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Abstract: The consumers of data derived from extensive forest inventories often seek annual estimates at 

a finer spatial scale than that which the inventory was designed to provide. This paper discusses a few 

model-based and model-assisted estimators to consider for county level attributes that can be applied 

when the sample would otherwise be inadequate for producing low-variance estimates in the smaller 

counties. I present and demonstrate simple spatial and/or temporal estimators that draw strength from 

neighboring counties and/or years in order to increase confidence in the county level annual estimates.  

The spatial estimators are restricted to those that do not require knowledge of exact plot locations in 

order to enable their use with privacy protected, publicly available data.  A series of simulations is used 

to compare and contrast the performance of these estimators relative to position in the time series of 

interest under various variance prescriptions. Although none of the estimators is shown to be superior in 

terms of minimum mean squared error (MSE) overall, a few general conclusions are drawn.  The first is 

that estimators that draw strength through consecutive measurements of the same set of field plots show a 

significant reduction in MSE under a wider variety of circumstances than those that draw strength from 

plots in neighboring counties. The second conclusion is that of the estimators that rely on a temporal 

model, a simple, centralized weight-adjusted moving average (with weights specific to time-series 

position) often was the most robust. 
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Introduction 

 

The consumers of publicly available data from extensive forest inventories, such as the one 

conducted by the USDA Forest Service’s Forest Inventory and Analysis (FIA) program, often 

express a desire for annual estimates at a finer spatial scale than that which the inventory was 

designed to provide.  For example, many users want estimates at the county level even though 

the sample is inadequate for producing low-variance sample-based estimates of many variables 

in the smaller counties. The effort can be complicated when the relative sample plot locations are 

masked in order to protect landowner privacy, such as they have been with FIA data.  FIA 

developed a “fuzzing and swapping” procedure to prevent disclosure of any information that 

would link individual landowners to specific inventory plot information.  During “fuzzing,” the 

reported geographic locations of the plots are randomly perturbed by up to 805 m.  (Lister et al., 

2005).  During “swapping,” plot data are exchanged by location between plots of similar 

characteristics.  These fuzzed-and-swapped locations are then published in the Forest Inventory 

and Analysis Database (FIADB).  Because FIA cannot release the exact “swapping” rules, the 

procedure effectively reduces the reliability of the spatial locations of the plots to a county scale.  

I present and demonstrate simple spatial and/or temporal estimators that draw strength through 

                                                 
1
 Mathematical Statistician, USDA Forest Service, Southern Research Station, 200 WT Weaver Boulevard, 

Asheville, NC, 28804-3454. E-mail: FRoesch@fs.fed.us. 

USDA Forest Service Proceedings – RMRS-P-56 34.

In: McWilliams, Will; Moisen, Gretchen; Czaplewski, Ray, comps. 2009. 2008 Forest Inventory and Analysis (FIA) 
Symposium; October 21-23, 2008: Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. Department of  
Agriculture, Forest Service, Rocky Mountain Research Station. 1 CD. 



2 

 

design-based models that relate to neighboring counties and/or years in order to increase 

confidence in the county level estimates arising from these privacy protected, publicly available 

data. 

The paper progresses through a series of three simulations; each successive simulation delves 

deeper into areas suggested by the previous simulation.  In Simulation 1, given the initial annual 

county estimates of a set of variables of interest (e.g. basal area per acre, cubic volume per acre, 

etc.), I start with a few simple models that could draw estimation strength from the same variable 

measured in neighboring counties and/or years, as well as a model relating the variable of 

interest to a common concomitant variable measured at the same time and place, in an attempt to 

increase confidence in the resulting county level estimates.  In Simulation 2, I narrow the focus 

to circumstances affecting the relative merits of drawing strength spatially and drawing strength 

temporally, while at the same time introducing a model-unbiased centralized moving average 

into the comparison.  In Simulation 3, I modify the moving average estimator in an attempt to 

improve estimates at the extremes of the time series and introduce a mixed estimator (e.g. see 

Van Deusen, 1999 or Roesch, 2007) to frame the spatial and temporal models.  Conclusions are 

then drawn on the comparative results of the three simulations. 

 

Initial Models 

Let i=1, . . . , I index the I counties. 

Let t=1, . . . , T index T discrete time points. 

Let ,i tY  denote the response variable for county i at time t. Let ( )1, , , . . . , t t I tY Y ′=Y denote the 

column vector of the response variable for all counties at time t.  Further, let 0, , 1i tX ≡ , and let 

, ,k i tX  denote the kth independent variable at county i and time t, for =1, . . ., k K .  Then let 

( ), 0, , , , , . . . , i t i t K i tX X=X denote the row vector of independent variables for county i at time t.  

Concatenate the ,i tX into a matrix tX  of I rows, one for each county at time t.    

Naive Model: 

 

First, I define the naive estimator of the county means based on concomitant variables measured 

in the county and year of interest.  The estimator is naive because it does not draw strength from 

nearby counties or time periods.  I use the single concomitant variable of basal area per acre, 

leading to a simple model for the county means at time t: 

ˆˆ ˆ
t t t t= +Y X β e . 

where ˆ tX  is a special case of tX  with two columns by I rows in which K=1, and 1, , ,i t i tX BA= , 

i.e. ( ), 0, , ,,i t i t i tX BA=X , ˆ tβ  is a 2-row vector of estimated parameters and ˆ te   is an I-row vector of  

( )20,N σ  error terms. 

Spatial Model: 
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For a given time t, assume the county response variable follows a Markov random field under the 

following spatial neighborhood structure: 
(1)

1

 the set of all county indices other than county  such that the

           county centroid is within  km of the centroid of county .

iC i

d i

=
 

(2)

1

2

 the set of all county indices such that the centroid of the county is

            greater than  km from the centroid of county ,  and less than 

            or equal to  km from the centroid 

iC

d i

d

=

of county .i

 

(3)

2

3

 the set of all county indices such that the centroid of the county is

            greater than  km from the centroid of county ,  and less than

            or equal to  km from the centroid o

iC

d i

d

=

f county .i

 

Define 
,m

iC t
Y  as the mean of all ,i tY  in which i is found in 

( )m
iC . 

Let
( ) ( ) ( ){ }1 2 3
, ,l

i i i iC C C C= .  Given this structure, assume that all spatial support for county i is 

represented in set l

iC ,  

A simple temporally specific spatial model is then: 

t t t t= +Y X β e
⌣⌣ ⌣

,          [1] 

where tX
⌣
 is a special case of tX  with 4 columns by I rows and ( )(1) (2) (3), 0, , , , ,

, , ,
i i i

i t i t C t C t C t
X Y Y Y=X , 

tβ
⌣

 is a 4-row vector of estimated parameters and te
⌣
  is an I-row vector of  ( )20,N σ  error terms. 

 

Temporal Model: 

 

For { }/ 2 1 / 2,  . . . ,S T S+ −Y Y , 1S T+ ≤ , assume the conditional distribution of tY  given other time 

periods depends on the nearest S time points. Denote this assumption as: 

( ) ( ): 1,  . . . , : ( / 2),  . . . , 1, 1,  . . . , ( / 2)S

S

t r t t
p r T p t t S t t t S= = = − − + +Y Y Y Y , for 

( ) ( )/ 2 1 ,  . . . , / 2 .t S T S= + −  

A simple temporal model would then be: 

t t t t= +Y X β eɶɶ ɶ ; t=1+S/2, . . . , T-S/2, S even.      [2] 

where tXɶ  is a special case of tX  with S columns by I rows and  

( ), , / 2 , 1 , 1 , / 2,  . . . , , ,  . . . ,i t i t S i t i t i t SY Y Y Y− − + +=Xɶ , tβ
ɶ  is a S-row vector of estimated parameters and teɶ   

is an I-row vector of  ( )20,N σ  error terms. 

 

Spatial-Temporal Model: 

 

Simply combining the spatial [1] and temporal models [2] above leads to a spatial-temporal 

model for t=1+S/2, . . . ,T-S/2: 
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[ ]~ t

t t t t t

t

 
 = + +  

 

β
Y X X e e

β

⌣
⌣ ⌣

ɶ ɶ
ɶ

; t=1+S/2,...,T-S/2, S even.    [3] 

The full model with concomitant variables: 

 

[ ]~ ~

t

t t t t t t t t

t

 
  = + + +  
 
 

β

Y X X X β e e e

β

⌣

⌣ ⌣ɶɶ ɺɺ ɶ ɺɺ

ɺɺ

; t=1+S/2,...,T-S/2, S even.   [4] 

where tXɺɺ  is a special case of tX  with 1 column and I rows in which , ,i t i tBA=X , tβ
ɺɺ  is a scalar (1x1 

vector) estimated parameter and teɺɺ   is an I-row vector of  ( )20,N σ  error terms. 

 

Simulations 

 

A series of simulation demonstrations is given using a simulated population covering a 23-year 

span, based on FIADB data from five states in the southeastern United States (Georgia, 

Alabama, Florida, North Carolina, and South Carolina.)  Note that no general conclusions should 

be drawn for this particular five state area over these 23 years. This is simply an artificial 

population that is intended to approximate a real population.  Specific details about the 

construction of the population from these data may be obtained from the author. 

 

Simulation 1 – Initial Comparison of models on county data: 

 

  In this simulation, I acknowledge the data are a sample and use bootstrap simulations (e.g. see 

Efron and Tibshirani, 1998) in an exploratory comparison of the estimators. For completeness, I 

will augment the above models when necessary to form an estimator for all years in a particular 

period of interest.  For all of the temporally dependent models [2] ,[3], and [4], I will set S=4, 

and therefore the nearest points to t would be  t-2,t-1,t+1, t+2. This means that we would not 

have estimates for years 1, 2, T-1, and T. For all three models for years 2 and T-1, I’ll set S=2. 

For model [3] and [4] for the first and final years, I will set S=0, virtually eliminating the 

temporal part of the model. In model [2] for the first and last year, I use the naive estimator.  

 

In the spatial model [1], I used six sets of values for the spatial neighborhood structure with d1, 

d2, and d3 defined as: 

 

Set d1 d2 d3 

1 40 60 70 

2 60 90 105 

3 80 120 140 

4 100 150 170 

5 120 180 210 

6 140 210 245 
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I took 1000 bootstrap samples of the counties for the estimation of all five models. All of the 

estimators showed very small bootstrap estimates of bias, as expected.  I used the mean of the 

squared error of 1000 bootstrap samples as an approximation to MSE.  In the interest of brevity,  

I give the results for only three of the sets, in figures S1_1 through S1_3. The general conclusion 

from this simulation is that, for cubic foot volume (a very general and well-observed variable), 

the spatial model is not very helpful at the county level.  In most instances, the estimated MSEs 

were slightly higher and never much lower than the naive model.  However, the simple temporal 

model, as well as the spatial-temporal and full models, shows a significant reduction in estimated 

MSE over the naive model and the spatial model. 

 
Figure S1_1: The mean squared errors (ft

3
/acre)

2
 calculated for each of the models from 1000 bootstrap samples. 

This graph gives the results for the spatial triple {d1=40, d2=60, d3=70} in all models that include a 
spatial component. 
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Figure S1_2: The mean squared errors (ft

3
/acre)

2
 calculated for each of the models from 1000 bootstrap samples. 

This graph gives the results for the spatial triple {d1=80, d2=120, d3=140} in all models that include a 
spatial component. 
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Figure S1_3: The mean squared errors (ft

3
/acre)

2
 calculated for each of the models from 1000 bootstrap samples. 

This graph gives the results for the spatial triple {d1=140, d2=210, d3=245} in all models that include a 
spatial component. 

 

 

 

Simulation 2: 

 

The results for Simulation 1 were demonstrative rather than revealing; cubic volume per acre at 

the county level should be estimated at a very low variance through this sample design. Users of 

FIA data often want county level estimates for variables of a much higher variance than total 

cubic foot volume per acre, such as county level estimates of cubic foot volume of bottomland 

hardwoods within 200 feet of a stream center. Therefore, I devised a second simulation that 

should span a realistic range of potential sampling errors for commonly desired estimates. To do 

this, I treat the county values of cubic foot volume per acre as a seed population observed over 

the 23-year span.  I then simulate variables of increasing total sampling error by drawing a 

random standard normal deviate (Ndev) for each value at each year for 1000 iterations, and then 

scaling the random deviates by 6 factors (nfac= 0.1, 0.2, 0.4, 0.6, 1.0, and 2.0). Therefore, in 
order to simulate variables of increasing variance, the sample value for county i at time t for each 

iteration ( )itxɶ was generated from the population value ( )itx  as ( )* *it it dev it facx x N x n= +ɶ .  

Resulting negative values of itxɶ  were set to zero, thereby truncating the error distribution.  For 

this simulation, I calculated the sample mean ( )itxɶ , the estimate from the spatial model, the 

estimate from the temporal model, the estimate from the spatial-temporal model, and a 5-year 
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centralized moving average.  Neither the naive model nor the full model was included in this 

simulation, both to increase clarity and because the concomitant variable did not provide enough 

benefit in the first simulation to justify the increase in complexity for this simulation. For the 

spatial model, I used the third of the six sets of {d1, d2, d3} triples for Simulation 1 above, i.e., 

{d1=80, d2=120, d3=140}.  

The centralized moving average is assumed to give an estimate for the variable of interest 

during the year at the center of the interval. Therefore, under this assumption, a 5-year period 

cannot be used for the first two and final two years. This could lead one to alternative methods of 

estimating the variable for the first two and final two years.  In Simulation 2, I use the 5-year 

moving average for years 3 to 21, a 3-year average for years 2 and 22 and the annual mean for 

years 1 and 23.  In Simulation 3, I will describe and use an alternative approach. For a thorough 

understanding of the moving average and its potential interpretations, I refer the reader to Roesch 

et al. (2003).   

 

Results of Simulation 2:  Because all of these estimators have little or no theoretical bias, the 

simulation results are given solely in terms of MSE in Figures S2_1, S2_2, and S2_3, in which 

nfac equals  0.2, 0.4, and 2.0, respectively. Results for the other values of nfac are omitted, for the 

sake of brevity. The graphs show that an advantage of the spatial model, which uses the strength 

from adjacent counties, increases with increasing simulated sampling error. In Figure S2_1, with 

little sampling error, the temporal estimators (including the moving average)  show MSEs that 

are slightly better than the simple county mean, and much better than the spatial model.  In 

Figure S2_2, the temporal estimators show MSEs that are much lower than the simple county 

mean and the spatial model.  The value of gathering strength from adjacent counties steadily 

increases as the sampling error increases and we progress through the graphs to S2_3.  I also note 

that the simple centralized moving average performs quite well except at the extremes of the 

temporal series, where fewer years are contributing to the estimator.  I will show the results of a 

simple adjustment to the moving average estimator for estimates of the extreme temporal values 

in Simulation 3. 
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Figure S2_1:  The annual Mean Squared Errors (ft

3
/acre)

2
 for each of the models defined in the   

 text, achieved after a 1000-iteration simulation with nfac equal to 0.2. 
 
 

 
Figure S2_2:  The annual Mean Squared Errors (ft

3
/acre)

2
 for each of the models defined in the   

 text, achieved after a 1000-iteration simulation with nfac equal to 0.4. 
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Figure S2_3:  The annual Mean Squared Errors (ft

3
/acre)

2
 for each of the models defined in the   

 text, achieved after a 1000-iteration simulation with nfac equal to 2.0. 

 

Simulation 3: 

 

Recall that in Simulation 2, I addressed the desire of users of FIA data for county level estimates 

of variables that might have a high variance, due, in part, to the infrequency of their occurrence.  

Of course, even an estimate of total cubic volume can become a high variance variable in rarely 

occurring condition classes.  I devised a third simulation to bring this problem further into 

context and show some potential mitigation approaches. That simulation is similar to Simulation 

2 except that estimates were made within subsets of the population corresponding to six 

commonly recognized condition classes: publicly owned softwoods (CCA), publicly owned 

hardwoods (CCB), privately owned hardwoods (CCC), privately owned naturally regenerated 

southern yellow pine (CCD), privately owned plantations of southern yellow pine (CCE), and 

privately owned softwoods (CCF).  Table S3_1 shows the number of plot locations within the 

population’s 438 counties that were classified within each of the six condition classes during 

each year. 

Note that these condition classes are not mutually exclusive; rather they are intended to 

represent varying levels of difficulty in estimation due to their frequency within this particular 

population.  Because the population was derived directly from observed data, I assume that I 

have captured a fair representation of the spatial aggregation of these condition classes. Again, 

the intention is to span a realistic range of potential sampling errors by treating the county values 

of cubic foot volume per acre as a seed population observed over the 23-year span.  As in 

Simulation 2, I drew a random standard normal deviate (Ndev) for each value at each year for 

1000 iterations, and then scaled the deviates by 2 of the 6 factors used previously (nfac= 0.2, and 

2.0).  Again, the sample value for county i at time t for each iteration ( )itxɶ was generated from the 

population value ( )itx  as: ( )* *it it dev it facx x N x n= +ɶ . Resulting negative values of itxɶ  were set to 

zero, thereby truncating the error distribution.   
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Note that setting the sampling simulation error as high as (nfac= 2.0) may seem onerous; 
however, it represents a very real phenomenon in broad-scale inventories, resulting from the 

occasional observation of a very high value in conjunction with an increased rarity of 

occurrence. This effect is represented here by a normal distribution truncated on the left at zero. 

 

 
Table S3_1:  The number of plot locations within the population’s  

                      438 counties classified by each of the 6 condition 
                      classes during each year defined in Simulation 3. 

 
Year  CCA      CCB     CCC     CCD      CCE      CCF 

   1     1159     1183    12549     4994     4132      9184  
   2     1201     1237    12832     5013     4300      9371  
   3     1196     1378    13244     5034     4291      9413  
   4     1197     1312    13028     4955     4323      9361  
   5     1267     1402    13423     4905     4815      9805  
   6     1356     1569    13667     4790     5185    10060 
   7     1368     1586    13551     4544     5529    10158 
   8     1369     1706    13923     4381     5522      9990  
   9     1316     1786    13539     3978     5504      9574 
 10     1290     1664    12514     3700     5290      9056  
 11     1324     1690    12628     3730     5473      9271  
 12     1250     1614    11915     3501     5291      8852   
 13     1068     1487    11235     3304     4845      8209   
 14       897     1399    10646     3098     4255      7413   
 15       825     1266      9935     2780     3966      6806    
 16       790     1254      9641     2658     3607      6327   
 17       773     1251      8774     2425     3414      5902   
 18       705     1129      7897     2205     3186      5452 
 19       632     1048      7299     2002     2935      5002 
 20       576     1000      6740     1872     2752      4697  
 21       549      855       6263     1693     2567      4323  
 22       460      666       5129     1461     2184      3697 
 23       339      518       3781     1105     1637      2783 

 

 

For each iteration, I calculated the sample mean, a weighted 5-year moving average, a temporal 

mixed estimator under two constraint models, and a spatial-temporal mixed estimator under the 

same two constraint models. A brief description of each estimator follows. 

 

Weighted 5-year Moving Average: The weighted 5-year moving average (wMA5) is the 

same as the centralized 5-year moving average for years 3 to T-2, that is, the weights are equal to 

1 for each of the five years in those estimates. It differs in that rather than reducing the number of 

years contributing to the estimate for the initial two and final two annual estimates in the series, 

the annual contributions to the initial and final 5-year averages are weighted somewhat 

arbitrarily in an attempt to compensate for the relative imbalance in these estimates as I apply 

them to “off center” years.  That is indexing wMA5 as wMA5t for year t: 
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1 2 3 4 5

1 2 3 4 5

-2 -1 1 2

-4 -3 -2 -1

(3.0 1.2 0.4 0.2 0.2 ) / 5.0 for 1,

(1.4 1.6 1.0 0.6 0.4 ) / 5.0 for 2,

5 (  ) / 5.0 for 3 : - 2,

(0.4 0.6  1.0  1.6 1.4 ) / 5.0 for 

t t t t t t

T T T T T

x x x x x t

x x x x x t

wMA x x x x x t T

x x x x x t T

+ +

+ + + + =

+ + + + =

= + + + + =

+ + + + =

-4 -3 -2 -1

-1, and

(0.2 0.2 0.4 1.2 3.0 ) / 5.0. for .T T T T Tx x x x x t T








+ + + + =

 

 

Mixed Estimation: The mixed estimator can also be used to draw strength from temporally 

adjacent measurements for annual forest inventory designs. The reader unfamiliar with the use of 

mixed estimation for annual inventories is referred to Van Deusen (1996, 1999, and 2000) and 

Roesch (2007).  A simple interpretation of the mixed estimator in this context is that one is 

mixing the strength of one’s belief in a set of constraints on a population with the strength of 

one’s belief in a model for the relationship of a set of observations to the population.  Here I use 

mixed estimation to estimate the trends in county means. I apply the mixed estimator to both the 

temporally specific county sample means and to (temporally specific) spatial “moving-window” 

county estimates.  In both cases, assume an observation model for time t: 

 ,t t tx eβ= +           

where tx  is the county mean of interest, tβ  is an unknown random coefficient, and te is a zero-

mean error term with variance 2

t tnσ . This model is combined with a model describing 

constraints on the temporally ordered vector of the tβ s (β ).  Here, for t=5,6,7,…,T,   I use the 

constrained transition model: 

 1 2 3 43 4 3t t t t t tvβ β β β β− − − −− + − + = . 

where vt is an error term for time t.  Collect the ordered tv s into a zero-mean vector v, which has 

variance pΩ . Also, form the temporally ordered vectors X , from the tx s, and e  from the te s.  

Assume v to be a partition of e.  Our observation model then becomes:  

X = β + e   

Represent the covariance matrix of X  with Σ .  The constraints can be expressed as: 

Rβ = v  

where R is the matrix of constraints for the transition model with (T-4) rows by T columns, in this 

case. 

Combining the models results in the solution set for a mixed estimator: 

 
     

= +     
     

X I e
β

0 R v
. 

   

Applying the constraints with strictness moderated by the parameter p, the mixed estimator is: 
1

1 1 1 1ˆ p
−− − − −′ = + β Σ R Ω R Σ X  (Van Deusen 1999). 

Van Deusen (1999) shows how to optimally select the parameter p and a model using maximum 

likelihood and information criteria.  For this simulation, those selections would be difficult to 

track as well as computer-intensive, so I use a single model and assumed values of p. The 

temporal model used here is a trivial extension of the series of constraint matrices found in 

equations 9 through 11 in Van Deusen (1999).   
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As noted above, rather than estimate the parameter p, I initially set it equal to 0.1, which 

corresponds to a high degree of confidence in the transition model.  Also, the practice of 

adjusting the degree of strictness in constraints by adjusting p applies the same level of constraint 

strictness to the entire vector of estimates, at a level chosen by the data.  Suppose rather that one 

is relatively satisfied with the model for most of the annual estimates but has some 

foreknowledge of problematic occurrences in the population at specific points in time.  In that 

case, it might be better to eliminate constraint rows that span the affected times, rather than re-

optimize over both affected and unaffected time periods.  I incorporate an example here and dub 

it the ME-reduced approach.  In this population, the constraint matrix for the full model 

consisted of 19 rows.  Examination of the temporal trends in the population revealed constraints 

that appeared to be inconsistent with those trends.  This is equivalent to knowing for instance 

that certain changes in harvesting pressure had occurred in the past, and those changes are likely 

to have affected the volume trend in particular ways that differ from the temporal model.  For the 

ME-reduced run, I kept rows 1-5, 10, 14, and 19 to achieve the reduced constraint matrix Rred : 

 

 

  1  -3   4  -3   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

  0   1  -3   4  -3   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

  0   0   1  

=
red

R

-3   4  -3   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

  0   0   0   1  -3   4  -3   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

  0   0   0   0   1  -3   4  -3   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0

  0   0   0   0   0   0   0   0   0   1  -3   4  -3   1   0   0   0   0   0   0   0   0   0

  0   0   0   0   0   0   0   0   0   0   0   0   0   1  -3   4  -3   1   0   0   0   0   0

  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1  -3   4  -3   1

 
 
 
 
 
 
 
 
 
 
 
  

. 

Naturally, the corresponding rows and columns of Ω  must also be eliminated in order to arrive 

at 
red

Ω . 

 

A Temporal Mixed Estimator Model:  A Temporal Mixed Estimator Model results when the 

temporally specific county means comprise the X matrix in the above development. Both the 

fully constrained model and the model using the reduced constraint set were evaluated at each 

iteration. 

 

A Simple Spatial Temporal Mixed Estimator Model:  For this simulation, the spatial model 
was simplified, relative to previous simulations, to a weighted moving-window model.  That is, 

the temporally specific estimate for county i is first calculated as the mean of all plots in all 

counties with county centroids less than or equal to a distance of 140 km from the centroid of 

county i. These means are then the initial estimates, i.e., those comprising the X matrix, for the 

Mixed Estimator described above, resulting in a simple spatial-temporal mixed estimator.  As for 

the temporal model, both the fully constrained model and the model using the reduced constraint 

set were evaluated at each iteration. 
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Results of Simulation 3: The area-weighted mean and MSE, respectively, for total cubic foot 

volume per acre for all land and for each of the condition classes, are shown in S3_1 and S3_2, 

with nfac set equal to 0.2, and in S3_3 and S3_4 with nfac set equal to 2.0. 

The somewhat arbitrary weighting used for the wMA appears to have worked well, allowing 

that estimator to compare favorably to the ME in all four figures for this simulation. 

The most striking result of the output in the first two figures is the relationship between the 

behaviors of the full-constraint versus the reduced-constraint temporal models.  In Figure S3_1, 

note that the fully constrained temporal model is displaying more bias than the other estimators, 

although the subsequent figure will show that the fully constrained model had very low MSEs, 

relative to the other ME models. 

In figure S3_2, the wMA estimator is usually lowest or tied for lowest in MSE, across the 

condition classes, as one might suspect, given the low simulation variance and the more 

homogenous populations than the full population in the upper right graph of the figure. In that 

upper right graph, representing the entire land base, the fully constrained temporal mixed 

estimator more often outperforms the wMA and other ME models. The ME temporal models are 

generally outperforming the spatial temporal models under these circumstances in terms of MSE.  

Additionally, the fully constrained models are usually lower in MSE than their reduced 

constraint counterparts. Therefore, reducing the constraints did serve to encourage less bias in 

the estimates at the cost of increased variance. This effect is present but less striking in the 

spatial-temporal models. 

The last two figures (S3_3 and S3_4) plot the area-weighted means and MSEs, respectively, 

for total cubic foot volume per acre for all land and for each of the condition classes, with nfac set 

equal to 2.0.  The realized sample means are shown to be greater than the population means in 

Figure S3_3.  The fully constrained temporal model appears to be the least biased of the 

estimators, however that appears to be an artifact of the stiffness of the constraints. Figure S3_4 

gives the MSEs and shows the advantage of the estimators that reach out to adjacent areas and 

temporal periods to obtain improved estimates, with the temporal models again appearing to 

contribute the most to the reduction in MSE.
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Figure S3_1:  The annual area weighted Mean(ft
3
/acre) for each of the estimators defined for simulation 3 in the text, achieved after a 1000 iteration  

                      simulation with nfac equal to 0.2. 
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Figure S3_2:  The annual area weighted Mean squared Error (ft
3
/acre)

2
 for each of the estimators defined for simulation 3 in the text, achieved 

after a 1000 iteration simulation with nfac equal to 0.2. 
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Figure S3_3:  The annual area weighted Mean (ft
3
/acre) for each of the estimators defined for  simulation 3 in the text, achieved after a 1000  

                        iteration simulation with nfac equal to 2.0. 
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Figure S3_4:  The annual area weighted Mean squared Error (ft
3
/acre)

2
 for each of the estimators defined for simulation 3 in the text, achieved after 

a 1000 iteration simulation with nfac equal to 2.0. 
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Conclusions 

 

Initially, this study was intentionally general, starting from aggregated county estimates as 

opposed to individual plot estimates to avoid obfuscating the question being investigated: Under 

what circumstances does it become advantageous to draw strength by gathering information from 

areas larger than a county or periods longer than a year to make county level annual estimates?  

These simulations have shown quite clearly that except for variables that enjoy an extremely low 

sampling variance, such as general cubic foot volume per acre, estimates of county level 

variables can benefit greatly from “outside” information. For the variables with a sampling error 

in the middle of the range investigated, the most benefit seems to come from adjacent years, 

however, the spatial model using adjacent county data increased in favor relative to the moving 

average and the other temporal models with increasing sampling error. Additionally, this study 

did not uncover any cost to using the models that incorporate both space and time, that is the 

spatial-temporal model and the full model were always low in MSE. 

There have been quite a few papers on approaches to incorporating temporal trend for FIA 

data under the current design, most notably those utilizing a mixed estimator (i.e. Van Deusen 

1996, Van Deusen 1999, Van Deusen 2000, Roesch 1999, Roesch 2006, and Roesch 2007).  This 

work lends further credence to those approaches while also suggesting that they should be 

expanded to include a spatial component for estimating variables with an especially egregious 

variance structure.  The advantage of the mixed estimator over the centralized moving average is 

its formal treatment of improvement in estimates of the initial and final values in the time series.  

The wMA also gives improved estimates for these endpoint values.  The latter estimator is quite 

simple, but less formal than the ME.  Although one could try to optimize the weights in the 

wMA, the result would be similar to a specific case of the ME.  The methods investigated were 

restricted to those that could be applied to the privacy protected, publicly available data in 

FIADB and the spatial model did show an advantage when being applied in high variance 

circumstances.  It is possible, however, that spatial models developed without this restriction 

would perform better than the coarse-scale models used here. 
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