reject normality for the residuals above the breakpoint (p=0.2869).
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A third assumption is that residuals have homogeneous variance, with the 
variability of the residuals between and within the fitted segments being approx-
imately constant. By plotting the residuals on the y-axis and the predicted fit 
on the x-axis, one can determine if the variability of the data is constant across 
the entire range of x (fig. 8, box 8). The linearity assumption, where an equal 
number of data points randomly occur on either side of the model, can also be 

Figure 7—QQ-plots for Little 
Granite Creek piecewise 
regression residuals for 
curves fit to data (a) below 
and (b) above the break-
point value.
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examined using the plot of the residuals versus the predicted values. Figure 
8(a and b) shows nearly half the data points are below and half above the 
line. Hence, the linearity of the two segments is not in question. However, it 
is apparent the residuals are not homogeneous because the variance increases 
with the predicted value. The reader is referred to Neter and others (1990) for 
additional explanation of the assumptions of a regression model.

Figure 8—Little Granite 
Creek piecewise regres-
sion residuals and 
predicted values (a) 
below and (b) above the 
breakpoint.
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Box 8. Check residuals for lack of fit and heterogeneous variance and generate figure 8.

* -- CHECK RESIDS FOR LACK OF FIT & HETEROGENOUS VARIANCE BELOW 
BREAKPOINT-- *;
SYMBOL1 f=marker v=U i=none c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=PIECEFIT;
 WHERE (X <= 4.83);
 PLOT RESID*PRED=1 / frame VAXIS=AXIS2 VREF=0;
RUN;
* -- CHECK RESIDS FOR LACK OF FIT & HETEROGENOUS VARIANCE ABOVE BREAKPOINT-- *;
PROC GPLOT DATA=PIECEFIT;
 WHERE (X > 4.83);
 PLOT RESID*PRED=1 / FRAME VAXIS=AXIS2 VREF=0;
RUN;

Implications of assumption violations
When the residuals are not independent, then a time series analysis may be 

more appropriate for predicting changes in transport rate over time. When the 
linearity assumption is violated, then a linear model is not the best fit for the 
data. Violations of the normality and/or homogeneous variance assumptions 
result in unreliable estimates of the standard error and confidence intervals for 
the model parameters, but the parameter estimates themselves are unbiased 
(Neter and others 1990). A nonparametric method, such as bootstrapping, can 
be used to estimate the accuracy in the estimation of a parameter (Efron and 
Tibshirani 1993). Bootstrapping involves resampling from the original dataset, 
with replacement, in order to obtain a secondary dataset. The piecewise model 
is then fit to the secondary datasets and the parameter estimates (a

1
, b

1
, b

2
,	c) 

are retained. Using the parameter estimates from secondary datasets generated 
in these analysis (n=2000), nonparametric standard errors and confidence 
intervals can be estimated for the original piecewise regression model. If the 
data exhibit violations of the normality and variance assumptions as well as the 
independence assumption, it is up to the user to determine if they would prefer 
to use a time series approach to the analysis or address primarily the normality 
and variance issues, and realize possible bias of the MSE due to the correlation 
issue.

For the Little Granite Creek data, the MSE from the autoregressive model 
applied to the residuals did not differ substantially from the original model 
MSE, so we chose to ignore the modest correlation effect and focus on the lack 
of normality and homogeneous variance problems. Bootstrapping techniques 
were used to obtain confidence intervals and standard errors for the piecewise 
regression model (table 3). The analysis estimates the breakpoint as 4.8 m3 s-1 
with 95 percent confidence interval ranging from 3.97 to 8.00 m3 s-1, which is 
a fairly sizable range (fig. 9, table 3). Sampling more data points at flows near 
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the breakpoint value might improve the fit and confidence of the estimates. It is 
also important to note that this is where the variance in the data starts to rapidly 
increase, which also contributes to wider confidence bands. A discharge of 4.8 
m3 s-1 is about 81 percent of the bankfull discharge determined for this site 
(Q

1.5 
= 5.95 m3 s-1). Ryan and others (2002, 2005) have shown that the break-

point occurs at about 80 percent of the bankfull discharge in many gravel bed 
channels measured in Colorado and Wyoming. The confidence bands on this 
estimate are typically between 60 and 100 percent of the bankfull discharge.

Table 3—Little Granite Creek piecewise regression parameter values with corresponding 
bootstrap estimates of the standard error and 95 percent confidence intervals.

   Bootstrap 95% BCaa Confidence intervals
 Parameter Estimate standard error (lower, upper)

 a
1
 -0.00223 0.01174 -0.04413 0.00076

 b
1
 0.00355 0.00497 0.00177 0.02104

 b
2
 0.10936 0.07082 0.07064 0.25879

 c 4.83411 0.94901 3.96558 8.00188

aBCa confidence intervals are considered the better bootstrap intervals because they are bettered bias-
corrected and accelerated confidence intervals (Efron and Tibshirani 1993).

Figure 9—Piecewise regres-
sion fit between discharge 
and bedload transport 
data collected at Little 
Granite Creek with error 
bars denoting width of 
95 percent confidence 
intervals for the estimated 
breakpoint.
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Hayden Creek Example

Data from Hayden Creek near Salida, CO was collected by staff from the 
USFS Rocky Mountain Research Station and the Pike/San Isabel National 
Forest during snowmelt runoff in 1998 and 1999. This dataset has very few 
observations collected at higher flows, making the piecewise regression model 
fitting more challenging and the interpretations more difficult. Repeating the 
series of steps outlined for Little Granite Creek, the data for Hayden Creek 
are first plotted with the nonparameteric LOESS fit to estimate the value of 
the breakpoint (box 9). The breakpoint is visually estimated to be somewhere 
between 1.3 m3 s-1 and 1.7 m3 s-1 (fig. 10).

Box 9. Apply a nonparametric smooth to the data and generate figure 10.

* -- USE LOESS PROCEDURE TO GET SMOOTHED NONPARAMETRIC FIT OF DATA -- *;
PROC LOESS DATA=hayden;
  MODEL Y=X;
  ODS OUTPUT OUTPUTSTATISTICS=LOESSFIT;
RUN;
* -- PLOT DATA AND THE LOESS FIT -- *;
SYMBOL1 f=marker v=U i=none c=black;
SYMBOL2 v=none i=join line=1 c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=LOESSFIT;
  PLOT DEPVAR*X=1 PRED*X=2 / OVERLAY FRAME VAXIS=AXIS2;
RUN;

Figure 10—Loess fit 
between discharge and 
bedload transport data 
collected at Hayden 
Creek.
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Next, a standard linear regression model is fit to the entire data range (fig. 11, 
box 10). It appears there may be a better model than the linear fit for this data.

Box 10. Apply a linear regression model to the data and generate figure 11.

* -- APPLY LINEAR REGRESSION MODEL TO THE DATA -- *;
PROC REG DATA=hayden;
 MODEL Y=X;
 OUTPUT OUT=LINEARFIT P=PRED;
RUN;
* -- PLOT DATA AND THE LINEAR REGRESSION FIT -- *;
SYMBOL1 f=marker v=U i=none c=black;
SYMBOL2 v=none i=join line=1 c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=LINEARFIT;
 PLOT Y*X=1 PRED*X=2 / OVERLAY FRAME VAXIS=AXIS2;
RUN;

Analysis of Variance
   Sum of  Mean
 Source  DF  Squares  Square  F Value  Pr > F
 Model  1  0.00627  0.00627  110.95  <.0001
 Error  74  0.00418  0.00005653 
 Corrected Total  75  0.01046 
 Root MSE  0.00752  R-Square  0.5999
 Dependent Mean  0.01097  Adj R-Sq  0.5945
 Coeff Var  68.52498

Figure 11—Linear fit 
between discharge and 
bedload transport data 
collected at Hayden 
Creek.
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With an estimated breakpoint between 1.3 and 1.7 m3 s-1, the initial starting 
parameters are obtained for models where the breakpoint was 1.3, 1.5 (half-
way), and 1.7. The following code is used to obtain starting parameters estimates 
for a breakpoint at 1.5 (fig. 12, box 11). The estimated parameters used in the 
analysis are shown table 4.

Box 11. Apply two linear regression models to the data and generate figure 12.

* -- APPLY LINEAR REG MODEL TO DATA BELOW ESTIMATED BREAKPOINT -- *;
PROC REG DATA=hayden;
 MODEL Y=X;
 OUTPUT OUT=FITBELOW P=PREDBELOW;
 WHERE X <= 1.5;
RUN;
* -- APPLY LINEAR REG MODEL TO DATA ABOVE ESTIMATED BREAKPOINT -- *;
PROC REG DATA=hayden;
 MODEL Y=X;
 OUTPUT OUT=FITABOVE P=PREDABOVE;
 WHERE X > 1.5;
RUN;
* -- COMBINE DATASETS -- *;
DATA FITBOTH;
 SET FITBELOW FITABOVE;
RUN;
* -- PLOT DATA AND THE TWO LINEAR REGRESSION FITS -- *;
SYMBOL1 f=marker v=U i=none c=black;
SYMBOL2 v=none i=join line=1 c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=FITBOTH;
 PLOT Y*X=1 PREDBELOW*X=2 PREDABOVE*X=2 / OVERLAY FRAME VAXIS=AXIS2;
RUN;

Linear Fit Below Estimated Breakpoint=1.5
    Parameter  Standard
 Variable  Label  DF  Estimate  Error  t Value  Pr > |t|
 Intercept  Intercept  1  -0.00675  0.00137  -4.92  <.0001
 X  Discharge (cubic meters/sec)  1  0.01435  0.00136  10.57  <.0001

Linear Fit At and Above Estimated Breakpoint=1.5
    Parameter  Standard
 Variable  Label  DF  Estimate  Error  t Value  Pr > |t|
 Intercept  Intercept  1  -0.11531  0.02823  -4.09  0.0010
 X  Discharge (cubic meters/sec)  1 0.08285  0.01663  4.98  0.0002

Using these parameters, the piecewise regression model is fit with PROC 
NLIN procedure (fig. 13, box 12).
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Figure 12—Two estimates 
of linear fits between 
discharge and bedload 
transport below and above 
an estimated breakpoint of 
1.5. Data are from Hayden 
Creek.

Table 4—Estimated piecewise regression starting parameters for Hayden Creek with an estimated 
breakpoint at 1.5.

  Estimated
 Parameter starting parameter How obtained

 a
1
 -0.00675 Intercept of linear fit to data below estimated breakpoint.

 b
1
 0.01435 Slope of linear fit to data below estimated breakpoint.

 b
2
 0.08285 Slope of linear fit to data above estimated breakpoint.

 c 1.5 Estimated breakpoint from LOESS plot.

Figure 13—Piecewise 
regression and power 
fit between discharge 
and bedload transport 
data collected at Hayden 
Creek.
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Box 12. Apply a piecewise and power model to the data and generate figure 13.

* -- FIT THE PIECEWISE MODEL USING NONLINEAR PROCEDURE -- *;
PROC NLIN DATA=hayden MAXITER=1000 METHOD=MARQUARDT;
 PARMS a1=-0.00675 b1=0.01435 c=1.5 b2=0.08285;
 Xpart = a1 + b1*X;
 IF (X > c) THEN DO;
  Xpart = a1 + c*(b1-b2) + b2*X;
  end;
 MODEL Y = Xpart;
 OUTPUT OUT=PIECEFIT R=RESID P=PRED;
RUN;
* -- FIT THE POWER MODEL (FOR COMPARISON) USING NONLINEAR PROCEDURE -- *;
PROC NLIN DATA=hayden MAXITER=1000 METHOD=MARQUARDT;
 PARMS a1=0.01 b1=0.01 b2=1.0;
 MODEL Y = a1 + b1*X**b2;
 OUTPUT OUT=POWERFIT R=PWR_RESID P=PWR_PRED;
RUN;
* -- COMBINE OUTPUT FROM BOTH MODELS -- *;
DATA ALL; 
 SET PIECEFIT POWERFIT;
RUN; 
* -- PLOT DATA, PIECEWISE REGRESSION FIT, AND POWER MODEL FIT -- *;
SYMBOL1 f=marker v=U i=none c=black;
SYMBOL2 v=none i=join line=1 w=3 c=black;
SYMBOL3 v=none i=join line=2 w=3 c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=ALL;
 PLOT Y*X=1 PRED*X=2 PWR_PRED*X=3 / OVERLAY FRAME VAXIS=AXIS2;
RUN;

Hayden Creek
Piecewise Regression Fit

The NLIN Procedure
Dependent Variable y
Method: Marquardt

Iterative Phase
      Sum of
 Iter a1 b1  c  b2  Squares
 0  -0.00675  0.0144  1.5000  0.0829  0.00288
 1  -0.00675  0.0144  1.5848  0.0828  0.00240
 2  -0.00678  0.0144  1.6104  0.0882  0.00238
 3  -0.00753  0.0153  1.6504  0.0962  0.00232
 4  -0.00772  0.0155  1.6842  0.1067  0.00230
 5  -0.00772  0.0155  1.6804  0.1067  0.00230
 NOTE: Convergence criterion met. 
   Sum of  Mean  Approx
 Source  DF  Squares  Square  F Value  Pr > F
 Model  3  0.00816  0.00272  85.24  <.0001
 Error  72  0.00230  0.000032 
 Corrected Total  75  0.0105 
   Approx
 Parameter  Estimate  Std Error  Approximate 95% Confidence Limits
 a1  -0.00772  0.00207  -0.0118  -0.00360
 b1  0.0155  0.00188  0.0118  0.0193
 c  1.6804  0.0336  1.6134  1.7475
 b2  0.1067  0.0141  0.0785  0.1348
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The model converged with a breakpoint at 1.68 and an MSE of 0.000032 
(box 12). If we repeat the above analyses estimating a breakpoint at 1.3, it 
produces the same model as a starting breakpoint of 1.5. However, using a 
starting value of 1.7 for the breakpoint, a converging model with a breakpoint 
at 1.81 (MSE=0.000029) results. This MSE is smaller, but there are then only 
three data points above this breakpoint, which doesn’t produce a viable model. 
It is clear at this point there are two observations in the dataset that are potential 
outliers. The effects of these points will be investigated later in the tutorial.

Comparing the mean squared errors of the linear (fig. 11), power (fig. 13), 
and piecewise regression (fig. 13) models it is apparent the linear model is not 
the best model. The power and piecewise regression model have very similar 
MSEs (table 5).

Table 5—Model standard errors for the linear, power, and 
piecewise regression models for Hayden Creek.

 Least squares model Model standard error

 Linear: y = a
1 
+ b

1
x 0.000057

 Power: y = a
1 
+ b

1
xb2 0.000033

 Piecewise 0.000032

Next, the assumptions of an ordinary least squares model are tested along 
with an examination of the dependence of the residuals (fig. 14, box 13).

Box 13. Check residuals for independence by generating figure 14.

* -- SORT THE DATA BY TIME -- *;
PROC SORT DATA=PIECEFIT;
 BY date;
RUN;
* -- ADD A DUMMY TIME VARIABLE TO MAKE PLOTTING EASIER -- *;
DATA PIECEFIT;
 RETAIN TIME 0;
 SET PIECEFIT;
 TIME = TIME + 1;
RUN;
* -- PLOT THE RESIDUALS OVER TIME IN ORDER TO CHECK FOR INDEPENDENCE -- *;
SYMBOL1 f=marker v=U i=join c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=PIECEFIT;
 PLOT X*TIME=1 / FRAME VAXIS=AXIS2;
RUN;
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It appears the residuals may be correlated, so we model the residuals using 
an autoregressive variance structure (box 14). The nonlinear least squares MSE 
of 0.000032 is not substantially different from the MSE that takes correlation 
into account (0.000030), so we conclude that the original MSE adequately 
represents the model.

Box 14. Apply an autoregressive model to the residuals.

*-- SORT THE DATA BY TIME -- *;
PROC SORT DATA=PIECEFIT;
 BY date;
RUN;
* -- MODEL THE RESIDUALS AS AN AR(1) -- *; 
PROC MIXED DATA=PIECEFIT;
 MODEL RESID=;
 REPEATED / SUBJECT=year TYPE=AR(1);
RUN;

Hayden Creek
GET MSE ADJUSTED FOR CORRELATION

Convergence criteria met.

Covariance Parameter Estimates

    Standard  Z
 Cov Parm  Subject  Estimate  Error  Value  Pr Z  Alpha  Lower  Upper
 AR(1)  YEAR  0.2841  0.1090  2.61  0.0091  0.05  0.07052  0.4977
 Residual   0.000030  5.271E-6  5.72  <.0001  0.05  0.000022  0.000044

Figure 14—Piecewise 
regression residuals for 
Hayden Creek plotted 
sequentially to check 
for independence.
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Examining the residuals for normality (box 15), we cannot reject the assump-
tion of normality of the data above the breakpoint (fig. 15b). Assuming an alpha 
of 0.05, the Shapiro-Wilk test for the data below the breakpoint have a border-
line p-value of 0.0438 (fig 15a). The other normality tests have p-values greater 
than 0.05 so we conclude the residuals for both segments appear to be normal.

Box 15. Check residuals for normality and generate figure 15.

* -- CHECK RESIDUALS FOR NORMALITY BELOW THE BREAKPOINT -- *;
SYMBOL1 f=marker v=U i=none c=black;
PROC UNIVARIATE DATA=PIECEFIT NORMAL;
 WHERE (X <= 1.68);
 VAR RESID;
 QQPLOT RESID / NORMAL(MU=EST SIGMA=EST);
RUN;
* -- CHECK RESIDUALS FOR NORMALITY ABOVE THE BREAKPOINT -- *;
PROC UNIVARIATE DATA=PIECEFIT NORMAL;
 WHERE (X > 1.68);
 VAR RESID;
 QQPLOT RESID / NORMAL(MU=EST SIGMA=EST);
RUN;

Tests for Normality
Checking for Normality Below the Breakpoint

 Test  --------Statistic--------  -----------p Value----------
 Shapiro-Wilk  W  0.963472  Pr < W  0.0438
 Kolmogorov-Smirnov  D  0.080942  Pr > D  >0.1500
 Cramer-von Mises  W-Sq  0.087773  Pr > W-Sq  0.1652
 Anderson-Darling  A-Sq  0.608608  Pr > A-Sq  0.1110

Tests for Normality
Checking for Normality Above the Breakpoint

 Test  --------Statistic--------  -----------p Value----------
 Shapiro-Wilk  W  0.917241  Pr < W  0.4079
 Kolmogorov-Smirnov  D  0.215632  Pr > D  >0.1500
 Cramer-von Mises  W-Sq  0.079648  Pr > W-Sq  0.1875
 Anderson-Darling  A-Sq  0.427314  Pr > A-Sq  0.2364
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Checking the residuals for homogeneous variance and linearity (box 16), 
we find that the linearity of the data is not in question because half the data 
are above and below the line (fig. 16 a, b). However, the variance is not homo-
geneous. Since the residuals do not exhibit homogeneous variance, we use 
bootstrapping methods to obtain appropriate standard errors and confidence 
intervals for the parameter estimates (a

1
, b

1
, b

2
,	c) in the piecewise regression 

model (fig. 17, table 6).

Figure 15—QQ-plots for 
Hayden Creek piecewise 
regression residuals for 
curve fits (a) below and (b) 
above the breakpoint.
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Figure 16—Hayden Creek 
piecewise regression 
residuals and predicted 
values (a) below and (b) 
above the breakpoint. 

Box 16. Check residuals for lack of fit and heterogeneous variance and generate figure 16.

*-- CHECK RESIDS FOR LACK OF FIT & HETEROGENOUS VARIANCE BELOW BREAKPOINT 
-- *;
SYMBOL1 f=marker v=U i=none c=black;
AXIS2 label = (a=90 r=0);
PROC GPLOT DATA=PIECEFIT;
 WHERE (X <= 1.68);
 PLOT RESID*PRED=1 / frame VAXIS=AXIS2 VREF=0;
RUN;
*-- CHECK RESIDS FOR LACK OF FIT & HETEROGENOUS VARIANCE ABOVE BREAKPOINT -- *;
PROC GPLOT DATA=PIECEFIT;
 WHERE (X > 1.68);
 PLOT RESID*PRED=1 / FRAME VAXIS=AXIS2 VREF=0;
RUN;
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Potential Outliers

An assessment of potential outliers is important in any analysis. When dealing 
with measurements of bedload transport, it is common to have outlying data 
points. However, while a data point should not be removed simply because it is 
an outlier, it is important to know how these points affect the model fit. Fitting 
methods such as least absolute deviations (LAD) or iteratively reweighted least 
squares (IRLS) decrease the affect of outliers on the model fit. For consistency, 
we use standard least squares to fit the piecewise regression model, but also 
assess the affect of outliers on the location of the breakpoint. The piecewise 
model without these extraneous data points is fit and compared against the 

Figure 17—Piecewise 
regression fit between 
discharge and bedload 
transport data collected 
at Hayden Creek with 
error bars denoting 
width of 95 percent 
confidence intervals 
for the estimated 
breakpoint.

Table 6—Hayden Creek piecewise regression parameter estimates with corresponding 
bootstrap estimates of the standard error and 95 percent confidence intervals.

   Bootstrap 95% BCa1 Confidence intervals
 Parameter Estimate standard error (lower, upper)

 a
1
 -0.0077 0.00167 -0.01042 -0.00376

 b
1
 0.0155 0.00211 0.01052 0.01873

 b
2
 0.1067 0.02891 0.02983 0.17383

 c 1.6804 0.10540 1.46113 1.80788

1BCa confidence intervals are considered the better bootstrap intervals because they are bettered bias-
corrected and accelerated confidence intervals (Efron and Tibshirani 1993).
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original fit. When the differences are substantial, the user must determine if 
the outlying data points should be left in the model or removed for scientific or 
procedural reasons.

In the Hayden Creek example, two high flow points appear to be very influ-
ential observations in fitting the models. If we remove these points and refit the 
piecewise regression model, the breakpoint moves from 1.68 to 1.0 (fig. 18), 
providing a very different answer from the original. Additional evidence hints 
that piecewise model may not be an appropriate model to use in the absence of 
these data points. For instance, there is only a slight change in slope between 
the upper and lower modeled segments with the outlying points removed, 
implying that there may be only one linear segment. Moreover, the calculated 
MSE for the linear model is not substantially different from the piecewise or 
power model (table 7), suggesting that a linear fit without these points is as 
appropriate for these data as the more complex models. Based on this evidence, 
the range of data in figure 18 likely represents phase I transport and the two 
outlying data points characterize a limited sampling of phase II transport. More 
measurements at higher flows would have been beneficial for this data set and 
demonstrates the importance of obtaining data from a wide range of flows. 
Furthermore, there is no reason to believe these data points are invalid (in 
other words there was no instrument or procedural failure) and therefore, we 
conclude that the original model with all of the data included is the better model 
for Hayden Creek.

Figure 18—Piecewise 
regression fit between 
discharge versus 
bedload transport data 
collected at Hayden 
Creek, with the removal 
of two high flow 
observations.
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Table 7—Model standard errors for the linear, power, and piecewise 
regression models for Hayden Creek—with the removal of the two 
high flow observations.

 Least squares model Model standard error

 Linear—w/out 2 high flows 0.000028
 Power—w/out 2 high flows  0.000027
 Piecewise—w/out 2 high flows 0.000028

Table 8—Sites used in subsampling analysis and corresponding 
number of observations each dataset contains.

 Site Number of observations

 East St. Louis Creek 109
 Little Granite Creek 123
 Lower Fool Creek 95
 St. Louis Creek Site 1 92
 St. Louis Creek Site 2 118
 St. Louis Creek Site 3 107
 St. Louis Creek Site 4 127
 St. Louis Creek Site 4a 104
 St. Louis Creek Site 5 94

Guidelines

The number of data points necessary to obtain a good fit using piecewise 
linear regression depends on a number of factors. Given the inherent variability 
common in bedload data, a relatively large number of samples from a wide flow 
range are typically needed to define the piecewise (as well as other) models. In 
order to examine how sample size can affect the fitting of a piecewise linear 
regression model, smaller datasets were generated from their larger coun-
terparts by randomly sampling data points and attempting to fit a piecewise 
regression model. Data from nine different sites (table 8) were used in these 
comparisons: East St. Louis Creek, Little Granite Creek, Lower Fool Creek, 
St. Louis Creek Sites 1-5, and St. Louis Creek Site 4a (Ryan and others 2002, 
2005). The piecewise regression models, or “reference models,” against which 
we compare the subsampling results are shown in figure 19 (see also Appendix 
B). These reference models are considered the “true” piecewise linear regres-
sion models because the model was generated using the entire dataset. Data 
from most of these sites had normality and/or homogeneous variance problems, 
as is typical with this type of data, so bootstrapping methods were used to 
develop 95 percent confidence intervals for the parameter estimates.
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Table 9—Description of bins where the data fell and the average percentage of 
data contained in each bin (BF = bankfull).

 Bin # Data contained within bin % of Data in each bin

 1 0 <= X <= 1/3*BF 20%
 2 1/3*BF < X <= 2/3*BF 25%
 3 2/3*BF < X <= BF 25%
 4 X > BF 30%

Table 10—Average percentage of subsamples with 1) breakpoint inside the 95% CIs of the 
“reference” breakpoint, and 2) breakpoint and model SE within the 95% corresponding  
“reference” CIs.

   Average % inside CI for c
1

 Subsample size Average % inside CI for c
1
 and CI for model SE

 20 66 36
 30 75 49
 40 81 60
 60 88 72
 80 92 79
 100 93 82

Bootstrap resampling methods were used to generate datasets (subsamples) 
containing 20, 30, 40, 60, 80, and 100 data points (when n > 100) selected from the 
original dataset. In order to force each subsample to contain data from the entire 
range of flow, the original data were grouped into four different bins based on flow 
level relative to the bankfull discharge (table 9). For each site and subsample size, 
1000 resampled datasets were generated by randomly sampling with replace-
ment from each of the four bins. The first bin represented 20 percent of the data, 
so 20 percent of each newly generated dataset were random samples from bin 
one. The second bin represented 25 percent of the data, so 25 percent of each 
newly generated dataset were random samples from bin two. The same scheme 
was used for bins three and four. Once the subsample datasets were generated, a 
piecewise linear regression model was fit, and if the model converged, bootstrap 
methods were used to obtain confidence intervals for the parameters and model 
standard error (SE). Models that failed to converge were eliminated.

The primary result of interest in a piecewise linear regression model using 
bedload data is the estimate of the breakpoint. In order to estimate the sample size 
that will provide a breakpoint that is not substantially different from the “reference” 
model breakpoint, we determined how many of the converging models had a 
breakpoint within the 95 percent bootstrap confidence intervals of the “reference” 
model. In other words, how many of the subsampled datasets converged with a 
breakpoint estimate that was not substantially different from that of the full model. 
Similarly, we determined how often both the subsample breakpoint and model SE 
were within the acceptable range of the “reference” model (table 10).
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Figure 19i—continued.
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Models developed from subsamples of size 20 had breakpoints within the 
confidence intervals 66 percent of the time. Requiring the subsamples to have 
both a breakpoint and model SE within the 95 percent confidence intervals of 
the “reference” model dropped the percentage to 36 percent (table 10). Notably, 
there is marked improvement in the percentages of subsamples with a break-
point and model SE within the acceptable range at sample size 40. In practice, 
we observed that datasets containing fewer than 40 data points often have 
convergence problems, primarily because it is difficult to adequately define 
transport rates over sub-ranges of flows using fewer measurements. Our results 
here concur with those observations pertaining to minimum sample size needed 
to adequately define a breakpoint for bedload data. The benefits of increasing 
the sample size are not as substantial when the subsample size increases from 
60 to 80 data points. Samples of size 60 and 80, when obtained by sampling 
across the entire range of data, resulted in models with a breakpoint within the 
95 percent confidence interval of the “true” breakpoint 88 to 92 percent of the 
time. Subsamples with both a breakpoint and model SE within the acceptable 
range of the reference model occurred 72 to 79 percent of the time with samples 
of size 60 and 80. These results indicate that collecting more than 80 bedload 
samples does not greatly improve the estimate of the “true” breakpoint. Hence, 
the cost of obtaining samples where n>80, may not outweigh the benefits in 
terms of model explanation, as long as the entire flow regime is sampled.

Summary

In this tutorial, we demonstrated the application of piecewise linear regres-
sion to bedload data for defining a breakpoint, presumed to represent a shift in 
phase of transport, so that the reader may perform similar analyses. General 
statistical theory behind piecewise regression and its procedural approaches 
were presented, including two examples applied to bedload data from sites 
in Wyoming and Colorado. The results from a number of additional bedload 
datasets from St. Louis Creek watershed near Fraser, Colorado were provided 
to show the range of estimated values and confidence limits on the breakpoint 
that the analysis provides. Given the inherent variability common in bedload 
data, a relatively large number of samples from a wide range of flows is needed 
to define the piecewise regression model. We concluded from a subsampling 
exercise that a minimum of 40 samples of total bedload transport be obtained 
for performing the piecewise regression analysis. However, using more than 
80 bedload samples did not greatly improve the model’s ability to estimate the 
“actual” breakpoint. Identification and resolution of common problems encoun-
tered in bedload datasets, such as the influence of outliers and other statistical 
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issues, were also addressed. Data points should not be removed simply because 
they lie outside of the range of other data, but it is important to know how these 
points affect the model fit and then judge whether they should be retained. 
Finally, the code for generating the analysis in SAS provided in bold text in the 
document has been made available online at the following URL: http://stream.
fs.fed.us/publications/software.html.
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Appendix B—Piecewise regression results with 
bootstrap confidence intervals.

Watershed Parameter Estimate Lower 95% CI Upper 95% CI

East St. Louis Ck SE 0.0098 0.0074 0.0115
 a

1
 -0.0023 -0.0047 -0.0010

 b
1
 0.0109 0.0072 0.0174

 b
2
 0.0735 0.0442 0.1367

 c
1
 0.7572 0.6733 0.8933

Fool Creek SE 0.0050 0.0037 0.0061
 a

1
 -0.0009 -0.0014 0.0002

 b
1
 0.0172 0.0044 0.0227

 b
2
 0.0856 0.0653 0.1061

 c
1
 0.2211 0.1696 0.2580

Little Granite Ck SE 0.1609 0.1253 0.1912
 a

1
 -0.0037 -0.0330 -0.0003

 b
1
 0.0043 0.0024 0.0173

 b
2
 0.1046 0.0753 0.1851

 c
1
 4.8446 4.1345 6.9900

Site 1 SE 0.0539 0.0383 0.0646
 a

1
 -0.0055 -0.0157 0.0013

 b
1
 0.0139 0.0074 0.0223

 b
2
 0.0730 0.0454 0.1472

 c
1
 3.4118 2.4869 4.6944

Site 2 SE 0.0549 0.0382 0.0686
 a

1
 -0.0069 -0.0180 -0.0026

 b
1
 0.0118 0.0086 0.0192

 b
2
 0.1222 0.0941 0.2159

 c
1
 4.4992 4.3024 5.4983

Site 3 SE 0.0702 0.0398 0.0940
 a

1
 -0.0187 -0.0283 -0.0046

 b
1
 0.0198 0.0080 0.0265

 b
2
 0.0775 0.0432 0.1565

 c
1
 4.0421 2.5055 4.9058
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Site 4 SE 0.0222 0.0170 0.0263
 a

1
 -0.000004 -0.0069 0.0098

 b
1
 0.0037 -0.0037 0.0092

 b
2
 0.0228 0.0185 0.0318

 c
1
 1.8972 1.6442 2.5725

Site 4a SE 0.0299 0.0230 0.0353
 a

1
 -0.0101 -0.0182 0.0085

 b
1
 0.0124 -0.0001 0.0173

 b
2
 0.0515 0.0368 0.0679

 c
1
 2.8074 2.1699 3.1024

Site 5 SE 0.0142 0.0090 0.0179
 a

1
 -0.00001 -0.0027 0.0031

 b
1
 0.0036 0.0014 0.0057

 b
2
 0.0437 0.0301 0.0811

 c
1
 2.3545 2.1424 2.6587

(numbers highlighted are those where the intercept is not significantly different from zero and 

could be removed from model).

Watershed Parameter Estimate Lower 95% CI Upper 95% CI
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