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Abstract: The Forest Inventory and Analysis (FIA) Program of the Forest Service, 

Department of Agriculture, is an annual monitoring system for the entire United States. 

Each year, an independent “panel” of FIA field plots is measured. To improve accuracy, 

FIA uses the “Moving Average” or “Temporally Indifferent” method to combine 

estimates from multiple panels that were measured during recent years. However, time-

series estimators better serve monitoring objectives than temporally indifferent methods.  

 

This paper reviews the Kalman filter, which is a linear, minimum variance, 

sequential, model-based, time-series estimator based on the simple composite estimator. 

The Kalman filter combines predictions from a population dynamics model with the 

observed time-series of annual FIA panel estimates. This combination of design-based 

and model-based methods reduces serious risks from model bias, yet preserves the gain 

in precision from the model. Alternative models in the Kalman filter represent alternative 

hypotheses that may be ranked based on their relative agreement with design-based 

panel estimates. For example, does a model that includes the expected consequences of 

climate change on average rates of tree growth, regenerations and mortality better fit the 

annual FIA design-based panel estimates than a model that assumes no climate change?  

 

The Kalman filter is presented in a tutorial style that relies more on graphical 

examples than mathematical equations. Hopefully, this genre builds awareness and 

confidence in this somewhat unfamiliar statistical estimator. The Kalman filter and 

Moving Average estimators are compared with hypothetical simulations of changing 

populations. A final set of examples is based on annual FIA panel estimates for the State 

of Colorado from 2002 to 2007, where epidemic levels of mountain pine beetle infestation 

are causing catastrophic tree mortality in lodgepole pine forests.  

 

Three analysis questions are addressed. Is there an observable trend in population 

parameters over time? Does the trend make sense? Is the trend significant relative to the 

uncertainty in the population estimates? 
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Introduction 
 

The U.S. Forest Service Research and Development branch, through its Forest 
Inventory and Analysis (FIA) program, has long been committed to the delivery 
of current, consistent, and credible information about the status, condition, and 
trends of America’s forests across all land ownerships and conditions. FIA has 
made impressive progress during the past 10 years in annual updates to these 
forest inventories. However, the recent FIA strategic plan for 2007-2011 (U.S. 
Forest Service, 2007a) stresses the importance of monitoring changes over time in 
forest conditions, which goes beyond an annually updated forest inventory. 
Monitoring changes over time is critically important to substantive strategic 
analyses of the nation’s forests and the long-term relevance of the FIA program.  

 
FIA has used “periodic surveys” since its inception in the 1930’s. Bechtold 

and Patterson (2005:82) define a periodic survey as is a “strategy whereby a set of 

inventory panels is measured simultaneously over a short time frame, often 1 to 3 

years in the case of FIA, and there is a time lag, often many years, before the 

panels are remeasured.” During recent years, FIA has re-engineered itself by 
moving from periodic surveys to annual surveys, in which a small sub-sample of 
field plots is re-measured every year in every county. Relative to periodic surveys, 
annual surveys are expected to improve the ability to detect and interpret changes 
in forest conditions (Gadbury and others 2004). McRoberts (2005) highlights the 
need for statistical estimators that combine population estimates or sample units 
measured in multiple years, and this might utilize model-based updating 
techniques. 

 
 

Current Statistical Methods for Annual FIA Inventories  
 
The annual FIA design is organized around a system of 5 “panels” (i.e., 

independent sub-samples) in the eastern USA and 10 panels in the western USA. 
A panel is a systematic sub-sample of all permanent FIA primary sampling units 
(Phase-2, or “P2”, field plots) for which field measurements are conducted on 2 or 
more occasions. Each FIA panel is composed of a spatially balanced, systematic, 
interpenetrating sub-sample of all FIA field plots (Reams and others, 2005). In 
simple terms, FIA treats each panel of field plots as an independent, equal-
probability sample of the entire population. All FIA field plots in the first panel 
are measured during the course of 1 or more years3. After essentially all plots in 
the first panel are measured, field measurements of the second panel commence. 
Afterwards, the 3rd panel is measured, and so forth for the remaining panels. This 
sequence of field plot measurements is repeated over time until all FIA panels are 
measured. This typically takes 5 to 10 years, depending on the region of the 
country and available funding. After the initial 5 to 10 years, this same sequence 

                                                 
3 The annual FIA design originally envisioned measurement of a single panel within a single calendar year. 

However, within the limits of available funds, it often requires more than 12 months to measure a single 
panel. This is termed “panel creep.” 
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of annual panel measurements is repeated in subsequent time periods. The result 
is a cyclic time-series of cross-sectional and longitudinal sample survey 
observations of the population from independent panels of FIA field plots. FIA 
does not use split or overlapping panels (Kish 1987). 

 
FIA does not currently have an officially endorsed estimator that combines 

multiple panel data to improve statistical precision, and it has not yet been 
determined if any single estimator will be fully satisfactory for all regions and 
forest conditions (Patterson and Reams 2005). FIA is currently investigating the 
Moving Average, the Temporally Indifferent Method and model-based estimators 
The latter includes mixed estimators (e.g., Van Deusen 2002), Kalman filters 
(e.g., Brockwell and Davis 1996), and various time series models (e.g., Johnson 
and others 2003). The Moving Average and the Temporally Indifferent methods 
are relatively straightforward, and they closely resemble the estimators used by 
FIA during the past half-century for periodic inventories (Scott and others 2005, 
Patterson and Reams 2005).  

 
Patterson and Reams (2005) discuss a simple approach to monitoring change. 

The net difference between 2 sequential, but different, panels is one simple 
estimate of change. Since each sequential panel is an independent sample by 
design, the variance of the difference is the sum of the variances from each of the 
2 panels. Over time, annual estimates of the net differences produce a series of 
annual estimates for change. However, estimates for the components of net 
change require re-measurement of FIA plots, which occurs after all annual panels 
are measured for the first time (i.e., after 5 to 10 years). Also, variance of the net 
difference can be large at the scale of a state or smaller sub-populations, resulting 
in considerable uncertainty. 
 

The remainder of this section provides more detail on the Moving Average 
and Temporally Indifferent methods4. Later sections look at the Kalman filter as 
an example of a model-based time-series estimator. 

 
 

Moving Average Method: Patterson and Reams (2005) describe the moving 
average method as follows. “Let P denote the number of panels to be combined 

for analysis. Let Yp denote the true quantity for panel P, where p=1,…,P; and let 

Ŷp denote the estimate of Yp obtained using the appropriate technique from Scott 

and others (2005). Note that each panel is treated as an independent estimate, 

which permits (1) the weighting of individual panels; and (2) Phase 1 

stratification instruments to differ among panels (i.e., different maps may be used 

to stratify different panels).” The Moving Average estimator is given by Patterson 
and Reams (2005) and Roesch and Reams (1999) as: 

 

                                                 
4 

 The Moving Average and Temporally Indifferent methods are implicitly “model-based” if the assumption is 
that they are estimators of the current conditions at time t=1 in equation 1. 
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The panel measured most recently is denoted p=1, and panels measured at 
previous P time periods have values p=2,…,P. Patterson and Reams recommend 
equal weighting of panels, i.e., wp=1/P for all p. They give the variance estimator 
for the Moving Average as the corresponding weighted sum of the variances for 
each panel estimate p: 
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Patterson and Reams remark that the Moving Average dampens annual 
fluctuations in the estimates, and estimated changes in the population tend to 
appear smaller than their true values. The Moving Average can cause a “lag bias” 
when the population is not at a static steady state, and this can obscure trends over 
time (Roesch and Reams 1999). However, lag bias can be inconsequential unless 
there is a rapid, widespread catastrophic event (Johnson and others 2003). 

 

Moving Average Residuals: The residual difference rMA between the 
estimator for the current panel and the moving average for the last P panels might 
be used to test the hypothesis that the population is at relative steady state (i.e., 
Y1=YMA,P) If this hypothesis is rejected, then there is empirical evidence from the 
FIA sample that the population measured with panel p=1 does not equal the 
population moving average over the most recent P panels, i.e., the population has 
changed somehow during the last P panel measurements. The variance estimator 
for the residual difference equals:
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The difference between the design-based estimator Ŷ1 for the single panel at 
time t=1 and the Moving Average ŶMA,P over panels p=1,…,P may be 
standardized relative to the estimated standard deviation of the difference from 
equation 3: 
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Given the hypothesis Y1=YMA,P in equation 4, rMA has an expected value of 0 with 
an expected standard deviation of 1 (i.e., unit variance). Assuming the residuals 
have a normal distribution, there is a 32 percent probability that a standardized 
residual be less than -1 or greater than +1, and a probability of merely 5 percent 
that it will be less than -1.96 or greater than +1.96.  

 
A simple metric for the relative efficiency of the Moving Average is its 

variance relative to the variance for the most current panel (p=1): 
 

 

( )
( )1

,

ˆVar

ˆVar

Y

Y PMA=β

 [5] 

β will generally range between 0 and 1 because the estimated variance of the 
Moving Average is usually, but not necessarily, less than the estimated variance 
for any one panel being averaged. The standardized residual rMA in equation 4, 
and the gain in statistical efficiency β in equation 5, subsequently will be used to 
directly compare the Moving Average with the Kalman filter. 
 

 
Temporally Indifferent Method: Patterson and Reams (2005) describe the 

Temporally Indifferent Method, which is very similar to the Moving Average. 
Sampling units in all panels ( p=1,…,P) are pooled as though they were all part of 
a single large periodic inventory.  As with previous FIA periodic inventories, 
Phase 1 post-stratification is applied across sampling units from all P panels. If 
the number of sampling units is virtually the same in each panel, and a single 
source of remotely sensed data are used for post-stratification within each panel, 
then the Temporally Indifferent Method is algebraically equivalent to the (Moving 
Average). 

 
 

Summary: The Moving Average and Temporally Indifferent estimators are 
simple, and simplicity can be good. The Temporally Indifferent estimator can be 
applied with the same familiar approach previously used for decades with 
periodic FIA surveys, and familiarity can be good. The Moving Average and 
Temporally Indifferent estimators produce useful inventory estimates for the 
current state of the nation’s forests, which are updated annually as new panel data 
are acquired. However, these simple and familiar methods have inherent 
limitations in the context of estimation and interpretation of changes over time, 
which is necessary to address the substantive monitoring questions identified in 
the FIA strategic plan (U.S. Forest Service 2007a).  
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An Alternative Estimator for Monitoring 
 
In addition to the Moving Average and Temporally Indifferent methods, 

Patterson and Reams (2005) list model-based time-series methods as alternative 
estimation methods that can combine FIA panel estimates over time. Van Deusen 
(1999) reviews sampling with partial replacement methods, although those have 
concentrated on periodic surveys. One promising approach for panel data is the 
mixed estimator (Theil 1971), which has been studied by Van Deusen (1999, 
2002, 2008) and Roesch (1999, 2007, 2008) for applications to annual forest 
inventory and monitoring. In addition, Patterson and Reams (2005) cite 
Czaplewski (1995) and Brockwell and Davis (1996), who discuss the Kalman 
filter (see Maybeck 1979) as another alternative. As discussed below, the Kalman 
filter combines the advantages of model-based and design-based estimators to 
mitigate risk while reliably improving statistical efficiency. 

 
The remainder of this paper concentrates on the Kalman filter, which has been 

widely used in engineering applications for 50 years to estimate the states of a 
system over time. However, the Kalman filter is not well-known in forest 
inventory and monitoring applications5.  The Kalman filter is conceptually 
intuitive, which, hopefully, will soon become apparent. With this goal in mind, 
the following exposition begins with the univariate Kalman filter, which uses as 
its basic building block a well known and simple statistical method, namely, the 
composite estimator. 

 
 
Composite Estimator 

 
The Kalman filter may be viewed as the sequential application of the 

composite estimator (Gregoire and Walters 1988). Maybeck (1979) is an often 
cited and well written source on the Kalman filter. He begins his 3-volume 
seminal treatise on the Kalman filter with a simple example of the composite 
estimator, which may also be considered an example of the static Kalman filter. 
The following is a slightly modified reproduction of Maybeck’s introduction from 
his section 1.5 in Volume 1: 
 

“Suppose that you are lost at sea during the night and have no idea at all of 

your location. So you take a star sighting to establish your position (for the sake 

of simplicity, consider a 1-dimensional location). At some time t1 you determine 

your location to be z1. However, because of inherent measuring device 

inaccuracies, human error, and the like, the result of your measurement is 

somewhat uncertain. Say you decide that the precision is such that the standard 

deviation (1-sigma value) involved is 
1zσ (or equivalently, the variance or second 

                                                 
5  

For exceptions, see Dixon and Howitt 1979; Gregoire and Walters 1988; Walters and others 1991; Visser and 
Molenaar 1992; Czaplewski 1995; Van Deusen 1987, 1989; Devall and others 1991; Brakel and Visser 1996; 
Gove and Houston 1996; Williams and others 2005; Hurteau and others 2007; Gao and others 2008.  
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order statistic, is 
2

  z1
σ ).  Thus, you can establish the conditional probability of 

x(t1), your position at time t1 conditioned on the observed value of the 

measurement being z1, as depicted in (figure 1). This is a plot of ( ) ( )( )111
zxf

tztx
 as a 

function of the location x: it tells you the probability of being in any 1 location, 

based upon the measurement you took. Note that   z1
σ is a direct measure of the 

uncertainty: the larger   z1
σ is, the broader the probability peak is, spreading the 

probability “weight” over a larger range of x values. For a Gaussian density, 

68.3% of the probability “weight” is contained within the band σ units to each 

side of the mean, the shaded portion in (figure 1). 
 

 “Based on this conditional probability density, the best estimate of your 

position is 

 

 
( ) 11ˆ ztx =

 [6] 

and the variance of the error in the estimate is  

 

 
( ) 2

1
2

1zx t σσ =

 [7] 

“Note that x̂  is both the mode (peak) and the median (value with 1/2 of the 

probability weight to each side), as well as the mean (center of mass).  

 

“Now say a trained navigator friend takes an independent fix, right after you 

do, at time t2~t1 (so that the true position has not changed at all, and obtains a 

measurement z2 with a variance 2

2zσ . Because he has a higher skill, assume the 

variance in his measurement to be somewhat smaller than yours. Figure 2 

presents the conditional density of your position at time t2, based only on the 

measured value z2. Note the narrower peak due to smaller variance, indicating 

that you are rather more certain of your position based on his measurement. 

 

“At this point, you have 2 measurements available for estimating your 

position. The question is, how do you combine these data? It will be shown 

subsequently that, based on the assumptions made, the conditional density of your 

position at time t2~t1, x(t2), given both z1 and z2, is a Gaussian density with mean µ  
and variance σ2

 as indicated in figure 3, with  
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Figure 1: Conditional density of position based on measured value z1 (facsimile of figure 1.4 in 
Maybeck 1979). The distribution extends to both ±∞, but it is truncated in this illustration. 

 
Figure 2: Conditional density of position based on measurement z2 alone (facsimile of figure 1.5 in 
Maybeck 1979). 

 
Figure 3: Conditional density of position based on data z1 and z2 (facsimile of figure 1.6 in Maybeck 
1979). 
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“Note that, from (equation 9), σµ is less than either σz1 or σz2, which is to say that 

the uncertainty in your estimate of position has been decreased by combining the 

2 pieces of information.  
 

“Given this density, the best estimate is  

 

 
( ) µ=2ˆ tx

 [10] 

with an associated error variance σ2
. It is the mode and the mean (or, since it is 

the mean of a conditional density, it is also termed the conditional mean). 

Furthermore, it is also the maximum likelihood estimate, the weighted least 

squares estimate, and the linear estimate whose variance is less than that of any 

other linear unbiased estimate.
6
 In other words, it is the “best” you can do 

according to just about any reasonable criterion.  

 

     “After some study, the form of µ given in (equation 8) makes good sense. If σz1 

were equal to σz2, which is to say you think the measurements are of equal 

precision, the equation says the optimal estimate of position is simply the average 

of the 2 measurements, as would be expected 
7
. On the other hand, if σz1 were 

larger than σz2, which is to say that the uncertainty involved in the measurement 

z1 is greater than that of z2, then the equation dictates “weighting” z2 more 

heavily than z1. Finally, the variance of the estimate is less than σz1 even if σz2 is 

very large: even poor quality data provide some information, and should thus 

increase the precision of the filter output.  

 

“The equation for ( )2ˆ tx

 
can be rewritten as  
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or, in final form that is actually used in Kalman filter implementations [noting 

that ( ) 11ˆ ztx = ] 
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6
  The Kalman filter may also be derived as an Empirical Bayes estimator (Jazwinski 1970, Meinhold and 

Singpurwalla 1983, Cressie and Wikle 2002). 
7
  This is the same assumption made in the FIA Moving Average (Patterson and Reams 2005), namely, each 

estimate from the last P panels is equally accurate in estimating the current condition of the population (or the 
condition at the time panel p=P/2 was sampled). 
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where
8
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“These equations say that the optimal estimate at time t2, ( )2ˆ tx , is equal to the 

best prediction of its value before z2 is taken, ( )1ˆ tx , plus a correction term of an 

optimal weighting value times the difference between z2 and the best prediction of 

its value before it is actually taken, ( )1ˆ tx . It is worthwhile to understand this 

“predictor-corrector” structure of the filter. Based on all previous information, a 

prediction of the value that the desired variables and measurement will have at 

the next measurement time is made. Then, when the next measurement is taken, 

the difference between it and its predicted value is used to `correct’ the prediction 

of the desired variables.  

 

“Using the β … in (equation 13), the variance equation given by (equation 9) 
can be rewritten as 

 

 
( ) ( ) ( )βσσσ 1

2
1

2
2

2
ttt xxx −=

 [14] 

“Note that the values of ( )2ˆ tx  and ( )2
2

txσ  embody all of the information in 

( ) ( ) ( )( )21, ,
212

zzxf
tztztx

. Stated differently, by propagating these 2 variables, the 

conditional density of your position at time t2, given z1 and z2, is completely 

specified.  

 

“Thus we have solved the static estimation problem.” 
 
Hopefully, Maybeck’s example provides intuitive insight into the simplicity, 

efficiency, and flexibility of the composite estimator, which is a special case of 
the Kalman filter. 

 

                                                 
8
 The symbol “β” is used in place of Maybeck’s “K” to draw the analogy to regression estimators in sample 

surveys (e.g., Sarndäl and others 1992). 

USDA Forest Service Proceedings – RMRS-P-56 33.



 11 

 
Model-Based Bias with the Composite Estimator 

 
If estimators z1 and z2 for population parameter z are both unbiased by design, 

then the composite estimator, which is a weighted sum of z1 and z2, will be 
design-unbiased. However, the Kalman filter generally assumes that z1 is based on 
an estimate from the previous time period, which is “updated” with a prediction 
model into an estimate for the state of the population at the current time period, 
namely z1=x(t1). This model-based component has the potential to substantially 
improve precision of the composite estimator, but accuracy can be poor if the 
model produces biased predictions. In most applications, the model requires 
assumptions that are difficult to test. Therefore, special attention is required to 
detect and correct failures in model assumptions, which is the topic of this 
section. Otherwise, the composite estimator can produce estimates that are 
apparently very precise, but are, in fact, very inaccurate (i.e., biased). 

 
Successful applications of the Kalman filter require close monitoring of the 

residual difference between x(t1) and z2 to detect likely bias in model predictions 
(Maybeck 1979). Denote this residual as  

 

 
( ) ( )122 ˆˆ txztr −=

 [15] 

Assuming independence, the expected variance of this residual is:  
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 [16] 

A useful monitoring technique requires standardization of this residual based 
on its expected variance. If the model is an unbiased estimator, then the 
standardized residual in equation 17 is expected to have a distribution with mean 
zero and unit variance: 
 

 

( )
( )

( )

( ) ( )

 

 and 

estimator based-model

 unbiasedgiven 

1,0~

11

2
2

2

ttx
t

tr

x

r

σ
σ  [17] 

At each time step, assume there is a known model-based prediction of x(t1) 
with a known model-based estimate of its variance. Further assume there is a 
known design-based panel estimate z2 with a known design-based estimate of its 
variance. Under these assumptions, the residual may be computed with equation 
15, the predicted variance of this residual may be computed with equation 16, and 
the resulting residual may be standardized as in equation 17.  

 
One process to monitor the reliability of the model-based estimator is with the 

“size” of this standardized residual. Assuming the standardized residual is 
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normally (Gaussian) distributed, with mean zero and unit variance (i.e., variance 
equal to 1 in equation 17), then there is a 68.3 percent probability that the 
standardized residual will be between -1 and +1, and a 95.4 percent probability 
that it will be between −2 and +2.  

 
Figure 4A provides an example, in which the standardized residual equals 1, 

and the standardized residual is assumed normally distributed with mean zero and 
unit variance. When monitoring residuals under these assumptions, a standardized 
residual as large as 1 is not too surprising because 31.7 percent (i.e., 1.000-0.683= 
0.317) of all residuals are expected to be less than −1 or greater than +1.  

 
As an aside, this example also illustrates that the distribution of random errors 

in the design- and model-based estimators need not be assumed to be Gaussian 
normal. Figure 4 assumes a lognormal distribution, in which feasible variables 
may not have negative values. However, the residual difference between 2 
estimates may have a negative value if the model-based estimate exceeds the 
design-based panel estimate. Therefore, the distribution of standardized residuals 
may be assumed Gaussian normal, although that is nothing more than another 
untested assumption. 

 
Figure 4B is another example, in which the model-based estimate is greater 

than that in figure 4A, but it otherwise shares the same parameter values as those 
in figure 4A. In this example, the standardized residual equals 2. Under the 
assumptions in this example, the probability of a standardized residual less than 
−2 or greater than +2 is only 4.6 percent. This is a relatively low probability, but 
observation of a residual of this magnitude remains plausible under the 
assumptions of the residual analysis. 

 
Figures 4C and 4D are more extreme examples. Again, under the assumptions 

in this analysis of residuals, the probability of the absolute value of the 
standardized residual exceeding the value of 3 is 0.3 percent in figure 4C, and of 
exceeding the value 4 in figure 4D is 0.006 percent. Both are evidence that 1 or 
more assumptions in the residual analysis are suspect. Since the panel estimate z2 
is design-unbiased, the assumptions related to this estimator remain credible, at 
least in the absence of substantial non-sampling errors. It is more plausible that 1 
or more assumptions related to the model-based estimator x(t1) are incorrect.  

 
The model-based estimate might be biased. However, if the magnitude of the 

bias is quantitatively predictable, then the model should include a correction term 
that corrects for the bias. In other words, a model with a bias that could be 
estimated should not be knowingly used in the Kalman filter. Rather, the bias 
correction should be incorporated into the base model.   
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Figure 4: Reliable applications of the composite estimator with a model-based component, which is 
a special case of the static Kalman filter, requires monitoring residuals and adapting to evidence 
that the model assumptions are significantly flawed. 
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The other suspect is the estimated variance of random prediction errors with 
the model, namely ( )1

2
txσ . This variance can be difficult to accurately estimate 

from a priori empirical data when the number of residuals is small or the variance 
is heteroscedastic over time. One solution would be to assume the model-based 
variance estimator is biased, and re-estimate its variance so that the realized 
magnitude of the standardized residual is more plausible given the design-based 
estimate from the most current FIA panel.  

 
One ad hoc adjustment rule could be to increase the estimated variance of the 

model-based estimator by a scalar factor of c so that the absolute value of its 
standardized residual becomes a more plausible value, say rmax. This assures that 
the standardized residuals never exceed ±rmax standard deviation units. For 
example, if rmax=2, then the residual difference between the model-based and 
design-based estimates would be forced to remain within 2 standard deviation 
units of 0. 

 
From equations 16 and 17 and this rule, it will be assumed that a less biased 

estimator for the variance of model prediction errors is ( )1
2

tc xσ , which is 

computed as: 
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 [18] 

 
Figure 4F is an example in which this ad hoc solution is applied to the 

statistics from figure 4D. In figure 4D, the standardized residual has the value of 4 
standard deviation units. The variance of the estimator for x(t1) is re-estimated 
with equation 18, where the maximum plausible value of the standardized residual 
is chosen to be rmax=2, namely, 2 standard deviation units. This increases the 
estimated variance of the model prediction error, resulting in a new standardized 
residual exactly equal to rmax=2, which, in turn, increases the value of β in 
equation 13, which decreases the relative “weight” placed on the model prediction 
in equation 12. The outcome is a composite estimate that more closely agrees with 
the design-based estimator of z2. The new composite estimate in figure 4F has a 
larger variance estimate than the composite estimate in figure 4D, but the estimate 
in figure 4F will be closer to the true value if the new assumptions in the model 
become more accurate. Figure 4E, which has a standardized residual equal to 3 
standard deviation units, is a less extreme example relative to figure 4F. 

 
In summary, the model-based composite estimator can be very efficient, but it 

can also be dangerously biased if the model is inaccurate. Since model parameters 
are typically fit with historical data, substantial deviations of a population from its 
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historical conditions will likely cause biased model predictions. Statistical 
efficiency has an associated risk. There is nothing inherent within the composite 
estimator, and therefore, within the Kalman filter, that protects against model-
based bias9. Monitoring residuals and adapting to anomalous outcomes can 
mitigate the risk of serious bias without foregoing the opportunities for increased 
efficiencies. Kott (2005) advocates a similar view in his paper on randomization-
assisted model-based survey sampling 

 
 
Kalman Filter Estimator 

 
The Kalman filter can be viewed as the sequential application of the 

composite estimator for each encounter of new information. In monitoring 
changes and trends over time with sub-sampled FIA panel data, the first 
component z(t) is the design-based estimator for the most current FIA panel (Scott 
and others 2005). The second component x(t|t−1) is a model-based estimator that 
uses the best FIA estimate from the previous year (t−1), which is updated to year t 
with a model for predicted change between years t and t−1. The Kalman filter is 
simply the sequential application, 1 year at a time (t=1,2,…), of this composite 
estimator and its underlying model. 
 

Recall from Maybeck’s introduction (page 6) that the composite estimator is 
the simple weighted sum of x(t|t−1) and z(t) (see also Sarndäl and others 1992, 
section 9.9.1). Using primarily Maybeck’s notation in the context of the univariate 
time-series (equation 12), the composite estimator x(t|t) at time t is the weighted 
sum of the FIA panel estimator z(t) at time t and the model-based predictor 
x(t|t−1) of the same population parameter at time t given the composite estimator 
at time t−1: 

 

 

( ) ( ) ( ) ( )
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  [19] 

 
The “optimal” weight (1-βt) placed on the model estimate (equations 12 and 13) at 
time t is: 
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 [20] 

The variance estimator for equation 19, which is the time-series version of 
equations 9 and 13, is algebraically equivalent to the following expressions: 
                                                 
9
  There is nothing to protect against similar bias with the Moving Average or Temporally Indifferent methods 

(Roesch, personal communication). 
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  [21] 

The weight βt in equation 21 is algebraically equivalent to the scalar reduction in 
the variance of the design-based panel estimator at time t given the model-based 
estimate at time t. This is analogous to the “design effect” used to evaluate 
efficiency of different sampling designs (Maybeck 1979). 
 

The time-series model in the Kalman filter assumes the population total x(t) at 
time t equals the total x(t−1) at t−1, which is multiplied by the scalar rate of 
change (φt) between t and t−1. This is the difference equation: 

 

 
( ) ( ) ( )ttxtx wt εϕ +−= 1

  [22] 

 
where εw(t) in equation 22 represents the unknown random prediction error from 
time t−1 to t. The model assumes εw(t) is distributed with mean zero and variance 
σw(t). The corresponding model-based predictor for use in the Kalman filter is: 
 

 
( ) ( )11ˆ1ˆ −−=− ttxttx tϕ

  [23] 

 
( ) ( ) ( )ttttt wxtx

2222 111 σσϕσ +−−=−

  [24] 

In successful applications of the Kalman filter, estimates for the standard 
deviation of model-based predictions σw(t) are carefully monitored through the 
realized residuals and adapted if necessary (see above). 

 
 
Sequential Recursive Time-Series Estimation with the Kalman Filter 

 
The following example is intended to explain in a more intuitive fashion an 

application of the Kalman filter for FIA monitoring. Assume a temporal model 
predicts the population parameter x is exponentially increasing over the time 
period being analyzed. More specifically, assume, φt = 1.5 in equations 23 and 24. 
Assume the random prediction error over a single year (equation 22) has a 
heteroscedastic standard deviation equal to 0.25 times the population parameter x 
at time t. In prose, the model assumes that the population parameter increases 50 
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percent each year relative to its value at the previous year, and the random 
prediction error of this model has a standard deviation of ±25 percent at time t 
relative to its condition at t−1 for all t. With these specific assumptions, the 
model-based estimator at time t is specified from equations 23 and 24 as: 
 

 
( ) ( )11ˆ

2

3
1ˆ −−×








=− ttxttx

  [25] 
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=− ttxtttt xx σσ

  [26] 

Assume an FIA panel (i.e., sub-sample) is measured at time t=1. The design-
based estimate of x(1|1) is produced with standard FIA methods as given by Scott 
and others (2005). Given this model, figure 5 illustrates how these initial 
conditions are predicted to change over time in the absence of any further FIA 
data at times t=2,…,6. The model in equation 25 forecasts that the population 
parameter will increase exponentially, and the model in equation 26  predicts the 
uncertainty of this forecast increases nonlinearly over time. The random error 
distributions are assumed to the skewed lognormal, similar to figure 4, in which 
negative values are infeasible. Since the Kalman filter is a minimum variance 
estimator, it does not necessarily depend on the assumption of Gaussian normal or 
symmetric error distributions.  

 
 

 
Figure 5: Predictions of the population parameter and the associated uncertainty (standard 
deviation) from the model in equations 25 and 26 in the absence of new FIA panel estimates at 
times t=2,…,6.. The initial condition at time t=1, which is portrayed by the red box plot, is the 
standard FIA design-based estimate from a single panel (Scott and others 2005). The subsequent 
model-based estimates are illustrated by the blue box plots. The model assumes the random 
sampling and prediction errors have a lognormal distribution to assure that negative values are 
infeasible.. The range of the boxes is the 25

th
 and 75

th
 percentiles, and the range of the “whiskers” 

is the 10
th

 and 90
th

 percentiles. 
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This model is the component of the Kalman filter that links the time series of 
observations over time. Using the simple composite estimator, the Kalman filter 
combines the observation at time t with the model prediction at time t to produce 
a more accurate estimate at time t. 

 
The Kalman filter produces a composite estimate at a single time t based on 

any direct observations of the population at time t (e.g., a design-based estimate 
from a single FIA panel) plus the independent model forecast of the same 
population parameter at time t (e.g., equations 25 and 26, figure 5). This forecast 
uses the best estimate of the population parameter at time t−1 as initial conditions. 
The resulting composite estimate embodies the information available in all 
observations and model predictions up to and including time t. The next operation 
in the Kalman filter sequence uses this best estimate at time t to forecast the state 
of the population at the subsequent time step t+1, and the composite estimator 
combines this forecast with any new independent observations at time t+1 into a 
more accurate estimate at time t+1. And so forth. Figure 6 provides an example.  

 
The red box plots represent the 10th, 25th, 50th, 75th and 90th percentiles of the 

assumed lognormal distribution of sampling errors in the estimate of the 
population attribute. This means that 10 percent of the assumed distribution 
exceeds the upper whisker on the box plot, and another 10 percent is less than the 
lower whisker.  Thus, there is only about 80 percent of the distribution covered by 
the range of each box plot. 

 
 
Simulated Examples of Monitoring Trends over Time 

 
This section provides a variety of examples that compare Kalman filter and 

Moving Average estimates. The “true” population value at each time t is known 
exactly because they were used to generate the simulated estimates from each 
panel10. 

 
The following examples provide a range of departures of the “real world” 

from the assumed model in the Kalman filter, which reveals examples of the 
consequences of those departures on the reliability of annual estimates. However, 
these examples are merely specific realizations. They do not provide valid 
generalizations about bias or efficiency of the estimators. Such generalizations 
require deriving their expected values over all possible samples, or at least a very 
large number of potential samples. 

                                                 
10

  While the true values in these hypothetical populations may be known during these simulations, the true 
values are not known in FIA sampling and estimation of forest populations. 
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Figure 6: An example of the sequential recursive nature of the Kalman filter. Start with figure 6A. 
The design-based panel estimate at time t=2 is denoted with the red box plot. The model-based 
estimate (denoted with the blue box plot) is an independent forecast for time t=2 based on the best 
estimate at time t=1 (see equations 25 and 26, figure 5). The Kalman filter is the composite 
estimate (denoted with the green box plot) of these design- and model-based estimates. Figure 6B 
illustrates the next sequential step at time t=3, which uses the same process in the Kalman filter as 
that at time t=2. The design-based estimate at time t=1 is no longer needed at time t=3 because its 
contribution to the t=3 estimate is completely captured in the Kalman filter estimate at time t=2. 
Figures 6C, 6D and 6E illustrate subsequent steps in this sequential process. Conditional 
lognormal error distributions on the right-hand side supplement the box plots use the same color 
convention as in figure 5, where each box plot portrays the 10

th
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For sake of simplicity and generality, the model chosen for this section makes 

few prior assumptions about the simulated dynamics of the populations. Assume a 
temporal model in the Kalman filter that predicts that the population parameter x 
is at a constant (static) steady-state over time, i.e., φt = 1 in equations 23 and 24. 
Assume the random prediction error over a single year (equation 22) has a 
relatively small but heteroscedastic standard deviation equal to 0.05 times the 
population parameter x at time t. In prose, the model assumes that the population 
is nearly at a constant steady-state that has minor random variations each year 
around a long-term constant value. The model for the standard deviation of this 
natural random variation is ±5 percent at time t relative to its condition at t−1 for 
all t. Under these assumptions, the model-based estimator at time t, which is a 
specific case of the general models in equations 23 and 24, is defined as: 
 

 
( ) ( )11ˆ1ˆ −−=− ttxttx

  [27] 

 
( ) ( ) ( )[ ] 222 1105.0111 −−×+−−=− ttxtttt xx σσ

  [28] 

This particular model in the Kalman filter (equations 27 and 28) approximately 
matches the model implied by the Moving Average, namely, estimates with the 
Moving Average are reliable for the current year if there is negligible change in 
the population over the time period being averaged. 
 

The first example employs a simulated population that is at a true steady-state, 
in which there is no change over time. A single realization of a simulated sample 
from this population is given in figure 7A, in which the design-based sampling 
errors (red box plots) have a coefficient of variation of 15 percent. Figure 7B 
illustrates a second independent realization, in which the design-based sampling 
errors have a coefficient of variation of 30 percent. The Kalman filter with the 
static steady-state model in equations 27 and 28 produces nearly identical 
estimates x(t) as the Moving Average. Both estimators reduce the standard 
deviation of their estimates (σ) by approximately 50 percent (i.e., 25 percent 
decrease in variance σ2) relative to the corresponding estimate from a single 
panel. The model in the Kalman filter ultimately reduces the estimation variance 
by 75 percent (1−β=1.00−0.25) in figure 7. The time-series of standardized 
residuals from the 2 estimators are virtually identical, with a distribution that is 
seemingly consistent with its expected mean of zero, unit variance, and a random 
temporal pattern. The standardized residuals vary between positive and negative, 
and they reveal no obvious non-random temporal trends. These results come as no 
surprise because the model in equations 27 and 28 agrees well with the true trend 
for this hypothetical population. 

 
In figure 7, as in following figures, the distribution of simulated random errors 

from the design-based estimator for each FIA panel at time t is denoted by the red 
box plots and trend lines. Trend lines for the Moving Average estimator are 
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identified in cyan, and those for the Kalman filter in green. Unlike figure 6, the 
box plots for error distributions from these 2 estimators are omitted to reduce 
clutter. Instead, their standard deviations are graphed separately. Likewise, the 
distributions of model prediction errors over each time step, which are portrayed 
with the blue box plots in figure 6, are also omitted to reduce clutter. “Saw tooth” 
patterns in estimated standard deviations for the Kalman filter are a consequence 
of model prediction errors (equation 24) that are propagated from time t−1 to t, 
immediately followed by the composite estimate (equation 21) at time t.  

 
Relative efficiency shown in figure 7 is defined as the estimated variance of 

the Kalman filter estimate divided by the computed variance of the design-based 
estimate from the single FIA panel measured at time t. Relative variance is used 
as shorthand for the 1−β term in equations 19 to 21 for the Kalman filter. β 
represents a value between 0 and 1 that weights the design-based estimate, while 
the weight placed on the model-based estimate is 1−β. Therefore, as 1−β nears 1, 
more weight is placed on the model estimate, which increases statistical efficiency 
attributable to the model. While there is no analogous interpretation for 1−β with 
the Moving Average (equation 5), it is graphed along with the 1−β for the Kalman 
filter as a basis for comparison. For both estimators, efficiency increases 
proportionally as 1−β approaches 1. The dashed line at 0.9 represents the relative 
efficiency expected if the sample size in the single annual panel at time t were 
10−times larger, as would be the case if a periodic survey were conducted each 
and every year at time t.  

 
Finally, the bottom panels in figure 7 graph the standardized residuals for the 

Kalman filter (equations 17 and 21). By definition, standardized residuals are 
expected to have a zero mean with unit variance and no temporal patterns if the 
model is accurate11. While there is no basis for this same expectation with 
residuals from the Moving Average (equation 4), they too are graphed along with 
the Kalman filter residuals for comparison. 

 
 

                                                 
11

  An inaccurate model can also produce residuals with the same expected distribution. Therefore, the 
distribution of residuals, by itself, is not a sufficient basis for a reliable test of model accuracy. 
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Figure 7: Comparison of Moving Average and Kalman filter estimates for a simulated population 
that does not change over time. The standard deviation of the estimation error is 15 percent of the 
population value in figure 7A (left-hand side), and 30 percent in figure 7B (right-hand side). Given 
these 3 realizations in the time-series of simulated sample estimates, the 2 estimators produce 
nearly identical results, at least in this case study of a static hypothetical population. The 
standardized residuals agree well with their expected values of zero mean and unit standard 
deviation, with no obvious trends over time in positive or negative residuals. 
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A second hypothetical example is given in figure 8. Unlike figure 7, this 

population is not static. Instead, there is an abrupt, perhaps catastrophic, 50 
percent decline in the population parameter at year t=6. In figure 7A, the 5-year 
Moving Average exhibits “lag bias” during years 6≤t≤9, but it recovers as an 
unbiased estimator when the 5-year period rolls beyond the abrupt change. 
However, the estimated standard deviations from the Moving Average remain 
deceptively low, which produces seemingly very precise estimates during years 
6≤t≤9, but, in reality, these same estimates are very inaccurate. On the other hand, 
the Kalman filter produces more accurate estimates during this anomalous time 
period, even though this particular implementation of the Kalman filter uses the 
static steady-state model. The Kalman filter estimate departs rapidly from the pre-
change status quo at year t=6 because the Kalman filter combines the model-
based estimate at year t=6 with the relatively precise estimate from the design-
unbiased panel estimate at year t=6. This response is reflected by the decrease in 
“relative efficiency” at year t=6 as less weight is placed on the model-based 
estimate. However, the standardized residuals for both estimators are suspiciously 
extreme at year t=6, with eye-popping values of approximately −5 standard 
deviation units. 
 

Figure 8B shows another estimation realization for the same simulation 
population. The difference being that the standardized residuals from the Kalman 
filter are arbitrarily (but consistently) constrained to values within ±2 standard 
deviations units (rmax=2 in equation 18). These Kalman filter estimates are 
remarkably accurate, especially considering that the static steady-state model is 
used in this particular implementation of the Kalman filter. This response to major 
deviations from the static model is associated with lesser weight being placed on 
the model-based estimates (i.e., reductions in relative efficiency from the model-
based estimator) and realistically larger values for the standard deviations. On the 
other hand, the Moving Average estimates are very inaccurate (i.e., “lag bias”) 
immediately after the abrupt change, with stunningly extreme residuals between 
−4.9 and −3.2 standard deviation units during years 6≤t≤8. Despite these obvious 
inaccuracies, the estimated standard deviations of the Moving Average estimates 
remain misleadingly low, which a well recognized known problem that is fully 
acknowledged by Patterson and Reams (2005).  
 

Even with the constraint on the maximum standardized residual, the time-
series of residuals from the Kalman filter in figure 8B exhibit an apparent 
temporal pattern, with consistently negative values between years 5≤t≤8. This 
provides weak evidence that an alternative to the static steady-state model 
warrants consideration, even though the Kalman filter produces reasonably 
accurate estimates with a misspecified model. The model-based Kalman filter can 
be robust even when the model is inaccurate, especially when independent design-
based panel estimates are closely linked to monitoring of residuals to detect 
deviations from their expected distribution. 
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Figure 8: Comparison of Moving Average and Kalman filter estimates simulated population that 
changes very abruptly at year t=6. The Moving Average estimates in these 2 realizations are 
obviously inaccurate at year t=6 even though their estimated precisions remain relatively high. In 
figure 8A, both estimates exhibit improbably negative standardized residuals, although the Kalman 
filter is slightly better. In figure 8B, the standardized residuals for the Kalman filter are constrained 
to remain within rmax=±2 standard deviation units (equation 18). This improves the fit of the Kalman 
filter estimates to the true population values in this realization, but suspicious temporal trends in the 
standardized residuals from the Kalman filter remain. 
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A more problematic example is given in figure 9. As in figure 8, the 

population has a strong and variable pattern of change over time, while the model 
used in this particular implementation of the Kalman filter assumes a static 
steady-state. In figure 9A, the Moving Average estimates are very inaccurate, 
while the Kalman filter estimates are even less accurate. The standardized 
residuals are implausibly positive during years 2≤t≤6, and curiously distributed in 
subsequent years. This is another example of very precise estimates that are very 
inaccurate. However, the results are much better in figure 9B, where same panel 
estimates are used, but constraints are imposed on the maximum standardized 
residuals for the Kalman filter (equation 18). While accuracy is not exceedingly 
good, the Kalman filter does produce more accurate estimates than the Moving 
Average, especially for years 8≤t≤10. Even so, the standardized residuals from the 
Kalman filter exhibit strong temporal patterns, with values consistently near +2 
standard deviation units during years 2≤t≤6, and consistently near −2 standard 
deviation units during years 7≤t≤9. This may be interpreted as evidence that the 
static steady-state model poorly represents the true temporal trends in the 
population. More plausible models based on independent information should be 
investigated. 

 
Finally, figure 10 provides yet another example in which the population is 

truly changing while the model within the Kalman filter assumes a static steady-
state population. The population attribute decreases 5 percent per year in figure 
10A, and 10 percent per year in figure 10B. The Moving Average and Kalman 
filter produce nearly identical estimates. Standardized residuals from the Kalman 
filter are constrained by equation 18, but they are not excessive, and they reveal 
no obvious temporal patterns. The realized time-series of estimates and 
standardized residuals for the exponentially decreasing populations in figure 10 
do not appear remarkably different than those for the static population in figure 7. 
The constraint on the Kalman filter residuals does decrease estimated efficiency 
relative to the Moving Average. This loss is a cost of mitigating the risk of model-
based bias while preserving the potential gains from model-based efficiency with 
the Kalman filter. Annual panel data and estimators might not offer sufficient 
accuracy to detect gradual changes in a population, although even slow monotonic 
trends should eventually become obvious after a long time-series of panel data. 
However, these results should not be over-interpreted because they are merely a 
few realizations of sampling and estimation for several hypothetical populations.  
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Figure 9: Both the Moving Average and the Kalman filter can appear to be very precise (i.e., low 
estimated standard deviation of prediction errors). However, their estimates can be very inaccurate 
(figure 9A). The Moving Average and the static steady-state model within the Kalman filter 
(equations 27 and 28) do not fit the time-series of FIA panel data very well. Constraining Kalman 
filter residuals to remain within rmax=±2 standard deviation units improves the fit in figure 9B, even 
though the static model remains unchanged. However, a suspicious temporal pattern remains in 
the residuals (all positive for 2≤t≤6 and all negative for 7≤t≤10). The large residuals might indicate 
model misspecification rather than rare chance events. An alternative is to use independent 
information to select a more realistic model without the steady-state assumption. 
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Figure 10: The Moving Average and Kalman filter can produce very similar estimates as in figure 
10A, where the population is decreasing 5 percent per year and in figure 10B, where the population 
is decreasing 10 percent per year. There are no strong clues among the residuals that the static 
steady-state model (equations 27 and 28) is inaccurate. Annual design-based FIA panel data might 
not always be insufficient to detect true changes in a population. Constraining the Kalman filter 
residuals to remain within rmax=±2 standard deviation units (equation 18) does not notably improve 
the fit, although it does increase the estimated standard deviation of the predictions and reduce the 
efficiency offered by the model within the Kalman filter. Mitigation of risks inherent with the model-
based Kalman filter (e.g., equation 18) can reduce statistical efficiency. 
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In “real world” applications, the true population trends are unknown. 
Therefore, any advantages of the Kalman filter, and the relative costs and benefits 
from constraints on its residuals, will generally be unknown. However, these 
examples suggest that the Kalman filter might have desirable characteristics 
compared to the Moving Average. In ill-behaved situations, it appears that the 
model-based Kalman filter estimator can be more accurate if residuals are 
faithfully monitored to reveal model failures. In well-behaved situations, it 
appears that both estimators can yield very similar results. These preliminary 
impressions have not been verified with rigorous consideration of the 
mathematical statistics of the expected values of these 2 estimators, which is the 
primary tool to make generalizations about efficiency and bias (e.g., Johnson and 
others 2003). 

 
 

Monitoring Lodgepole Pine Decline in Colorado 
 
For the last set of examples, we depart from the hypothetical and proceed to 

an actual time-series of annual FIA estimates. From 2002 to present, a severe 
epidemic of the mountain pine beetle (Dendroctonus ponderosae) has been 
devastating Colorado’s lodgepole pine forests at an alarming rate. Figure 11 
illustrates individual tree mortality in the foreground, and the extent of landscape-
scale mortality in the background. Figure 12 maps the spread of the epidemic 
between 2002 and 200712. 

 
The following example uses annual FIA panel estimates for Colorado to 

interpret the magnitude of lodgepole pine mortality caused by the mountain pine 
beetle outbreak. The annual FIA survey of Colorado uses 10 independent panels, 
each of which is a 1/10th sub-sample of all FIA field plots. The spatial distribution 
of sample plots within each panel is uniform over the entire state. One panel is 
measured in the field during each year. Each panel includes approximately 400 
forested FIA field plots (table 1).  

 
The annual FIA survey in Colorado began in 2002. There are 6 annual 

estimates currently available from the initial implementation of the annual FIA 
survey (see the first two columns in table 1). Each of the 6 design-based sample 
survey estimates is based on an independent sub-sample of FIA field plots (i.e., a 
different FIA panel). However, no sample plot occurs in more than 1 panel. 
Therefore, the data available for monitoring state-wide trends for any single 
indicator of lodgepole pine condition is limited to 6 observations, namely, 1 
statewide design-based panel estimate for each year.  

                                                 
12

  Due to the nature of aerial surveys, the data on the maps in figure 12  will only provide rough estimates of 
location, intensity and the resulting trend information for agents detectable from the aerial sketchmapping 
surveys.  The data presented on this map should only be used as a partial indicator of mountain pine 
beetle activity, and should be validated on the ground for actual location and casual agent.  Shaded areas 
show locations where tree mortality or defoliation were apparent from the air.  Intensity of damage is 
variable and not all trees in shaded areas are dead or defoliated. 
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Figure 11. Since 2002, the epidemic of mountain pine beetle infestations has caused catastrophic 
levels of lodgepole pine mortality throughout Colorado. Dead trees are shown in the foreground, 
and landscape-level mortality is apparent on the red slopes in the background. Image courteously 
of William Ciesla (U.S. Forest Service, retired). 

 
Three indicators related to recent episodic lodgepole pine mortality are 

considered here: number of live trees, number of mortality trees, and number of 
damaged trees (table 1). The sampling distributions are assumed to be skewed 
because negative values are infeasible, and the distributions are assumed to be 
lognormal.13 As will be seen shortly, none of the standardized residuals greatly 
exceeded ±2 standard deviations units; therefore, the rmax limit (equation 18) is 
not applied in this example. Unlike the hypothetical examples above, the true 
population trends are unknown in the these examples, but independent aerial 
sketchmapping (e.g., Johnson and Wittwer 2006) demonstrates that the extent of 
lodgepole pine mortality is extensive (figure 12). 

 
 

                                                 
13 A gamma distribution might also be appropriate, and future analyses should conduct goodness of fit tests to 

select the most representative distribution. 
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Figure 12. Epidemic spread of lodgepole pine tree mortality between 2002 and 2007 caused by 
mountain pine beetle in north-central Colorado

12
. The area of infestation is approximately bounded 

by Denver, Glenwood Springs and the border between the States of Colorado and Wyoming. Areas 
of heavy mortality are shaded red. These areas were identified through aerial sketchmapping (e.g., 
Johnson and Wittwer 2006), which is a remote sensing technique that is independent of the FIA 
annual sample data. National Forests are shaded in green, and areas omitted from each annual 
survey are shaded in gray. Cartographic products were provided by Jennifer Ross (U.S. Forest 
Service, Rocky Mountain Region, Forest Health Management Service Center, Lakewood, CO). 
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Table 1: Lodgepole pine statewide estimates for Colorado from 6 annual FIA panels. These are 
include all sufficient statistics necessary to apply the Moving Average and Kalman filter estimators 
in figure 13 to figure 15. 

 
Design-based 

estimator  
Model-based time-series estimators using annual FIA 
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Average number of live trees per forested acre
h
 

2002 26.30 4.50  26.30 4.50    26.30 4.50   362 

2003 27.47 4.25  26.89 3.10 0.13 0.47  26.94 3.15 0.45 0.18 387 

2004 36.48 6.17  30.08 2.91 1.14 0.78  29.18 2.99 0.77 1.35 409 

2005 28.79 4.91  29.76 2.51 -0.21 0.74  29.06 2.73 0.69 -0.06 407 

2006 20.13 3.48  27.83 2.12 -2.25 0.63  25.12 2.31 0.56 -1.92 391 

2007 20.49 4.14  26.67 2.09 -1.61 0.74  23.72 2.28 0.70 -0.93 411 

Average annual number of mortality trees per forested acre averaged over 5-year period
i,j
 

2002 0.10 0.06  0.10 0.06    0.10 0.06   362 

2003 0.09 0.03  0.10 0.03 -0.06 0.05  0.10 0.03 0.13 -0.56 387 

2004 0.16 0.07  0.12 0.03 0.67 0.78  0.15 0.05 0.54 0.06 409 

2005 0.13 0.05  0.12 0.03 0.26 0.73  0.16 0.04 0.31 -1.05 407 

2006 0.31 0.12  0.16 0.03 1.47 0.93  0.27 0.07 0.67 0.42 391 

2007 0.63 0.24  0.26 0.06 1.85 0.94  0.44 0.11 0.80 0.84 411 

Average number of live trees per forested acre damaged by insects
k,i,l

 

2002 0.20 0.10  0.20 0.10    0.20 0.10   362 

2003 0.67 0.41  0.44 0.21 0.63 0.74  0.35 0.14 0.88 0.86 387 

2004 1.17 0.57  0.68 0.23 0.98 0.83  0.61 0.21 0.86 1.07 409 

2005 0.46 0.19  0.63 0.18 -0.71 0.08  0.57 0.17 0.24 -1.16 407 

2006 1.88 0.71  0.88 0.20 1.71 0.92  1.04 0.31 0.81 1.31 391 

2007 2.11 0.90  1.26 0.27 1.14 0.91  1.69 0.44 0.76 0.54 411 

              
a
 These design-based FIA panel estimates (Scott and others 2005) are sole sufficient statistics used to apply 

the Moving Average and Kalman filter.  
b
 Moving Average defined in Equations 1 and 2. 

c
 Univariate Kalman filter defined in equations 19 to 24. 

d
 The standardized residual for the Moving Average (rMA) is defined in equation 4. 

e
 Relative efficiency (1-β) is defined for the Moving Average in equation 5. 

f 
The relative efficiency for the Kalman filter is defined with equation 21. 

g
 The standardized residual for the Kalman filter is defined in equation 17. 

h
 Kalman filter estimates for total live lodgepole pine tree use the static model with low prediction error 

(equations 27 and 28, graphed in figure 13). 
i
 Kalman filter estimates for lodgepole pine mortality and damage use exponentially increasing model with 

moderate prediction error (equations 25 and 26). 
j
 Graphed in figure 14C. 
k
 Graphed in figure 15C. 

l
 Tree damage estimates are the basis for examples in figure 5 (2002 only) and figure 6 (2002 to 2007). 
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Total Numbers of Live Trees  
 
The estimated total numbers of live lodgepole pine trees in Colorado for each 

year are graphed in figure 13 on page 35. The graph symbolism remains the same 
as that described on page 20. The initial analysis of this indicator with the Kalman 
filter used the static steady-state model in equations 27 and 28, which resembles a 
null hypothesis in which there is zero net change over time.  

 
Both the Moving Average (equations 1 and 2) and the Kalman filter produce 

very similar time-series estimates (figure 13, table 1). After the initial few years 
of relatively scant panel data, the variances of the annual estimates average about 
33 percent of those for the design-based estimates from each panel, meaning the 
time-series of Moving Average and Kalman filter estimates have about the same 
precision as a single sub-sample with 3-times the number of field plots. 

 
The downward trending design-based panel estimates in figure 13 are 

consistent with the mountain pine beetle epidemic in Colorado. However, the 
static steady-state model in the Kalman filter fits these data reasonably well. 
There is nothing obviously askew with the magnitude and temporal trends in the 
standardized residuals. However, it is very possible that an alternative model 
would better fit the annual panel estimates, although this possibility was not 
investigated here. 
 

 
Tree Mortality 

 
The annual panel estimates for 2006 and 2007 suggest an increasing mortality 

rate in figure 14 on page 36. However, the spread of the design-based estimation 
error for any single panel is somewhat broad relative to the apparent trend. Recall 
from page 20 that the red box plots in figure 14A mark the 10th, 25th, 50th, 75th and 
90th percentiles of the assumed lognormal distribution with the first 2 moments 
estimated from the panel data each year. There is a small but plausible chance that 
the panel estimates in 2006 and 2007 could have been observed even if mortality 
did not increase beyond the levels in 2002 to 2005. However, the standardized 
Kalman filter residuals in 2006 and 2007 are suspiciously large (standard 
deviation units of 1.55 and 2.08 respectively). Under the steady-state model 
assumed in this case for the Kalman filter, and assuming an expected normal 
distribution of residuals with zero mean and unit variance, the individual 
probabilities of each standardized residual are 6 percent and 2 percent 
respectively. However, had there been an a priori hypothesis that the panel 
estimates would have shown unusually high mortality rates in 2006 and 2007, the 
single-tailed joint probability of both events would have been  (0.06/2)X(0.02/2), 
or roughly 0.02 percent. That joint probability is unlikely given the steady-state 
model and other assumptions. 
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One alternative hypothesis retains the assumption that the population variable is at 
a static steady-state (i.e., φ=1 in equation 22), but assumes the annual prediction 
error is very high instead of very low, which would be characteristic of a dynamic 
population with annual perturbations that range widely around a constant level. 
Based on professional judgment, and independent of the observed annual panel 
estimates, assume a coefficient of variation of 1.00 for the random prediction 
errors over 1 year prediction interval. Recall that the previous model assumed a 
coefficient of variation of 0.05. The result is the exact same model for the 
population variable as equation 27 and figure 14A, but replacing the variance 
propagation model in equation 28 with:

 
 

( ) ( ) ( )[ ] 222 1100.1111 −−×+−−=− ttxtttt xx σσ

 
 [29] 

The outcome is given in figure 14B. The Kalman filter fits the 2006 and 2007 
panel estimates notably better than under the model used for figure 14A. They 
also fit better than the Moving Average estimates. Furthermore, the time-series of 
6 standardized residuals with the modified model does not reveal as strong of an 
apparently non-random temporal pattern. While the estimated precision from the 
Kalman filter decreases, the predictions are more plausible given the design-based 
panel estimates. Unfortunately, the precision with the Kalman filter is not much 
better than that with the annual FIA panel estimates before the mountain pine 
beetle epidemic. The model used by this particular Kalman filter contributes little 
to increased statistical efficiency, at during early stages of the beetle outbreak, and 
the gain is only marginal thereafter. Most of the information derives from the 
annual design-based panel estimates, and very little information is gained from 
model predictions based on past panels. 

 
A third hypothesis is that lodgepole pine mortality is increasing during the 

beetle epidemic. Based on independent observations, for example forest health 
reconnaissance with aerial sketchmapping (figure 12) and expert judgment, 
assume an exponentially increasing model for lodgepole pine mortality between 
2002 and 2007, where the mortality rate increases 50 percent (1.5 times) per year, 
with a coefficient of variation for the random prediction errors over 1-year of 0.25 
(i.e., a standard deviation equal to 25 percent the magnitude of the number of 
mortality trees). This is the same model as that defined in equations 25 and 26 and 
used to build figure 6, which provides a more detailed example of how the 
Kalman filter works. 

 
The results for the Kalman filter with the exponentially increasing model from 

equations 25 and 26 are given in figure 14C and table 1. The fit to the annual 
design-based panel estimates improves to a modest degree, and surpasses that 
from the Moving Average. The relative efficiency is intermediate between that 
from the unrealistic static model (figure 14A) and the uninformative static model 
(figure 14B). The 6 standardized residuals more resemble their expected 
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distribution, which has zero mean and unit variance, and their temporal pattern 
appears more random. However, strong inference regarding the distribution of 
standardized residuals is rarely possible with only 6 observations. 

 
The model coefficients used in this example are based on expert judgment, 

and they are not empirically fit to FIA panel data. This process of model 
parameterization preserves the scientific process in hypotheses formulation and 
avoids “data mining.” With small datasets, there is a risk of misinterpreting a 
pattern that is caused, in reality, by random processes. For example, sampling 
error with a small number of annual panel estimates can cause apparent temporal 
trends in a population that is truly at a static steady-state (e.g., figure 7A and the 
first 5 years in figure 8). Data mining has a more valid role in the analysis of 
much larger datasets, where this risk can be less. 

 
This example helps illustrate that no single model or estimator is necessarily 

“correct.” However, there can be a difference when trying to interpret the trends. 
The Moving Average fits the data (figure 14A), but how does that help answer 
important analysis questions regarding tree mortality? The static model fits the 
data when the uncertainty of model predictions is assumed high (figure 14B), but 
how does that offer any more insights than the Moving Average? The 
exponentially increasing model also fits the data (figure 14C and table 1), perhaps 
somewhat better than the alternative hypotheses. However, this final hypothesis 
suggests that tree mortality measured at time t is about 1.5 times that measured at 
time t-1, which is an increase of about 50 percent per year. This provides a more 
meaningful interpretation of the trend data than the alternative models 
(hypotheses) considered here. If a model is not a meaningful representation of the 
scientific hypothesis of interest, then “everything is compromised” (Anderson 
2008). 

 
 

Tree Damage 
 
FIA field crews assess damage and insect or pathogen activity that seriously 

affects live trees with diameter at breast height >5.0 inches (U.S. Forest Service 
2007b). Based on judgment of the field crew, such damage will likely prevent the 
tree from living to maturity, or surviving 10 more years, if already mature; or the 
damage will likely reduce the quality of the tree’s products (e.g., potentially 
resulting from lightning strike, excessive lean, tree rot). Whenever feasible, field 
crews subdivide insect damage into more specific agents, including mountain pine 
beetles, bark beetles, defoliators, terminal weevils, and Ips engraver beetles. 

 

USDA Forest Service Proceedings – RMRS-P-56 33.



 35 

 
Figure 13: Estimated total number of lodgepole pine trees in Colorado from 2002 to 2007 using 
independent annual FIA panels. These are actual design-based FIA estimates (Scott and others 
2005), and the true population trend is unknown. Both the Moving Average and the Kalman filter 
yield very similar annual estimates. There is no strong indication from the standardized residuals 
that the static steady-state model in the Kalman filter (equations 27 and 28) is inaccurate. If there is 
a true change in the number of lodgepole pine trees in Colorado between 2002 and 2007, then the 
observed data and the chosen estimators are not powerful enough to detect the change. This figure 
is discussed on page 32. 
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Figure 14: Estimated lodgepole pine tree mortality in Colorado. The Kalman filter with the static 
steady-state model (equations 27 and 28) does not accurately fit the annual FIA panel estimates in 
2006 and 2007 (figure 14A). The fit in figure 14B improves assuming a static model with a much 
larger random forecasting error (equations 27 and 29). A similar fit in figure 14C is achieved 
assuming an exponential rate of increase with a moderate degree of forecasting error (equations 
25 and 26). The exponentially increasing model has somewhat more plausible residuals. More 
importantly, it provides the most useful interpretation of the trend in the panel data, which is 
consistent with the epidemic of pine beetle mortality that is obvious across Colorado. This figure is 
discussed on page 32. 
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Figure 15: Estimated tree damage in Colorado. Results are very similar to those for tree mortality 
in figure 14, and the same models are used in figure 15. A multivariate Kalman filter could be 
formulated that simultaneously predicts total number of trees, tree mortality and tree damage. A 
multivariate population dynamics model in the Kalman filter might account for the expected 
biological processes during a pine beetle epidemic. This might improve the accuracy of the time-
series estimates and the power to differentiate among alternative models within the Kalman filter. 
This figure is discussed on page 34. 
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The estimated time-series of mountain pine beetles damage to live lodgepole 

pine trees in Colorado is given in figure 15 on the previous page. The results are 
qualitatively very similar to those for tree mortality. The precise static model 
(equations 27 and 28) poorly fits the annual FIA panel estimates in figure 15A, 
while the imprecise static model (equations 27 and 29) fits about as well as the 
Moving Average (figure 15B), but the model does not markedly help improve 
statistical efficiency. On the other hand, the exponentially increasing model in 
equations 25 and 26 fits slightly better (figure 15C and table 1). More 
importantly, interpretation of the exponentially increasing model in terms of the 
beetle outbreak is more useful for analyses than the Moving Average and Kalman 
filter with an imprecise steady-state model. 
 

 
Discussion 

 
The exposition and examples given above are primarily intended to introduce 

the reader to the Kalman filter and its relevance to FIA strategic goals and 
objectives for annual monitoring (U.S. Forest Service 2007a). We hope this helps 
every reader understand the Kalman filter, at least in an intuitive sense, while 
providing sufficient, yet simple, mathematical details to serve as an introduction 
to statisticians. The remaining few sections touch upon more technical issues that 
warrant future study by FIA analysts and statisticians. The purpose is to suggest 
possible approaches to improve statistical accuracy, analyses of residuals, 
quantitative comparisons of alternative hypotheses and statistical estimators, and 
implementation within FIA information management systems. 

 
 

Analyzing Trends with Annual FIA Data  
 
Three immediate questions arise when temporal trends are interpreted with 

annual FIA panel data: 
 

1. From a simple graphical display, is there an observable trend in population 
parameters over time? 

2. If so, does the trend make sense? For example, increased mortality would 
be expected as the result of a known catastrophic disturbance event, such 
as bark beetle outbreaks, severe weather, etc. 

3. Is the trend significant relative to the uncertainty in the population 
estimates? 

 
For lodgepole pine mortality in Colorado caused by mountain pine beetle, the 

answer seems to be “yes” for all three questions. The third question has been 
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addressed in previous studies14 with analysis of variance and regression. A simple 
statistical regression with annual panel data verifies there is a significant upward 
trend in mortality and damage between 2002 and 2007. Analysis of variance 
identified two combinations of panels that were significantly different from each 
other. But can the Kalman filter add value beyond the more traditional 
approaches?  

 
The analyses with the Kalman filter can estimate the temporal trend in tree 

mortality and damage. Although the Moving Average and regression can 
accomplish this same task, the results from the Kalman filter may be more 
interpretable. Furthermore, the Kalman filter can fit the annual panel estimates 
more accurately. This addresses the first and second questions. 

 
The Kalman filter weights each annual FIA panel estimates with a ratio of 

variances, which intuitively makes sense and is easy to understand. The Kalman 
filter can accommodate quantitative models that are based on theory, and 
alternative models can compare alternative theories and their relative fit to 
empirical data. This also addresses the second question. 

 
The Kalman filter can compare alternative models with the static steady state 

model, which resembles a null hypothesis in analysis of variance and regression 
analyses. This addresses the third question. However, more meaningful 
hypotheses, in the form of annual transition models (e.g., φt in equation 22), may 
be captured within the Kalman filter. In this context, ranking of alternative 
hypotheses is discussed in the next section. 

 
 

Selecting Among Alternative Hypotheses and Estimators  
 
The analyses illustrated in figures 7 to 10 and 13 to 15 employ two different 

time-series estimators: the Moving Average and the Kalman filter. In addition, the 
Kalman filter employs intrinsically different temporal models for a population 
parameter (e.g., static steady state v. exponentially increasing state).  

 
If the Moving Average is used as an unbiased estimator of the current 

population parameter, then a static or steady-state model is likely implied, in 
which there is no net change in the population over time. If the Moving Average 
is assumed to be the minimum variance estimator, then this likely implies 
temporal homoscadasticity of sampling and prediction errors.  

 
The Kalman filter model used in some of the above analyses shares the same 

steady-state model with the Moving Average estimator, although the Kalman 
filter utilizes additional assumptions about the magnitude of time-invariant model 
prediction errors. Steady-state equations 27 and 28, which are the basis for figure 
7 to 13, 14A and 15A, assume a temporally indifferent distribution of random 

                                                 
14

 M.T. Thompson, in review, Western Journal of Applied Forestry. 
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prediction errors with a relatively small standard deviation of annual prediction 
error (i.e., 5 percent coefficient of variation). Steady-state equations 27 and 29, 
which are used for figure 14B and figure 15B, assume much more variable annual 
prediction errors (i.e., 100 percent coefficient of variation). The models used in 
the Kalman filter analyses for figure 14C and figure 15C, which are defined with 
equations 25 and 26, hypothesize an exponentially increasing rate of 50 percent 
per year with modest variability in random annual prediction errors (i.e., 25 
percent coefficient of variation). 

 
Which Kalman filter model best fits the annual FIA panel estimates? Is the 

Kalman filter a more precise estimator than the Moving Average? These 
questions may be conditionally answered if simplifying assumptions and models 
are correct. Unfortunately, assumptions and models are virtually always incorrect 
to varying and unknown degrees. Figure 8A and figure 9A are obvious examples, 
where it is assumed that prediction error is low because the model is very 
accurate. Apparently, this assumption is exceedingly overoptimistic because the 
standardized residuals are suspiciously large15, with values ranging between -6 
and -8 standard deviation units during certain time periods.  

 
The ad hoc rule in equation 18 increases the estimate of model prediction 

error variance based on the analysis of residuals. This rule assures that the 
residual difference between the model-based prediction and the design-based 
panel estimate never exceeds 2 standard deviation units, which makes this rule an 
integral (non-linear) part of the model for prediction errors within the Kalman 
filter. This rule improves the agreement between the Kalman filter estimates and 
the true population trends in the hypothetical examples, which is illustrated in 
figure 8B and figure 9B. But the true trend is never known in actual applications, 
and this rule was not invoked in the example of annual FIA data for lodgepole 
pine mortality in Colorado (figures 13 to 15). 

 
Again, how do we select the best hypothesis and estimator among a set of 

alternatives? Anderson (2008) provides a particularly useful view of comparisons 
among competing hypothesis and models. This view might help guide analyses of 
residuals from alternative estimators and models. The following section uses 
heuristics to briefly explore this train of thought. However, these comments are 
intended merely to invoke further investigation, and not as a prescription for data 
analysis. 

 
Entropy and Information-Theoretics: Van Deusen (1999) suggests that 

alterative hypotheses regarding polynomial temporal trends within the mixed 
estimator may be compared with the Akaike information criterion (AIC) of 
Akaike (1974) or the Schwarz information criterion (SIC) of Schwarz (1978)16. 
Burnham and Anderson (2001) review a closely related method from information-
theoretics that ranks the fit of alternative models to representative observations, 

                                                 
15

  Deceivingly implausible residuals are possible when the model is accurate, at least in rare cases. 
16

  Van Deusen (1999) recommends the Schwarz information criterion in his setting. 
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where the models represent alternative hypotheses and the fit is measured by 
observable residuals.  

 
As an embellishment to the likelihood perspective, Burnham and Anderson 

(2001) describe an AIC method based on residual statistics that are assumed to be 
normally distributed. This method might be applicable to residuals from the 
Moving Average (equation 3) and the Kalman filter (equations 15 to 17). If it is 
applicable, then this method would allow ranking among models (i.e., hypotheses) 
based on the Moving Average, the steady-state Kalman filter with low prediction 
error (equations 27 and 28), the steady-state Kalman filter with high prediction 
error (equations 27 and 29), and the exponentially increasing Kalman filter with 
moderate prediction error (equations 25 and 26).  

 
The relevant AIC statistic is given by Burnham and Anderson (2001, 2004) as 
 

( )

parameters model estimated ofnumber  

residuals ofnumber  

point at  data and modelbetween  difference residual 

ˆ where

2ˆlog  AIC

=

=

=

=

+=

∑

K

n

i

n

Kn

i

i

ε

ε
σ

σ

ε

ε

 

  [30] 

Now consider the afore mentioned heuristics. Let the residuals from the 
Moving Average estimator be defined as rMA in equation 4, and residuals from the 
Kalman filter as r(t2) in equation 15. If each residual were divided by its estimated 
standard deviation from the design-based panel estimator, then perhaps one might 
approximate equation 30 with17: 
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Multivariate vector residuals may be similarly normalized through matrix 

multiplication by the inverse Cholesky square root of the covariance matrix for 
estimation errors from the design-based annual panel estimates. Under the 

                                                 
17

  Residuals are not available at the time of initial conditions (t=1). 
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assumption of negligible model bias and adequate estimation precision, residuals 
so normalized may be treated as orthogonal with unit variance, and summed 
together under the assumption that they where all independent and identically 
distributed. Simultaneous analyses of orthogonal multivariate residuals would 
provide more observations and stronger evidence when comparing alternative 
hypotheses and univariate estimators.  

 
Burnham and Anderson (2001) state that the “AIC (equation 30) is not a test 

in any sense: no single hypothesis (model) is made to be the ‘null’, there is no 

arbitrary α level, and there is no arbitrary notion of ‘significance’. Instead, there 

are concepts of evidence and a ‘best’ inference, given the data and the set of a 
priori models representing the scientific hypotheses of interest. … Akaike's 

general approach allows the best model in the set to be identified, but also allows 

the rest of the models to be easily ranked.”  
 
Burnham and Anderson’s ranking method only considers hypotheses that are 

identified explicitly during the analysis. There is no guarantee that some other 
hypothesis, which was not considered during the analysis, is a better fit to the 
observed data. For example, the static steady state model in equations 23 and 24 
for total number of live lodgepole pine trees provides a reasonable fit the annual 
FIA panel estimates (figure 13). This model is much like a null hypothesis. 
However, there is independent evidence from aerial sketchmapping that strongly 
suggests that the number of live trees should be decreasing (figure 12), not static. 
An alternative model that predicts a decline in the number of live trees might fit 
the panel data better that the static model, but the model that predicts a decline 
was not included in this particular analysis. This is an example of an undesirable 
omission. 

 
The examples of indictors of lodgepole pine demographics demonstrate the 

potential inadequacy of tests for a null hypothesis of no change. The null 
hypothesis may fail to be rejected based on the available data, even when some 
other hypothesis may have better fit the same data. Therefore, any meaningful 
analysis should include a set of reasonable a priori alternative hypotheses that can 
be ranked relative to their agreement with independent observations. However, 
inclusion of a model that mimics a null hypothesis, such as the static steady state 
model in equations 23 and 24, can provide a relative “baseline” when comparing 
the differences among AIC statistics for alternative hypotheses. For example, 
compare 3 models (hypotheses) that predict a percent per year decline in live trees 
of 25, 50 and 75 percent. The AIC statistics in this hypothetical example are given 
in table 2. Is the difference in their AIC statistics relatively large or relatively 
small? Comparisons of these AIC statistics relative to the AIC statistic for the 
static model (i.e., no annual change) can help answer this question.  

 
In the absence of a model that assumes a static steady state, the AIC statistics 

in table 2 seem to strongly highlight the model with a 50 percent annual rate of 
change because the relative AIC for that model is high relative to the other 
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alternatives (25 and 75 percent per year change). However, the differences among 
dynamic models (25, 50 and 75 percent per year) are less striking when the static 
steady state model (0 percent annual change) is used as the baseline18 The latter 
comparisons suggest that there is a decline in number of live trees, as would be 
expected, but there is not strong evidence for estimating the actual rate of change 
(25, 50 or 75 percent per year). 

 
 

Table 2 Hypothetical ranking of alternative hypotheses for annual rate of change with the AIC 
statistic (equations 30 and 31).  

No static model  
Static model 
included

18
 

Change 
rate per 

year 
AIC Difference   AIC Difference 

0%      10,000 0 

25% 10,200 0  10,200 200 

50% 10,250 50  10,250 250 

75% 10,225 25  10,225 225 
 

 
 

Multivariate Kalman Filters 
 
Multivariate versions of the Kalman filter can improve the accuracy and 

reliability of time-series estimates, and accommodate more realistic models of 
ecosystem processes. Some of these issues are briefly covered in this section. 
Though the complexity of a multivariate approach can be initially intimidating, 
the basic concepts behind complex Kalman filters are just as simple as the 
univariate version considered above.  

 
Complex Tree- and Stand-level Models: Tree damage is a leading indicator 

of tree mortality, and tree mortality is negatively correlated with the number of 
live trees. This suggests a multi-response model in the Kalman filter that 
simultaneously considers the demographics of the statewide lodgepole pine tree 
population, where the average number of trees per forested acre at time t equals 
the tree density at t−1, plus the average number of ingrowth trees and minus the 
average numbers of new mortality and removal trees per acre between t−1 and t.  

 
More accurate and detailed model predictions may be available from 

deterministic growth and yield models. In principle, any deterministic population 
or ecosystem model can be linked to the Kalman filter to improve estimates and 
the analysis of broad-scale trends (e.g., Van Den Brakel and Visser 1996, 
Williams and others 2005, and Tian and Xie 2008). Multivariate predictions from 
a complex nonlinear model can be made for each FIA plot or tally tree, using the 
most recent field measurements as initial conditions. Examples include the Forest 
Vegetation Simulator (Crookston and Dixon 2005, Miles 2008) and models fit to 
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 Recall that the static model for live trees fit the annual FIA panel data reasonably well in figure 13 
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FIA plot data by Lessard and others (2001) for updating annual forest surveys. 
Imputation can be viewed as an empirical multivariate prediction model, which 
has already been applied in the context of annual FIA surveys (Van Deusen 1997, 
Reams and McCollum 2000, McRoberts 2001, Gartner and Reams 2002, and 
Eskelson and others 2008). However, if alternative hypotheses will be compared 
during analysis, then deterministic models, such as the Forest Vegetation 
Simulator, should be used rather than purely empirical methods, such as 
imputation. Deterministic models can capture assumptions about future 
population dynamics, whereas purely empirical methods use past observations to 
predict future conditions. 

 
Imputations or predictions from the model for each tree or FIA sample plot 

can be used to estimate the predicted state vector at the population level. This is 
accomplished with design-based sample survey methods, exactly like those used 
with actual field measurements. Those multivariate sample survey estimates are 
then assimilated into the Kalman filter through a multivariate transition matrix, 
which is analogous to the univariate φt in equations 23 and 24. One challenge 
would be estimation of the covariance matrix that describe model predictions 
error, analogous to the scalar variance σw

2(t) in equation 24 plus any quantified 
estimation error associated with the transition matrix (Ni and Zhang 2008).  

 
Such models could be formulated to compare alternative hypotheses that are 

related to forest health. The Forest Vegetation Simulator can model effects of 
disturbance agents, including insects, pathogens, and fire (Crookston and Dixon 
2005). Hypotheses may be based on climate change scenarios, the consequences 
of which are modeled with the Forest Vegetation Simulator (e.g., Malmstrom and 
Raffa 2000; Crookston and others 2008). Hypotheses may be formulated with a 
demographic model that predicts the spatial dynamics of a pest population and the 
associated damage to trees (e.g., Logan and others 2003). Ranking the degree of 
agreement between model predictions and direct observations, such as annual FIA 
panel estimates, is briefly covered on page 39. 

 
 
Standardization of Multivariate Vector Residuals: If all assumptions 

incorporated into a Kalman filter are approximately correct, then the standardized 
residuals should be approximately distributed with a zero mean, unit variance, and 
mutual independence over time (Maybeck 1979). If there is a convincing 
deviation of the standardized residuals from their expected distributions, then 
there is evidence of model misspecification. It can not be overemphasized that 
close scrutiny of residuals is essential to mitigate the risk from a model-based 
approach, such as the Kalman filter, while preserving the gains in efficiency that 
are possible with the model-based approach.  

 
In a large and complex governmental statistical system like FIA, this level of 

scrutiny would have to match that already conducted to detect other sorts of non-
sampling errors (e.g., Pollard and others 2006). FIA database software could be 
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augmented with a hypothesis test that the set of standardized residuals from recent 
FIA panels and annual estimates fits a normal distribution with mean zero and 
unit variance; the Kolmogorov-Smirnov test is an example. The database could 
include a test that the time-series of recent residuals from the composite estimator 
in the Kalman filter fulfill the expectation of mutual independence over time; the 
non-parametric Wald-Wolfowitz runs test is an example. 

 
If population-level estimates from the deterministic models demonstrate a 

good fit to the time-series of FIA panel estimates, and analyses of residuals reveal 
no suspicious deviations from expectations, then the accuracy of the statistical 
estimates with the Kalman filter will likely improve. If the fit is mediocre, at least 
the Kalman filter is robust against modest levels of model misspecification. 
Furthermore, any lack of fit, assuming it is actually discovered during an analysis, 
provides the opportunity to learn more about the system and improve the models. 
Monitoring and analysis of vector residuals from the Kalman filter could assist in 
this learning process.  

 
 
Remotely Sensed Data: Ancillary remotely sensed data can improve the 

estimated area of forest, including separation of estimates into forest area with 
and without severe insect damage (e.g., Wulder and others 2005 2006a 2006b, 
Goodwin 2008). The Kalman filter can combine multi-response process models 
for land use, land cover and forest condition, with the time-series of annual 
design-based multivariate panel data, and with multivariate ancillary data from 
remotely sensed censuses and sample surveys (Czaplewski and others 1988, 
Czaplewski 1990, 1995, 1999, 2001). This approach does not require stratification 
of individual FIA panels based on remotely sensed data and geopolitical 
boundaries, such as counties (Czaplewski 2001). Therefore, the Kalman filter can 
avoid problems inherent with detailed stratification and when the sample size is 
small, which is a problem particularly acute with the Moving Average method 
(Patterson and Reams 2005).  

 
In a sense, the composite estimator in the Kalman filter improves precision by 

“borrowing” relevant information from the past. Likewise, the Kalman filter can 
improve precision by “borrowing” ancillary information from remotely sensed 
sources. Therefore, the Kalman filter is potentially well-suited for complex 
monitoring systems that include multiple time-series of multivariate remotely 
sensed data and field data. An example is the Nevada Photo-based Inventory Pilot 
(NPIP), which is one attempt to implement the national FIA strategic plan (U.S. 
Forest Service 2007a). 

 
 
Improving Accuracy of Time-Series Estimates: The mountain pine beetle 

example in figure 14C and figure 15C used “expert opinion” to quantify model 
parameters. However, the “extended” Kalman filter (Jazwinski 1970) can 
simultaneously estimate population attributes and model parameters. Rather than 
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a priori expert judgment used to model lodgepole pine damage and mortality as a 
50 percent increase per year (figure 14 and figure 15), a potentially more accurate 
rate parameter could be estimated from the annual panel data, in addition to the 
estimated mean number of trees per acre. The model form (e.g., exponential rate 
of change) would need to be identified from independent external sources, but the 
parameter values (e.g., 50 percent per year increase) for the model could be fit 
empirically without impairing valid inference.  

 
Since forest populations are integrated systems, there can be strong isotropic 

temporal correlations among variables at proximate points in time, both past and 
future. More advanced versions of the Kalman filter can act as linear smoothers 
over multiple time increments (Jazwinski 1970). It is possible that current panel 
data can improve composite estimates for past conditions in addition to current 
conditions. This kind of extra effort seems worthwhile when addressing important 
analysis questions with a relatively short time-series of annual cross-sectional 
panel data. After all, the cost is over $500,000 for each annual datum point in 
Colorado. 

 
Multivariate versions of the Kalman filter employ matrix algebra and inverse 

covariance matrices. Unfortunately, covariance matrices can be ill-conditioned or 
even singular, especially when the dimensions of the vector estimates are large. 
These pragmatic circumstances frequently cause numerical instability in large 
applications of the Kalman filter. In many cases, the numerical results from the 
Kalman filter will be dominated more by numerical round-off errors than random 
sampling and prediction errors. This vulnerability can produce disappointing, 
inaccurate or even infeasible results (e.g., negative variance estimates) with the 
Kalman filter. Aberrant numerics may not be obvious from the vector estimate 
alone, which is especially dangerous. Fortunately, variations of the Kalman filter 
are numerically robust, even with singular covariance matrices (Maybeck 1979). 
These numerical solutions employ various types of matrix square roots, matrix 
decompositions or matrix factorizations when combining vector model 
predictions with design-based vector panel estimates. Bierman (1977) is a 
particularly useful source for effective solutions to numerical hazards with large, 
ill-conditioned covariance matrices. While these solutions add complexity during 
implementation of the Kalman filter, they should not be allowed to distract from 
the fundamental and intuitive simplicity of the Kalman filter. If there were 
numerically perfect computers, then the complexity needed to solve numerical 
problems would not be necessary. 

 
 

Comparison of FIA Annual and Periodic Surveys for Monitoring 
 

During the 1960s to 1990s, the FIA periodic design produced relatively 
precise estimates for a “snapshot” in time, but these same estimates often lost 
much of their value well before the FIA Inventory Unit was re-measured during 
the following periodic cycle. Users tended to lose confidence in FIA periodic data 
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about 5 years after the field work was completed. Since periodic surveys were 
repeat only once every 10 to 20 years (AFPA 1998), FIA period surveys had 
limited value for half or more of their life cycle. How does the current annual FIA 
design compare with the previous periodic design for monitoring applications? 

 
An annual FIA survey in the Interior West essentially uses the same field plots 

as the periodic survey. However, those plots are systematically sub-sampled into 
10 mutually exclusive FIA panels in the western USA (Bechtold and Patterson 
2005). Any single panel includes 1/10th of all FIA field plots. The precision, as 
measured by the standard deviation of the sample mean, from a single panel 
equals (1/√10)=0.32 of the precision from a full periodic survey if both were 
measured during the exact same time. Therefore, confidence intervals from a 
single panel are about (0.32-1)=3.1 times broader than those from a periodic 
survey conducted in the same year. While there is sufficient funding to measure a 
single panel in 1 year, there are not enough resources to measure the ten-fold 
increase in plots every year that would be required for a periodic survey. The 
annual design sacrifices precision to gain timeliness, although precision remains 
important in monitoring changes over time. 

 
In order to assess FIA monitoring programs with the current annual design 

relative to the prior periodic design, hypothetically assume that a periodic FIA 
survey of Colorado was completed in 2002, with approximately 4,000 forested 
field plots measured. Therefore, the variance of this hypothetical periodic survey 
in 2002 would be about 1/10th that of the actual 2002 annual survey. To complete 
this scenario, visualize annual FIA surveys, each of which measures about 400 
forested field plots during a single year, between 2002 and 2007.  

 
Assume that the statewide total number of lodgepole pine trees remains at an 

approximate steady-state between 2002 and 2007, as described by the model in 
equations 27 and 28 and used with the Kalman filter for figure 13. Under this 
model, Figure 16 shows the expected standard deviation of the hypothetical 
periodic survey in 2002 as an estimate for each year between 2003 and 2007. 
Figure 16 shows that after 3 years the data quality, as measured by the standard 
deviation of random estimation errors (σ), of the hypothetical 2002 periodic 
survey for live trees is approximately the same as the Kalman filter estimate that 
uses the same model with the much smaller annual surveys from 2002 to 2005. In 
the absence of new periodic data, and given the stated assumptions, the precision 
of the Kalman filter estimates for live trees with annual panel data surpasses that 
of the hypothetical 2002 periodic survey in years 2006 and beyond. 
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.  

Figure 16: The standard deviation of annual estimates, each with a sample size of n/10, compared 
to that expected from a hypothetical periodic survey in 2002, with a sample size of n. A full periodic 
survey is more accurate (i.e., smaller σ) immediately after all field data are measured, 
hypothetically in 2002. However, unobserved changes in the population can quickly accumulate 
after the periodic survey is completed. After 1 to 3 years, the estimated precision of the annual 
estimates, which are combined with the Kalman filter, equals or surpasses that which would be 
expected from the corresponding periodic FIA survey, which has 10-times the sample size of a 
single annual panel. The temporal propagation of error in the design-based periodic survey 
estimates assumes the same model used for the corresponding annual estimates with the Kalman 
filter with annual panel data. The model for live lodgepole pine trees assumes a steady-state (figure 
13, equations 27 and 28). The models for lodgepole pine tree mortality and damage assumes an 
exponential increase (figure 14 and figure 15 equations 25 and 26, figure 5). Only the first 5 years 
after the hypothetical periodic survey are illustrated here. Thereafter, the precision of a periodic 
survey further deteriorates relative to an annual FIA survey. Likewise, the value of estimates from 
the periodic survey declines, at least until the next periodic survey. Historically, periodic surveys 
were conducted once every 10 to 20 years. 

 
 
As another example, assume that statewide lodgepole pine mortality from 

mountain pine beetles increases exponentially 50 percent per year between 2002 
and 2007. This model is expressed in equations 25 and 26, which is the same 
model used with the Kalman filter for figure 14C. Assuming this model is 
approximately true, Figure 16 shows the expected standard deviation of the 
hypothetical 2002 periodic survey as an estimate of tree mortality for years 2003 
through 2007. An example of this same expectation is shown in more detail in 
figure 5. Almost immediately, the data quality from the annual FIA panels and the 
Kalman filter exceeds that of the hypothetical periodic survey in 2002, at least 
under the very dynamic circumstances caused by the mountain pine beetle 
epidemic in Colorado.   

 
Assuming the same exponential rate of increase in insect damage to live trees, 

the annual FIA panels with the Kalman filter estimator produces more precise 
estimates than the hypothetical 2002 periodic survey after only 3 years (figure 
16).  This hypothetical example demonstrates the potential advantage of the 
annual FIA design, when coupled with appropriate time-series estimators, for 
monitoring important changes in a broadly distributed forest population. 
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Conclusions 
 

The daunting migration by FIA from periodic to annual surveys has improved 
the timeliness of FIA forest inventory statistics. These have very been useful in 
strategic analyses of the current state of forests at the national, state and multi-
county scales. These results are routinely produced with simple and familiar 
statistical estimators, namely, the Moving Average or the closely related 
Temporally Indifferent method. However, a successful monitoring program 
requires more than production of updated inventory reports (Moffat and others 
2008). The Kalman filter not only can improve annual inventory updates when the 
forest population is undergoing rapid change, the Kalman filter can also improve 
the ability to monitor, quantify and interpret broad changes in the nation’s forests. 
This is a high priority the FIA strategic plan (U.S. Forest Service 2007a). 
Hopefully, the descriptions and examples in our paper reveal the benefits and 
intuitive simplicity of Kalman filter. 

 
The Kalman filter offers other advantages over the Moving Average and 

Temporally Indifferent methods. The model-based Kalman filter estimator can be 
more accurate for populations that are rapidly changing, especially if residuals are 
faithfully monitored to reveal model failures. In populations that are static or 
change very slowly, it appears that both the Moving Average and Kalman filter 
estimators yield very similar estimates of current forest inventories.  

 
A properly implemented Kalman filter, which includes analyses of residuals, 

combines the statistical efficiency of a model-based estimator with the reliability 
of a design-based estimator. Therefore, the Kalman filter is less vulnerable to 
temporal “lag bias” (Patterson and Reams 2005) when population dynamics are in 
a relatively rapid state of flux. This is precisely the situation in which accurate 
monitoring is most important. This also means that the Kalman filter can be less 
risky than other model-based estimators when there is a chance that the model is 
inaccurate. 

 
Unlike the Moving Average and Temporally Indifferent methods, alternative 

implementations of the Kalman filter can incorporate predictions from alternative 
deterministic models, which, in turn, are the manifestations of alternative sets of 
hypotheses. The Akaike information criterion (AIC), which quantifies the 
agreement between Kalman filter estimates and purely design-based FIA panel 
estimates, might be used to rank the fit of alternative models to FIA panel data. 
Therefore, the analyst can quantitatively evaluate alternative a priori hypotheses 
that are intended to explain temporal trends in forest populations. For example, 
does a model that includes the consequences of climate change better fit the 
annual FIA design-based panel estimates than a model that assumes no such 
affects? 

 
The Kalman filter can incorporate deterministic models that consider the 

population demographics of growth, mortality, regeneration, stand succession, 

USDA Forest Service Proceedings – RMRS-P-56 33.



 50 

and changes in land use. The Kalman filter can assimilate time-series of diverse 
remotely sensed data, without the burdensome constraints of post-stratification 
(Czaplewski 2001). These capabilities can improve precision of inventory and 
monitoring estimates relative to the Moving Average and Temporally Indifferent 
methods. 

 
The analyst is initially interested in 3 basic questions: Is there an observable trend in 

population parameters over time? Does the trend make sense? Is the trend significant 
relative to the uncertainty in the population estimates? The Kalman filter, much like the 
Moving Average and Temporally Indifferent methods, can address the first 
question, at least through the qualitative judgment of the analyst and the temporal 
series of estimates (see figures 7 through 13).  

 
The time series of estimates from the Moving Average or Temporally 

Indifferent methods, in concert with the analyst’s professional judgment, can 
address the second question: Does the trend make sense? The Kalman filter is capable 
of the same. In addition, the Kalman filter, which can objectively rank alternative 
deterministic models, can progress beyond qualitative judgment, and provide 
quantitative evidence to answer the second question.  

 
Quantitative evidence is needed to answer the third question: Is the trend 

significant relative to the uncertainty in the population estimates? The Kalman filter can 
include a static model in which the population is assumed to be at a steady state, where 
there the net change over time is zero. The relative fit of this static model compared to 
alternative dynamic models can be used to make inferences about the third question. The 
Moving Average and Temporally Indifferent methods do not provide comparable 
information. Therefore, the Kalman filter improves upon the Moving Average and 
Temporally Indifferent methods when analyzing temporal trends with FIA annual 
panel data. 

 
In principle, the Kalman filter offers the opportunity to improve FIA 

monitoring and analyses. However, this opportunity has not been rigorously 
tested. Although the fundamental concepts in the Kalman filter are intuitively 
simple, implementation of the Kalman filter is more complex than current 
methods used in FIA information management systems. Complexity inescapably 
incurs risk.  

 
One of the Guiding Principles of the FIA strategic plan (U.S. Forest Service 

2007a) is to “take the lead in inventorying and monitoring changes in the nation’s 

forests, forest resources, and forested ecosystems.” This guidance suggests that 
additional statistical research by FIA should be directed towards time-series 
methods that monitor changes in the nation’s forests using annual FIA data. The 
Kalman filter is one such method. 
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