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Abstract
Numerous government surveys of natural resources use Post-Stratifi cation to 
improve statistical effi ciency, where strata are defi ned by full-coverage, remotely 
sensed data and geopolitical boundaries. Recursive Restriction Estimation, which 
may be considered a special case of the static Kalman fi lter, is an attractive 
alternative. It decomposes a complex estimation problem into simple components 
that are sequentially processed. Compared to Post-Stratifi cation, it more effi ciently 
uses remotely sensed data, both continuous and categorical. It is less constrained 
by sample size, which is especially important with panel surveys. It produces a 
conditionally unbiased covariance matrix for the vector estimate of population totals 
without approximations or ad hoc assumptions. This facilitates variance estimates 
for non-linear pseudo-estimators. A robust sequential algorithm controls numerical 
errors inherent with Recursive Restriction Estimator, which can otherwise cause 
unreliable results. Analysis of residuals can detect other anomalies.
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Introduction
Strategic monitoring of forest resources requires reliable estimates of 

the area of land use and land cover categories over large geographic re-
gions. Accurate coverage statistics depend on accurate classifi cation of 
land conditions, which typically requires expensive fi eld measurements. 
These are only feasible for a probability sample of fi eld plots. One ex-
ample is the Forest Inventory and Analysis (FIA) program conducted by 
the U.S. Department of Agriculture, Forest Service1. It is the national for-
est inventory of the United States. FIA monitors the status, condition, and 
trends in forests over the entire nation (Smith 2002). Another example is 
the 2001 Land Use/Crop Area frame sample Survey (LUCAS-2001)2 of 
the EU15 nations3 of the European Union (Gallego and Delincé 2010). 
The objectives of LUCAS include consistent monitoring of the status and 
change in land use and land cover, including forests.

Statistical reliability of survey statistics, such as those produced by FIA 
and LUCAS, is constrained by the sample size of primary sampling units 
(PSUs). However, auxiliary remotely sensed data can improve statistical 
reliability with relatively little incremental cost. For example, FIA uses 
multispectral optical data from spaceborne sensors to classify forest con-
ditions across the United States (Nelson and others 2007). LUCAS-2001 
uses the CORINE land cover map produced by the “Co-ordination of 
Information on the Environment” program of the European Environment 
Agency (Kleeschulte and Büttner 2006). CORINE is based on photo-
interpretation of optical data from spaceborne sensors to classify small, 
homogeneous polygons into detailed categories of land cover and agricul-
tural use.

Each dataset of remotely sensed pixels is a full-coverage census4 of the 
entire statistical population, and, therefore, complete enumeration of these 
pixel data contains zero sampling error. However, reliability of remotely 
sensed data is constrained by misclassifi cation errors, which are caused 
by the inability of inexpensive remotely sensed data to agree exactly with 
expensive fi eld measurements. These misclassifi cation errors usually yield 
biased areal estimates (Bauer and others 1978, Houston and Hall 1984, 
Hay 1988, Czaplewski 1992, Gallego 2004, Gallego and Bamps 2008). 
My goal is to improve the statistical effi ciency of unbiased estimates from 
a sample survey of fi eld plots, which has sampling error but no measure-
ment error, using a census of biased remotely sensed statistics, which have 
measurement error but no sampling error.

Post-Stratifi cation
Post-Stratifi cation (PS) with remotely sensed data and administrative 

districts (e.g., counties or municipalities) is widely used in surveys of for-
ests and other natural resources (Mandallaz 2008 p. 16). Both FIA (Scott 
and others 2005) and LUCAS-2001 (Gallego 2004) use full-coverage 
remotely sensed data4 to defi ne strata. FIA uses administrative districts 
(e.g., states, counties, and municipalities) in addition to remote sens-
ing. Credibility of government statistics often depends, in part, upon the 
consistency between survey estimates and known characteristics of ad-
ministrative districts (Särndal and others 1992, Knottnerus 2003, Sõstra 
and Traat 2009). For example, the sum of estimated areas for all land uses 
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in a county should exactly agree with the total area of that county as pro-
claimed in the offi cial record.

After sampled PSUs are selected from an unstratifi ed systematic grid, 
each is assigned to one stratum or, in the case of FIA, one or more strata 
(McRoberts and others 2005a). An independent sample survey estimate 
for each stratum total is separately made with the subset of PSUs in that 
stratum. The total area of forest cover in a stratum is an example of one 
estimate, but similar estimates may be produced for tens to hundreds of 
other variables that are measured in the fi eld, such as land ownership, for-
est type, condition class, wood volume, and tree demographics. Estimates 
of stratum totals for each variable are summed into estimates for the en-
tire sampled population. The associated population variance estimate uses 
the PS estimator (e.g., Cochran 1977 p. 135, Särndal and others 1992 
p. 266, Scott and others 2005, Gallego and Bamps 2008, Mandallaz 2008 
p. 18). PS is similar to two-phase sampling (Cochran 1977 p. 327) with 
equal inclusion probabilities among strata. Rather than explicitly defi ning 
the structure of the population or the sampling design, the following uses 
PS as an estimator to improve precision with a census of auxiliary cat-
egorical variables (Zhang 2000).

Limitations Imposed by Post-Stratifi cation
PS limits opportunities to improve statistical effi ciency with remotely 

sensed auxiliary data in at least fi ve ways. First, the number of strata is 
limited by the number of PSUs. A small sample size indirectly constrains 
the detail available in auxiliary information that may be used to improve 
statistical effi ciency. For example, FIA uses geopolitical units, such as 
groups of municipalities or counties, as strata (McRoberts 2005b p. 5). 
Administrative records for the area of each geopolitical stratum do not 
necessarily improve estimates of land cover and land use coverages (see 
Van Deusen 2005 for an exception). However, such strata do impose ar-
eal control so that summaries of FIA statistics agree with the offi cially 
proclaimed area of each geopolitical unit. FIA also uses full-coverage, re-
motely sensed Landsat data4 that are classifi ed into multiple categories of 
forest cover (e.g., McRoberts and others 2005b, Nelson and others 2007). 
One purpose is to improve effi ciency of areal estimates for various forest 
conditions. However, cross-classifi cation of numerous geopolitical units 
by numerous categories of remotely sensed forest conditions multiplica-
tively creates numerous strata, most of which have an insuffi cient number 
of PSUs for reliable stratum estimates. This is an example of the “curse 
of dimensionality.” As a solution, FIA collapses multiple remotely sensed 
categories of forest cover into two simple categories: forest and non-
forest. In extreme classes, FIA must further combine small geopolitical 
units so that each stratum as at least nh = 4 fi eld plots (Scott and others 
2005, McRoberts 2006). Seminal references recommend larger sample 
sizes (e.g., 20≤nh; Särndal and others 1992 pp. 251 and 267, de Gruijter 
and others 2006 p. 118). Collapsing strata during PS not only reduces sta-
tistical effi ciency, it is also inappropriate for inference unless the stratum 
means are expected to be equal (Cochran 1977 p. 134, Särndal and others 
1992 p. 411, Knottnerus 2003 p. 169). In a citation to Jagers (1986), Zhang 
(2000) observes that “post-stratifi ed estimation that ignores the empty sam-
ple post-strata is downward biased for non-negative (study-variables).”
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Second, panel designs further decrease sample size. FIA uses 5 to 10 pan-
els of PSUs to produce annual estimates (McRoberts and others 2005a, 
Patterson and Reams 2005). Each panel is an interpenetrating sub-sample 
of FIA PSUs that uniformly cover the sampled population (Bechtold and 
Patterson 2005). A single panel is measured each year. Therefore, only 10 
to 20 percent of the total PSUs are available to produce annual estimates 
with PS (Reams and others 2005b). One pragmatic solution is to combine 
all panels into a single estimate. This increases the effective sample size, 
which reduces the magnitude of the estimated variances. This is the “tem-
porally indifferent” estimator described by McRoberts (2005). It is closely 
related to a moving average estimator (Patterson and Reams 2005), and it is 
algebraically identical to the estimator previously used by FIA for decadal 
periodic surveys. However, changes in the condition of PSUs accumulate 
between acquisition of the remotely sensed data and the most recent fi eld 
measurements. Disagreement between the remotely sensed and true condi-
tion of a changed plot is not distinguishable from a classifi cation error with 
remotely sensed data. Loss of statistical effi ciency is rapid as agreement 
deteriorates (Czaplewski and Patterson 2001, 2003, Fattorini and others 
2004), regardless of the cause. Therefore, PS with the temporally indiffer-
ent estimator does not take full advantage of the information available in 
remotely sensed data. This is especially true in dynamic landscapes, which 
are the domains that often have the greatest demand for current monitoring 
data (Smith 2002). Furthermore, it is feasible to frequently monitor major 
changes in land cover with spaceborne sensor data (e.g., Healey and others 
2005, Sader and others 2005), and these measurements might substantially 
improve statistical reliability (e.g., Czaplewski 1999). However, cross-clas-
sifi cation of annual remotely sensed data with relatively rare changes in 
land cover along with remotely sensed measurements of more static forest 
conditions produces numerous small strata with few PSUs, especially with 
annual panel designs. Again, PS constrains the potential for using relative-
ly inexpensive time-series of remotely sensed data to improve statistical 
reliability.

Third, misleading population estimates are possible for rare attributes. 
This condition is more frequent whenever the sampling intensity within 
the stratum is weak. For example, if four PSUs sampled in a small forest 
stratum are truly forest, then the stratum estimate will be 100 percent forest 
with a variance of zero. Even though the stratum truly has some non-forest 
cover, the stratum estimate for non-forest area would be exactly zero with 
seemingly perfect accuracy (i.e., estimated sampling error of zero). This is 
known as a “sampling zero” in the analysis of contingency tables (Agresti 
2007 p. 154) and an “empty sample post-stratum” in sampling (Zhang 
2000). Furthermore, uncertainty with the variance estimate for a stratum 
increases as sample size decreases. These problems increase as the sample 
size within a stratum becomes very small (e.g., 4≤nh≤10).

Fourth, the 0.067-ha support region for an FIA PSU can straddle strata 
boundaries. A portion of a single support region can occur in one geopoliti-
cal stratum, while the remainder of the support region may occur in one or 
more other strata. While this maintains areal control on geopolitical vari-
ables, it does so by compromising the assumed independence of sampling 
errors among strata in the variance estimator for PS (Hahn and others 1995, 
Bechtold and Patterson 2005). FIA uses a different plot expansion factor 
for each portion of a PSU support region residing in a different stratum 
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(Scott and others 2005). While this does not necessarily bias stratum es-
timates, it does further bias the associated variance estimator (McRoberts 
2005). Van Deusen (2005) concludes that this leads to optimistic variance 
estimates, meaning the population estimates are not as reliable as inferred 
by their variance estimates. FIA assumes this bias is small and ignorable. 
This assumption is supported by Breidt and Opsomer’s (2008) study.

A similar challenge exists with the 90-ha LUCAS-2001 PSUs and 
the CORINE polygons, which have a minimum polygon size of 25 ha. 
However, Gallego and Bamps (2008) implement a solution that differs from 
FIA. They classify each and every 90-ha polygon in their study domain into 
one, and only one, stratum. They defi ne four strata by creating a new poly-
chotomous categorical variable for both sampled and non-sampled PSUs. 
The categorical variable is based on the proportion of annual crops within 
the 90-ha PSU, as approximated by the CORINE land cover map. The four 
categories are 0 to 10 percent, 11 to 50 percent, 51 to 80 percent, and 81 to 
100 percent annual crops. This approach does satisfy certain assumptions 
that underlie the variance estimator for PS, namely, each PSU resides in 
one, and only one, stratum. Again, the unintended consequence is loss of 
information available in the remotely sensed data. This approach also pre-
cludes exact areal control for geopolitical entities.

Fifth, PS presents challenges in accurately estimating the variance of 
population totals from a systematic sample, which is used both by FIA and 
LUCAS-2001. The PS variance estimator is an approximation that assumes 
simple random sampling, not systematic sampling, to calculate approxi-
mate joint inclusion probabilities among PSUs in different strata (Särndal 
and others 1992 Chapter 7.10.2). The joint inclusion probabilities for a 
systematic sampling frame differ from those in a simple random sample 
(Fattorini and others 2004). Furthermore, Gallego and Bamps (2008) use 
Matérn’s (1960) model-based variance estimator for systematic sampling. 
Through empirical tests with LUCAS-2001 and CORINE data, Gallego 
and Bamps conclude that Matérn’s estimator is nearly unbiased and more 
accurate than the design-consistent estimator, which equals the variance es-
timator for simple random sampling (Fattorini and others 2004). However, 
Gallego and Bamps were forced to use a heuristic approximation of the 
variance estimator for PS. Also, Matérn’s variance estimator can be af-
fected by the unique spatial distribution of PSUs within a stratum, and the 
variance estimator might be dominated by relatively few PSUs that happen 
to be located close together in space within the same stratum.

FIA also uses systematic sampling (Reams and others 2005a) and is 
confronted with similar issues. However, FIA uses a design-consistent vari-
ance estimator for PS (Fattorini and others 2004), which is algebraically 
equivalent to the assumption of simple random sampling. This is a biased 
approximation to the expected variance with a systematic sampling frame 
(Scott and others 2005). FIA accepts this small bias because it tends to 
overestimate the uncertainty, and is thus considered “conservative.”

In summary, PS often forces omission of valuable, remotely sensed 
auxiliary information. This limits opportunities for increased accuracy and 
statistical effi ciency. Annual panel surveys and areal control on geopolitical 
units further exacerbate these limitations. Furthermore, there are no un-
biased variance estimators for PS because they are approximations, even 
with simple random sampling. Systematic sampling introduces additional 
ad hoc approximations.
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Recursive Restriction Estimator
My objective is to introduce a particular expression of the Recursive 

Restriction Estimator (RRE) that is an alternative to PS. RRE was intro-
duced into the statistical literature by Knottnerus (2003). This alternative 
mitigates the limitations imposed by PS that are elucidated above. The RRE 
refers to the sequential recursive application of a Restriction Estimator 
(RE), in which the output from one recursion is used as input to the next 
recursion. The recursive structure solves a complex estimation problem by 
decomposing it into a sequence of simpler estimation problems.

Czaplewski (2010) views RRE as a special case of the Kalman fi lter, 
namely the “static Kalman fi lter” (Maybeck 1979 p. 114) or the “limiting 
Kalman Filter” (Chui and Chen 2009 p. 77), for a time-invariant linear 
stochastic system (Särndal and others 1992 p. 21). The Kalman fi lter was 
originally developed as a multivariate time-series estimator for dynamic 
stochastic systems (Maybeck 1979 p.114, Gregoire and Walters 1988). It 
improves time-series estimates of the multivariate “states of the system” 
(e.g., vector of parameter totals for a sampled population) with a time-
series of multivariate measurements of that system (e.g., remotely sensed 
variables). The Kalman fi lter accommodates random measurement er-
rors and partial measurements (i.e., observations of some elements of the 
state-vector but not other elements). The Kalman fi lter is not used here for 
time-series applications. Rather, it is used here as a multivariate composite 
estimator (Gregoire and Walters 1988) for more effi cient estimation of the 
vector of population totals (i.e., the state-vector) at one point in time.

Blending sample survey terms (e.g., Särndal and others 1992, Knottnerus 
2003) with Kalman fi lter terms (e.g., Jazwinski 1970, Maybeck 1979), the 
state-vector includes a partition for multiple study-variables5, such as the 
total area of forest and agriculture in the sampled population, and a vec-
tor partition for multivariate auxiliary-variables, such as the area of each 
type of land cover classifi ed with remotely sensed data (Knottnerus 2003 
pp. 50, 356, and 385). The state-vector is equivalent to the “parameter vec-
tor” used by Sõstra and Traat (2009). The estimated state-vector is fully 
identifi ed through a probability sample and an appropriate sample survey 
estimator (e.g., Hansen-Hurvitz estimator). In the case of LUCAS-2001 
and FIA, the partition for the study-variables (e.g., area of forest, area of 
cropland, and biomass) for each sampling unit are measured in the fi eld. 
The remaining partition for the auxiliary-variables is determined by pre-
cisely registering the geographic coordinates of each sampling unit to a 
geospatial database, such as a Geographical Information System (GIS) or 
a full-coverage image of Landsat pixels4.

The measurement vector is an independent6 observation of the state-
vector. In the context of RRE below, the measurement vector contains, in 
part, the census totals for all remotely sensed auxiliary-variables. However, 
this directly measures only a portion of the state-vector, namely, the parti-
tion with the auxiliary-variables. RRE improves the estimated population 
totals for the auxiliary-variables in the state-vector. This indirectly im-
proves estimates of the study-variables through the cross-covariance 
among auxiliary- and study-variables in the state-vector.

As illustrated by Czaplewski (2001) in the context of sample surveys, 
Householder (1964), Diderrich (1985), and Maybeck (1979 p. 213) use 
the matrix inversion lemma (e.g., Chui and Chen 2009 p. 3) to prove the 
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algebraic identity among the generalized least squares estimator, the mul-
tivariate composite estimator, and the static Kalman fi lter. Knottnerus 
(2003 p. 315) uses the perspective of Pythagorean regression to make the 
same connection between the Kalman fi lter and estimators for complex 
sample surveys, including constraints on the estimands through the RE 
and the sequential estimation with the RRE. I consider RE and RRE to 
be synonymous with the static Kalman fi lter and the recursive multivari-
ate composite estimator, which might also be viewed as special cases of 
pseudo-estimators (Särndal and others 1992 p. 173). Therefore, the Kalman 
fi lter is algebraically identical to estimators that are more familiar in the 
sample survey literature. In addition, the Kalman fi lter literature abounds 
with pragmatic solutions to numerical errors, which are stubborn obstacles 
to optimal estimation algorithms in the sample survey literature (Särndal 
and others 1992 p. 241, Estevao and Särndal 2004 p. 657). Furthermore, 
the static Kalman fi lter does not require computation of complicated joint 
inclusion probabilities, which can change as new fi eld data and remotely 
sensed data accumulate. Other advantages of the Kalman fi lter appear in 
the “Discussion.”

The next section uses a realistic case study to communicate better the 
motivation, conceptual approach, and mathematical details of the RRE as 
a more effi cient alternative to PS. Implementation issues are illuminated, 
and related approaches to more complex estimators are briefl y mentioned.

Case Study and Methods
The case study employs the example by Gallego and Bamps (2008) 

who use the CORINE land cover map to post-stratify LUCAS-2001 
PSUs. Their goal was improved reliability of areal coverage estimates of 
LUCAS-2001 land use categories (Table 1). They defi ned an analysis do-
main as the 10-km buffer from the EU153 coastline, which covers about 
10 percent of the EU15 nations. There are m = 1114 PSUs in the domain7. 
This design has several challenging elements, and it is well suited to il-
lustrate the advantages of RRE relative to PS.

The 90-ha LUCAS-2001 PSU is a cluster plot that nominally contains 10 
Secondary Sampling Units (SSUs). If the PSU intersects a domain bound-
ary, it will have fewer SSUs. Each SSU is classifi ed with the LUCAS-2001 
fi eld protocol into one of 57 categories of land cover and one of 14 catego-
ries of land use. The cluster plot may be heterogeneous, where SSUs can 
have different classifi cations in the LUCAS-2001 system. To simplify this 
case study as an example, the classifi cation system is collapsed into nine 
broad categories of land use (Table 1).

Gallego and Bamps (2008) used a GIS to intersect the location of each 
LUCAS-2001 SSU with the corresponding CORINE polygon. This al-
lowed further cross-classifi cations of each LUCAS-2001 SSU into one of 
the 44 CORINE categories of land cover. Classifi cation protocols differ 
between LUCAS-2001 and CORINE. The former uses ground measure-
ments made by fi eld crews for the sample of 0.0009-ha (3- by 3-m) SSUs, 
while the latter uses remote sensing to classify polygons that are 25 ha or 
larger. The classifi cation systems also differ. For example, LUCAS-2001 
defi nes forest as patches of at least 0.5 ha exceeding 10 percent crown 
cover and 5 m in tree height. CORINE requires each forest patch exceed 
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25 ha in extent. Smaller forest patches are considered inclusions within a 
non-forest CORINE polygon, and likewise, a forest polygon may include 
undifferentiated non-forest inclusions. Also, classifi cation criteria for for-
est cover in the CORINE system are less precise regarding crown cover 
and tree height. Gallego and Bamps describe other differences.

Regardless of their differences, there is a non-random associa-
tion between the LUCAS-2001 and CORINE cross-classifi cations 
of SSUs (Table 1). Therefore, exhaustive information from the full-
coverage CORINE land cover map potentially can serve as auxiliary data 
to improve LUCAS-2001 estimates. Columns in Table 1 represent clas-
sifi cation of LUCAS-2001 SSUs with the LUCAS-2001 defi nitions and 
protocols. Rows represent the classifi cation of LUCAS-2001 SSUs with 
the CORINE defi nitions, protocols, and GIS operator. The column mar-
gin is the estimated areal coverage of LUCAS-2001 land use categories 
in the population as estimated with the LUCAS-2001 sample alone. The 
row margin is the distribution of CORINE land cover categories estimat-
ed from the LUCAS-2001 sample. In addition, the same row margin is 
known exactly through the GIS enumeration of all CORINE polygons in 
the domain (Table 1). The difference between the sample estimate and 

 LUCAS Land Use Categories

 Census
 Totals
 from the
 CORINE 
 Land 
CORINE Land Cover
Cover Categories Map

Artifi cial surfaces 13.4 0.7 0.7 6.5 0 0.4 1.8 3.3 0.4 27.2 27.9
Arable non irrigated 
 cropland 3.3 40.8 10.1 8.7 0.7 1.1 2.5 3.3 1.1 71.6 65.2
Rice and arable 
 irrigated cropland 0.7 2.2 0.7 0 0 0 0 0.4 0 4.0 4.3
Pastures 0 0.4 0.4 2.5 0 0 0 0.4 0 3.7 42.7
Natural grassland 0 0 0 1.8 0 0 0.4 2.2 0 4.4 14.4
Vineyards, fruits, 
 arable permanent 
 crops 1.1 5.4 2.5 4.0 4.0 11.9 1.4 4.3 1.1 35.7 9.0
Olive trees 2.2 1.8 1.1 2.5 25.3 1.8 2.2 4.7 0 41.6 10.1
Complex agricultural 
 landscape 1.4 4.0 2.5 4.3 1.1 1.8 0.7 2.2 0.4 18.4 25.4
Agriculture, agroforestry, 
 natural vegetation 7.6 7.6 0 0 0 0 45.9 7.6 0 68.7 22.1
Forest 0.4 0 0 0.4 0 0 11.9 1.4 0.4 14.5 69.5
Other natural vegetation, 
 open spaces 0.7 0.4 0.4 9.4 0.7 0.4 11.9 28.9 1.1 53.9 53.1
Water and wetland 0.4 0 0 4.3 0 0 0.7 3.3 9.4 18.1 18.1

Margin Estimated from 
 LUCAS Sample 31.2 63.3 18.4 44.4 31.8 17.4 79.4 62.0 13.9 361.8 361.8
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Table 1. Cross-classifi cation of CORINE and LUCAS-2001 categories from the non-stratifi ed LUCAS-2001 
sample of cluster plots (Gallego and Bamps 2008) and comparison to the census statistics from the CORINE 
land cover map (thousands of km2).
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census enumeration of the row margin is caused solely by random sam-
pling errors in the LUCAS-2001 sample. RRE applies equality constraints 
(e.g., Simon and Chia 2002, Knottnerus 2003 p. 325) such that the RRE 
estimate of the row margin exactly equals the CORINE census value. In 
this sense, RRE may be considered calibrated to the auxiliary census sta-
tistics (Zhang 2000). The empirical correlations between the CORINE 
and LUCAS-2001 categorical variables, which are solely estimated from 
the LUCAS-2001 sample, improve statistical estimates of LUCAS-2001 
categories using the CORINE census data as auxiliary constraints.

Census of CORINE Polygons
The rasterized CORINE land cover map is a full-coverage set of pixels. 

Each CORINE pixel is classifi ed into one, and only one, of 12 catego-
ries8 using remotely sensed data. If pixel k is classifi ed as category r, then 
the rth element [xr]k of the 12-by-1 vector xk equals 1, while all remain-
ing elements [xi≠r]k = 0. Complete enumeration of all CORINE pixels in 
the analysis domain (U) yields the vector constant tCORINE, i.e., the exact 
population totals for remotely sensed auxiliary data from the CORINE 
land use map:
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The vector of population constants in Equation 1 serves as the “measure-
ment vector” in the static Kalman fi lter (Maybeck 1979 p. 174, Knottnerus 
2003 p. 50). It has a null 12-by-12 covariance matrix (R = 0) because 
the census of CORINE pixels yields exact constants for population totals 
without sampling or enumeration errors.

Multivariate Sample Estimates of LUCAS-2001 Contingency Table
RRE can use a multivariate structure for the cross-classifi cation of 

9 LUCAS-2001 categories9 and 12 CORINE categories8 (Table 1). The 
LUCAS-2001 sample provides this (12×9 = 108)-by-1 vector estimate of 
the 12-by-9 contingency table. It uses the ratio version of the multivariate 
Hansen-Horvitz estimator (Dryver 1999):
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where A = 361,800 km2 is the total domain area (Table 1), m = 1114 is the 
number of LUCAS-2001 PSUs7 in the domain, nj is the number of SSUs 
in PSU j, zij is the 108-by-1 vector measurement of the ji th SSU, and n 
is the total number of SSUs within the domain among all PSUs. Element 
[zr∩q]ji of zij equals 1 if SSU ji is classifi ed as CORINE category r and 
LUCAS-2001 category q, while the remaining 107 elements of zij equal 0. 
Zhang (2000) labels this technique as “dummy indexing.” Equation 2 is a 
multivariate version of the univariate ratio estimator, which Gallego and 
Bamps (2008) used within each of their four strata. The number of SSUs 
in PSU j (nj) is the covariable and A/n is the SSU expansion factor. The 
estimator in Equation 2 is not stratifi ed using auxiliary-variables, such as 
the CORINE land cover map. The population-vector estimate in Equation 
2 is analogous to the “state-vector” estimate in the Kalman fi lter (Maybeck 
1979, Knottnerus 2003 p. 50).

The 108-by-108 covariance matrix associated with Equation 2 is esti-
mated as an ad hoc multivariate generalization of the model-based Matérn 
(1960) estimator for systematic sampling in two dimensions:
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where j’ indexes one of the eight nearest PSUs in geographic space to PSU 
j, and δjj’ is the inverse geographic distance between the centroids of PSUs 
j and j’. Empirical tests by Gallego and Bamps suggest that the univari-
ate version of Equation 3 is a nearly unbiased estimator of the sampling 
variance.

The estimated area for each land use category using the LUCAS-2001 
protocol (i.e., column margin of Table 1) is the linear transformation of 
Equations 2 and 3 with the 9-by-108 indicator matrix Hy of zeros and 
ones:

 
( ) ( )LUCASLUCAS

ˆˆ tHt yy =   (4)

 
( ) ( )[ ] yyy HtVHtV ′= LUCASLUCAS

ˆˆˆˆ   (5)

 

[ ] I1III ⊗===

100100100

010010010
001001001

y  (6)

where I is the 9-by-9 identity matrix, 1 is the 1-by-12 row matrix of 1’s, 
and ⊗ denotes the Kronecker product. The ultimate goal with RRE is to 
improve the estimate in Equation 4 by reducing the size of the covariance 
matrix in Equation 5, where auxiliary census statistics from the CORINE 
map (Equation 1) are used to optimally constrain the design-consistent 
estimate in Equation 2.
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The area for each CORINE category of land cover (i.e., row margin in 
Table 1) estimated from the LUCAS-2001 sample (Equation 2) equals the 
linear transformation

 
( ) ( )LUCASLUCAS

ˆˆ tHt xx =   (7)

 
( ) ( )[ ] xxx HtVHtV ′= LUCASLUCAS

ˆˆˆˆ
 (8)
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x  (9)

where Hx is a 12-by-108 indicator matrix, 1 is the 1-by-9 matrix of 1’s, 
and I is the 12-by-12 identity matrix. Equations 7 and 9 respectively de-
scribe the “measurement vector” and the “measurement matrix” in the 
Kalman fi lter (Maybeck 1979 p. 114, Knottnerus 2003 p. 50). By design, 
Equations 2 and 7 are unbiased estimators, where the expected value is 

[ ] CORINELUCAS
ˆE ttH =x .  As a reminder, Equations 2 through 9 are estima-

tors for the entire domain; they are not stratifi ed.
The next step uses RRE to constrain the row margin of Table 1 to equal 

the census constants from the CORINE land cover map (Equation 1) such 
that the RRE estimates for the auxiliary-variables exactly agree with their 
exact population census values (i.e., constants):

 CORINERRE
ˆ ttH =x  (10)

Recursive Restriction Estimator (RRE)
The Recursive Restriction Estimator (RRE) is equivalent to the multivar-

iate composite estimator, which Gregoire and Walters (1988) characterize 
as an extension of the univariate composite estimator. The latter has been 
used in forest inventory and monitoring applications for nearly 50 years 
(e.g., sampling with partial replacement by Bickford and others 1963). In 
the following discourse, RE refers to the Restriction Estimator as a single 
recursion within the sequential RRE.

The univariate composite estimator combines two independent estimates 
by weighting each inversely proportional to their variances10. Diderrich 
(1985) and Gregoire and Walters demonstrate the algebraic equivalence of 
the multivariate RE with the mixed estimator (Theil and Goldberger 1961). 
Knottnerus (2003) makes a strong connection among the multivariate stat-
ic Kalman fi lter, Pythagorean regression, and Generalized Least Squares 
estimators in the context of complex sample surveys. RE is algebraical-
ly identical to a Bayes estimator (e.g., Jazwinski 1970 p. 145, Maybeck 
1979 p. 205); the minimum mean square error predictor (e.g., Jazwinski, 
1970 p. 149, Maybeck 1979 p. 232, Knottnerus 2003 p. 50, Chui and 
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Chen 2009 p. 21); and the maximum likelihood estimator when joint den-
sities are all Gaussian (e.g., Jazwinski 1970 p. 207, Maybeck 1979 p. 234, 
Binder and Hidiroglou 1988 p. 200, Knottnerus 2003 p. 28).

RE combines two vector estimates with the weighting matrix K:

 ( ) LUCASCORINERE
ˆˆ tKHItKt x−+=   (11)

K is the 108-by-12 matrix weight placed on the 12-by-1 CORINE census 
vector tCORINE, and (I−KHx) is the 108-by-108 matrix weight placed on 
the 108-by-1 sample vector estimate from LUCAS-2001. Equation 11 has 
the structure of a composite estimator (Särndal and others 1992 p. 371). 
The following algebraic identity has the structure of the generalized re-
gression estimator (Särndal and others 1992 p. 225, Carfagna and Gallego 
2005) and Pythagorean regression (Knottnerus 2003 p. 30):

 ( )LUCASCORINELUCASRE
ˆˆˆ tHtKtt x−+=   (12)

To maximize effi ciency, the weighting matrix K is derived with either 
linear least squares or Gaussian maximum likelihood optimality criteria 
(Maybeck 1979 p. 120 and 234, Diderrich 1985, Gregoire and Walters 
1988, Simon and Chia 2002, Knottnerus 2003 p. 31):

 
( ) ( )[ ] 1

LUCASLUCAS
ˆˆˆˆ −

+′′= RHtVHHtVK xxx
 (13)

where R is the covariance matrix for the measurement vector (Equation 7). 
The resulting covariance matrix of RE is

 
( ) ( ) ( )[ ]( )′−−+′= xx KHItVKHIKKRtV LUCASRE

ˆˆˆˆ  (14)

Recall that the 12-by-12 covariance matrix R = 0 for the 12-by-1 vector of 
census constants tCORINE (Equation 1). Given this identity, plus the defi ni-
tion in Equation 8, Equations 13 and 14 reduce to

 
( ) ( )[ ] 1

LUCASLUCAS
ˆˆˆˆ −

′′= xxx HtVHHtVK  (15)

 ( ) ( ) ( ) ( )′−−= xx KHItVKHItV LUCASRE
ˆˆˆˆ   (16)

Simon and Chia (2002) prove that the 108-by-1 RE in Equation 11 sat-
isfi es the 12-by-1 vector constraint in Equation 10, the RE is unbiased, 
and the RE has a smaller error covariance than the unconstrained vector 
estimator in Equations 2 and 4. Czaplewski (2010) demonstrates that the 
diagonal partition of the covariance matrix for the CORINE variables in 
Equation 16 is null (i.e., R = 0), and the off-diagonal cross-correlation 
partition between the LUCAS-2001 study-variables and the CORINE aux-
iliary census variables is likewise null. Therefore, the RE vector estimate 
is independent of the CORINE auxiliary-variables, i.e., the RE “fi lters-
out” all relevant information from the CORINE census.

The CORINE census information is no longer needed after it is assimi-
lated by the RE. This is an example of the “memoryless” attribute of the 
Kalman fi lter (Kalman and others 1969). This not only reduces the dimen-
sions of the static state-space for more complex sampling designs, it also 
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simplifi es updating expansion values in a large statistical database as new 
data are acquired (Czaplewski 2010). Furthermore, the estimated covari-
ance matrix in Equation 16 is unbiased (conditional upon the sample) and 
is not an approximation, as with PS (e.g., Cochran 1977 p. 135, Särndal 
and others 1992 p. 266, Scott and others 2005). However, proof of these 
characteristics assumes that the covariance matrix in the partition for the 

CORINE variables in the LUCAS-2001 sample, i.e., ( ) xx HtVH ′LUCAS
ˆˆ   in 

Equation 15, is full rank. Since the vector estimate in Equation 7 exactly 
sums to constant A (Equation 2), its covariance matrix in Equation 8 is 
positive-semidefi nite, i.e., not full rank. In this case, one of the 12 con-
straints in Equation 7 is redundant. The next section addresses this 
mathematical nuisance.

Numerically Robust Algorithm
Equations 11 to 16 are notoriously vulnerable to numerical round-off 

errors as the measurement error covariance matrix becomes small, i.e., 
R→0. Bierman (1977) wrote an entire treatise on the subject, and entire 
chapters of seminal books on the Kalman fi lter are devoted to it (e.g., 
Maybeck 1979, Bar-Shalom and others 2001, Grewal and Andrews 2001, 
Chui and Chen 2009). A slightly different algorithm is feasible even with a 
positive-semidefi nite covariance matrix (Equation 9). Since the constraints 
are constants with a null covariance matrix (i.e., R = 0), they are mutu-
ally independent by defi nition, and each scalar element of the constraint 
vector in Equation 7 may be applied separately in a sequential recursive 
algorithm (Knottnerus 2003 p. 346).

Let hi be the 1-by-108 vector containing row i of the measurement ma-
trix Hx. The estimator that sequentially applies all 12 scalar constraints, i 
= {1,2,…,12}, is defi ned as

 ( ) ( ) ( ) ( )[ ]1RRECORINE1RRERRE
ˆˆˆ

−− −+= iiiiii t thktt   (17)

 ( ) ( ) ( )[ ]( )′−−= − iiiiii hkItVhkItV 1RRERRE
ˆˆˆˆ  (18)

 
( ) ( ) ii

iii
i htV

htVh
k ′

′
= −

−
1RRE

1RRE

ˆˆ
ˆˆ

1  (19)

where ki is the 108-by-1 column vector of optimal weights and (tCORINE)i 
is the ith element of the constraint vector tCORINE. At the fi rst step in this 
recursive sequence, i = 1, (i-1) = 0, ( )t t tRRE RE LUCAS0 0= =t t t^ h  from Equation 2, 
and ( ) ( )V t V tRRE LUCAS0 =t t t t  from Equation 3. After applying the 12 CORINE 
census constraints, the fi nal RRE equals

 
( ) ( ) ( ) ( )[ ]

= −−+= 12

1 1RRECORINELUCAS12RRE
ˆˆˆ

i iiii t thktt  (20)

 
( ) ( ){ }( ) ( ) ( ){ }

′−−= ∏∏ == 12,,2,1LUCAS1,,11,1212RRE
ˆˆˆˆ

i iii ii hkItVhkItV  (21)

The 108-by-1 RRE vector estimate in Equation 20 is more effi cient 
for the entire 12-by-9 contingency table (Table 1) than the unconstrained 
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estimator in Equation 2 (Simon and Chia 2002). It can be seen as the Gram-
Schmidt orthogonalization of Equation 11 (Knottnerus 2003 p. 346). The 
12-by-1 row margin of CORINE estimates from RRE (Equation 10) 
will exactly equal the equality constraints from the CORINE census 
(Equation 1).

The sum of all elements in the vector tCORINE and the corresponding 

partition of the state vector ( )LUCASt̂H x   exactly equal the total area in 
the population, i.e., the constant A in Equations 2 and 3. Therefore, one 
auxiliary-variable is “redundant” (Zhang 2000), and the partition of the 

state-vector covariance matrix for the auxiliary variables ( ) xx HtVH ′LUCAS
ˆˆ  

is positive-semidefi nite, i.e., the matrix inverse of ( ) xx HtVH ′LUCAS
ˆˆ

in Equation 16 is not feasible. The linear calibration estimator and the 
general regression estimator (GREG) require omission of the redundant 
variable (Zhang 2000). A similar solution could be applied to the RE in 
Equation 16, although this solution might not be numerically robust. On 
the other hand, the RRE algorithm in Equations 20 and 21 uses scalar 
inverses, not a matrix inverse. In fact, the RRE algorithm requires sequen-
tial processing of all 12 CORINE variables to utilize fully all information 

in the auxiliary census statistics, even if the vector ( )LUCASt̂H x   includes 
redundant elements.

In the inventory context, the RRE column margin statistics represent the 
optimal estimates of the LUCAS variables. These are computed through 
linear transformations of Equations 20 and 21 with the 9-by-108 indicator 
matrix Hy, which is defi ned in Equation 6:

 
( ) ( )RRERRE

ˆˆ tHt yy =   (22)

 ( ) ( )[ ] yyy HtVHtV ′= RRERRE
ˆˆˆˆ  (23)

When census constants are imposed as constraints, RRE in Equations 17 
to 21 is numerically more effi cient than the usual estimators in Equations 
11 to 16 (Maybeck 1979 p. 375, Grewal and Andrews 2001 p. 226). 
Perhaps more important, RRE is more easily implemented in database 
software11 because it replaces a matrix inversion with a more numerically 
robust sequence of scalar inverses.

Residual Analysis
Analysis of the residual differences between census statistics and their 

sample estimates can reveal otherwise obscure anomalies, such as substan-
tial numerical errors. There is precedence in sample survey applications. 
Estevao and Särndal (2006) recommend residual analysis to understand 
better how complex auxiliary information reduces variance. Gallego and 
Bamps (2008) use residual analysis between CORINE census statistics 
and LUCAS-2001 estimates to gain confi dence in Matérn’s model-based 
variance estimator for systematic sampling. Coulston (2008) uses residual 
analysis to detect procedural anomalies with FIA photo-interpretation pro-
cedures used in PS.
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One simple analysis of the sequential RRE standardizes each scalar re-
sidual by dividing it by an estimate of its expected standard deviation:

 

( )
( ) iii

iii
i

t
r

htVh

th

′

−
=

−

−

1RRE

1RRE

ˆˆ

ˆ
  (24)

Each standardized scalar residual is expected to have zero mean and unit 
variance and to be mutually independent of all other residuals (Maybeck 
1979 p. 229, Knottnerus 2003 p. 38). If there are no substantial round-off 
errors or other anomalies, then the realized distribution of the standardized 
residual series will be consistent with these expectations.

For example, there are 12 residuals in the Gallego and Bamps (2008) 
case study (Equations 17 to 21 and 24), and the hypotheses of zero mean 
and unit variance may be empirically tested using familiar univariate 
methods in parametric and nonparametric statistics. Other tests might use 
residuals at the PSU level (Knottnerus 2003 p. 255, Czaplewski 2010).

Results
The case study, which is based on Gallego and Bamps (2008), is solely 

intended as a hypothetical example. However, the results from this case 
study further illuminate differences between PS and RRE. Figure 1 com-
pares effi ciencies of the post-stratifi ed estimator and RRE relative to 
systematic sampling without remotely sensed CORINE data. Values equal 
to 1 signify estimates that do not gain effi ciency from the CORINE data, 
i.e., the level of uncertainty from the LUCAS-2001 sample alone without 
remotely sensed auxiliary information. Values closer to 0 are more effi -
cient, i.e., low uncertainty. Differences in statistical effi ciency are caused 
by the different ways in which the remotely sensed CORINE data are used 
with PS and RRE. The PS estimate uses 4 strata developed by Gallego and 
Bamps with CORINE data to describe agricultural prevalence within each 
90-ha LUCAS-2001 PSU, whereas RRE directly uses all 12 CORINE cat-
egories of land cover (Table 1) for each 0.0009-ha LUCAS-2001 SSU.

Both estimators are at least as effi cient as the systematic sampling 
estimator alone (Figure 1). Simon and Chia (2002) prove this is always 
true for RRE, although this is not necessarily true with PS (Cochran 
1977 p. 99, Czaplewski and Patterson 2003). RRE produces substantially 
smaller standard deviations (Figure 1) for forest, woodland, shrub, heath, 
bare land, and temporary pastures and fallow fi elds. The post-stratifi ed 
estimates have smaller standard deviations for the remaining land use cat-
egories. Overall, RRE is more effi cient, with a square root trace of its error 
covariance matrix that is nearly half that of the post-stratifi ed estimate. 
The post-stratifi ed estimate uses prevalence of agricultural use within each 
90-ha PSU, which might explain the somewhat higher accuracy of PS for 
the agricultural land uses.

Figure 2 displays the results of a residual analysis12. Two of the 12 
residuals differ from 0 by over 3 standard deviation units. Such relatively 
extreme deviations are not normally expected if all assumptions used in 
this example for RRE are correct. While this rare anomaly could merely be 
a chance event, the most likely suspect is a poor estimate of the covariance 
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matrix for the systematic LUCAS-2001 sample. The case study used nu-
merous assumptions to reconstruct this covariance matrix (Appendix A) 
because the realized sample covariance matrix is not reported by Gallego 
and Bamps. Therefore, results from this case study cannot be reliably in-
ferred to that study. Although not shown in Figure 2, residual analysis of 
the usual formulation of RRE with vector constraints (Equations 11, 15, 
and 16) revealed one implausibly large residual. This indicates substantial 
numerical round-off errors with the usual Kalman fi lter algorithm, which 
is a well-known hazard (Bierman 1977, Maybeck 1979). The sequential 
estimator in Equations 17 to 21 is more numerically robust.

Discussion
Knottnerus (2003) drew the fi rst strong connection among sampling 

theory, regression theory, and systems theory. All three are mature theo-
ries in statistics, but systems theory is not widely known within the sample 
survey discipline. Knottnerus makes extensive references to the Kalman 
fi lter13 from the perspective of Pythagorean regression in the sample survey 
context. Knottnerus (2003 p. viii) views this as a “constrained estimation 

Figure 1. Standard deviations for post-stratifi ed 
and RRE estimates of LUCAS-2001 land use 
categories relative to systematic sampling 
alone. A value equal to 1 indicates no 
improvement with remotely sensed CORINE 
auxiliary data, and 0 equals perfect accuracy

 

Figure 2. Standardized residuals from 
Restriction estimator (RRE). Assuming 
a Gaussian distribution with zero mean 
and unit variance12, two CORINE 
residuals appear unlikely given the 
underlying assumptions: pastures and 
forest cover types. The suspected 
cause is an inaccurate estimate of the 
covariance matrix from the LUCAS-2001 
sample. Residual analysis is an important 
component of RRE.
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problem … identical to the solution of an ordinary unconstrained linear 
least squares problem with the unconstrained estimator as dependent re-
gressand, the set of constraints as regressors, and the constrained estimator 
as an orthogonal residual.” Knottnerus’ standard sampling model views 
the world as a fi nite set of population elements, and RRE combines sepa-
rate estimates for all elements in the population.

As a somewhat subtle distinction, my use of RRE views the world 
as a state-vector for an infi nite-population. The state-vector includes 
both fi eld study-variables and remotely sensed auxiliary-variables. The 
remotely sensed census of pixels is used as auxiliary measurement infor-
mation to improve the estimated state-vector. In fact, the improvement is 
“perfect” in that the RRE estimate for auxiliary-variables agrees exactly 
with the corresponding census constants. The RRE estimate of the study-
variables in the state-vector is improved through the sample cross-covariance 
matrix between the study-variables and auxiliary-variables. The infi nite-
population perspective can be simpler (Mandallaz 2008 p. 61) and arguably 
more natural for continuous spatial populations, such as those considered 
by FIA and LUCAS-2001.

PS requires cross-classifi cation of all categorical auxiliary census vari-
ables, which multiplicatively increases the number of strata (Zhang 2000). 
However, the feasible limit to the number of strata is determined by sample 
size of PSUs, which constrains the degree to which otherwise useful aux-
iliary information can improve statistical effi ciency with PS (Mandallaz 
2008 p. 89). Knottnerus (2003 p. 169) addresses this problem through a 
two-stage estimator for a fi nite-population where strata are considered 
clusters and estimates of fi rst- and second-order inclusion probabilities 
are necessary. In principle, calibration estimation based on marginal totals 
for a fi nite-population also avoids the need to collapse empty post-strata 
into more prevalent strata (Zhang 2000). This is also known as general-
ized raking (Deville and others 1993), which can be unstable or can fail to 
converge (Zhang 2000).

RRE also can be structured to avoid problems associated with cross-
classifi cation. Under the infi nite-population model, RRE sequentially 
assimilates information from multiple polychotomous auxiliary-variables 
without requiring cross-classifi cation or estimation of joint inclusion prob-
abilities. For example, Equations 17 to 21 impose constraints based on the 
set of CORINE classifi cations for 0.0009-ha SSUs in the LUCAS-2001 
sample. Those RRE results can be further constrained with a second set of 
census statistics, such as the four categories of agricultural extent within 
each 90-ha PSU used by Gallego and Bamps for PS. Combination of these 
two sets of constraints with RRE is expected to improve accuracy, espe-
cially for agricultural land uses (Figure 1). A third set of constraints might 
use geopolitical boundaries such as individual EU15 nations. Other auxil-
iary geospatial variables might include ecofl oristic zones, land forms, and 
land ownership. More details follow.

The PS estimator assumes each PSU is a member of one, and only 
one, stratum (Särndal and others 1992 p. 264). This compelled Gallego 
and Bamps (2008) to collapse 44 remotely sensed CORINE categories 
into four strata where each 90-ha LUCAS-2001 PSU in the domain is 
assigned to one, and only one, stratum. Since RRE incorporates auxil-
iary census data as constraints rather than through stratifi cation, the full 
classifi cation system of 44 CORINE categories could be used for each 
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0.0009-ha LUCAS-2001 SSU. Furthermore, RRE avoids concerns raised 
by McRoberts (2005) and Van Deusen (2005) with the FIA variance es-
timator (Scott and others 2005), which assumes independence among 
post-strata (see also Breidt and Opsomer 2008).

The case study uses categorical auxiliary-variables to contrast RRE with 
PS. However, RRE may also utilize continuous variables as auxiliary cen-
sus constraints. After all, the regression estimator is equivalent to PS with 
H strata when the auxiliary-variable consists of H categories in a poly-
chotomous variable, i.e., H dichotomous “dummy” variables (Knottnerus 
2003 p. 130). For example, RRE can directly use the proportion of agricul-
ture from the CORINE map in each 90-ha LUCAS PSU as a continuous 
auxiliary-variable. Gallego and Bamps’ transformation of this continuous 
variable into four categorical levels is unnecessary with RRE. The con-
tinuous variable would require one element in the state-vector rather than 
four dichotomous variables for the categorical variable. Other continuous 
auxiliary-variables could also serve as census constraints. Examples in-
clude climatic variables (e.g., annual number of frost-free days), human 
population density, road density, and crop production statistics. A con-
tinuous auxiliary-variable may be expressed as interpolated geospatial 
surface (e.g., Tomppo and Halme 2004, Blackard and others 2008), or it 
may be summarized for each discrete cell in a tessellated surface, such 
as the 90-ha LUCAS cluster plot or a 2400-ha FIA hexagon (Reams and 
others 2005a). To increase the correlation with a study-variable, a con-
tinuous auxiliary-variable, such as tasseled cap transformation of remotely 
sensed multispectral data (e.g., Healey and others 2005), may be segre-
gated by a categorical auxiliary-variable, such as soil type (e.g., Katila and 
Tomppo 2001). Continuous variables should be re-scaled to share a com-
mon spread, which reduces numerical problems (Maybeck 1979 p. 369, 
Bierman 1977 p. 15). As with any categorical auxiliary-variable, each 
continuous auxiliary-variable may be sequentially processed as a scalar 
constant with the RRE.

With stratifi cation, the auxiliary-variable should be strongly correlated 
with the study-variable (Cochran 1977 p. 101). However, large surveys 
such as FIA and LUCAS study many different variables, and there is sel-
dom a single auxiliary-variable that is universally well correlated with all 
study-variables (Särndal and others 1992 p. 100, Mandallaz 2008 p. 16). 
Unlike stratifi cation, RRE applies scalar census constraints one at a time, 
and the classifi cation system for remotely sensed data need not be com-
posed of mutually exclusive and exhaustive categories. For example, a 
separate dichotomous thematic map can be optimized for each individual 
category of land cover, which can increase statistical effi ciency with re-
motely sensed data (King 2002, Czaplewski and Patterson 2003). RRE can 
use a suite of different auxiliary-variables, each of which is optimized for 
different sets of study-variables. For example, geospatial interpolations of 
human population density might improve estimates of species diversity 
and wildlife habitat, while remotely sensed indices might improve esti-
mates of biomass and merchantable wood volume.

Heinl and others (2009) conclude that “defi nition and selection of land 
cover classes (is) crucial and not to be simply adaptable from existing 
land cover class schemes. A stronger research focus toward discriminating 
land cover classes by their typical spectral, topographic, or seasonal prop-
erties is therefore suggested to advance image classifi cation.” RRE may 
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use categorical auxiliary-variables with a classifi cation scheme that differs 
from that used for the study-variables. An example is auxiliary data from 
the CORINE classifi cation system for remotely sensed thematic mapping 
to improve study-variables as defi ned by the LUCAS classifi cation system 
(Table 1). The important criterion is the strength of association between 
auxiliary- and study-variables (Mandallaz 2008 p. 16). Czaplewski and 
Patterson (2003) recommend that a single homogeneous forest condition 
(i.e., study-variable) should represent at least 70 percent of a remotely 
sensed stratum (i.e., categorical auxiliary-variable), and this recommenda-
tion might be useful with RRE.

Independent, remotely sensed thematic maps might be available from 
more than one time period, and annual change-detection maps are becom-
ing more routine (e.g., Healey and others 2005, Sader and others 2005). 
The census statistic for each variable in a geospatial dataset may be recur-
sively applied as an independent constraint. This obviates the advantage 
of a single, remotely sensed thematic map for PS in longitudinal panel 
surveys, as advocated by Van Deusen (2005).

Effi ciency gains from remotely sensed auxiliary data depend strongly 
on the associations and correlations between fi eld measurements and re-
motely sensed measurements (Cochran 1977 p. 101). Those associations 
are degraded by misregistration (Schowengerdt 2007 p. 356) between sites 
measured in the fi eld and those same sites measured with remote sensing 
(Czaplewski and Patterson 2001, 2003). This problem is especially haz-
ardous in heterogeneous, fi ne-grained landscapes. See Halme and Tomppo 
(2001), Czaplewski (2005), and Nelson and others (2009) for methods 
to improve registration accuracy. In addition, remotely sensed measure-
ments may be accurate in certain situations but inaccurate in others. For 
example, the dense interior of forest stands and the open interior of culti-
vated agricultural fi elds can be accurately classifi ed with remote sensing. 
However, sparse forest generation, idle agricultural fi elds, and forest edges 
can be diffi cult to classify accurately. Effi ciency can be improved by sep-
arating sites with high measurement error into separate categories (e.g., 
Czaplewski and Patterson 2001, McRoberts and others 2002).

As auxiliary-variables are added to improve effi ciency or impose geo-
political areal constraints, the dimensions of RRE state-vector become 
larger. This “curse of dimensionality” incurs numerical risks, such as im-
precise estimates of the covariances and cross-covariances (Ledoit and 
Wolf 2004) used in Equations 16 and 19 to compute optimal weights for 
auxiliary data. However, categorical variables need not be cross-classifi ed 
with RRE. For example, the (12 × 9 = 108)-by-1 LUCAS-2001 vector 
zji in Equation 2 may be replaced with the concatenation of the margins 
of Table 1, resulting in a much smaller (12 + 9 = 21)-by-1 vector. This 
sacrifi ces any useful information available within the interior of the con-
tingency table (Table 1). The resulting estimator might be sub-optimal but 
more numerically robust. However, the loss in statistical effi ciency can 
be minor, as with many applications of the Kalman-Schmidt fi lter (e.g., 
Jazwinski 1970 p. 285, Grewal and Andrews 2001 p. 309, Knottnerus 
2003 p. 371) and three-phase sampling (Magnussen 2003). In other ap-
plications where the PSU is a homogeneous point plot, the multinomial 
distribution14 applies and the margin vectors are suffi cient statistics for 
RRE (Appendix B). In this special case, there is no loss of effi ciency by 
concatenation of the margins to avoid cross-classifi cation (Knottnerus 
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2003 p. 367). Regardless, the RRE can avoid cross-classifi cation of auxil-
iary variables, which creates empty sample post-strata (Zhang 2000).

Large government survey programs express estimators as PSU-level 
weights or “expansion factors.” These modify the design-weights to cap-
ture information in the auxiliary-variables (Deville and Särndal 1992). 
The PSU weights simplify estimation within a large database and they 
are popular with analysts (Knottnerus 2003 p. 391, Scott and others 2005, 
Estevao and Särndal 2006, Mandallaz 2008 p. 45). In an analogous fash-
ion, complex results from RRE may be simply expressed as PSU-level 
weights (i.e., multivariate expansion values) for population estimates and 
their associate variance estimates (Knottnerus 2003 p. 395, Czaplewski 
2010). Sõstra and Traat (2009) use Knottnerus’ RE to derive simpler sca-
lar weights that depend solely on the auxiliary variables, i.e., the same 
multiplicative scalar weight applies to all study variables measured at a 
sampled PSU. However, the weights developed by Sõstra and Traat are 
sub-optimal, meaning they do not replicate the minimum variance linear 
estimator. Regardless, in one way or another, the results from RRE can be 
incorporated into the survey database as weights at the PSU-level, simi-
lar to current FIA methods that capture PS results as expansion factors 
(McRoberts 1999).

As a form of the static Kalman fi lter, RRE is capable of multivariate 
estimation of study-variables (e.g., Maybeck 1979), which facilitates com-
patible non-linear pseudo-estimators (Särndal and others 1992 pp.173-174, 
205-207). Czaplewski (2010) uses pseudo-estimators for synthetic estima-
tion (e.g., Purcell and Kish 1979), missing data imputation (e.g., Verbeke 
and Molenberghs 2000 p. 221), and consistent calibration for measure-
ment error bias (e.g., Bound and others 2001). More important, RRE 
strengthens the connection to extensive engineering literature on Kalman 
fi ltering applications. The engineering perspective contributes essential 
solutions to numerical problems with the Kalman fi lter. These same nu-
merical problems have posed a stubborn obstacle to optimal estimation 
in the sample survey estimation (e.g., Estevao and Särndal 2004 p. 657). 
Reliable applications of RRE are not feasible without robust algorithms 
and residual analysis.

Limitations from the fi nite sample size of PSUs cannot be ignored 
during the pursuit of effi ciency through auxiliary-variables. The curse of 
dimensionality is a powerful foe. Numerous remotely sensed and other 
geospatial variables may be combined into mathematical models (e.g., 
Schowengerdt 2007 p. 387) that predict a few auxiliary-variables, such 
as forest type and biomass. These latter auxiliary-variables may be used 
to reduce the number of constraints in RRE. However, this produces a 
different complication with independence of model predictions and the re-
alized sample (Breidt and Opsomer 2008). Regardless, auxiliary-variables 
should be highly associated or well correlated with at least one important 
study-variable. As a fail-safe, analysis of residuals might detect overzeal-
ous use of auxiliary-variables.

The variance estimator for PS is an approximation (although the bias 
introduced by the approximation is considered small, Särndal and others 
1992 p. 267). Furthermore, this approximation assumes simple random 
sampling. Ad hoc assumptions are needed to apply this approximation 
with Matérn’s model-based variance estimator for systematic sampling. 
On the other hand, RRE remains unbiased for variance estimation, 
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conditional upon an unbiased estimator of the sampling error covari-
ance matrix, and RRE does not need ad hoc assumptions for systematic 
sampling. Systematic sampling is widely used in surveys of forest and 
agricultural lands (Mandallaz 2008 p. 27), and accurate variance estimates 
with systematic sampling better characterize the true reliability of these 
expensive surveys.

Fattorini and others (2004) recognized the connection between multi-
variate two-phase sample survey estimators and accuracy assessment in 
remote sensing studies (see also Knottnerus 2003 p. 364). An accuracy 
assessment frequently uses a contingency table, which may also be termed 
an “error matrix” or “confusion matrix” in the remote sensing literature. 
Gallego and Bamps use the term “fi ne scale profi les” for a rectangular con-
tingency table in which different classifi cation systems are used with the 
reference and remotely sensed data (e.g., Table 1). Individual cells in the 
contingency table are estimated from the probability sample of reference 
plots, each of which is jointly classifi ed with remote sensing and a more 
accurate reference protocol. Sampling error in the estimated contingency 
table may be reduced with RRE by constraining the marginal estimates of 
the remotely sensed categories to agree exactly with their known census 
values from the full-coverage thematic map4. In special cases, stratifi -
cation on the remotely sensed categories sometimes achieves the same 
outcome (Congalton 1991). However, stratifi cation becomes complicated 
with a heterogeneous cluster plot and whenever there are revisions to the 
remotely sensed categorical variable previously used for pre-stratifi cation 
(Stehman and Czaplewski 1998). RRE remains feasible regardless of these 
complications. Czaplewski (1994) used pseudo-estimators (Särndal 1992 
p. 173) to derive generalized variance formulae for common accuracy as-
sessment statistics. These estimators use any reliable covariance matrix 
for a vectorized contingency table, regardless of the sampling design or 
estimator. (This capability demonstrates the value of multivariate formula-
tions of sample survey estimators.)

With RRE, individual cell estimates in an error matrix can be negative, 
especially for rare cross-classifi cations. If the sole objective is estimation 
of the margin for the study-variables (e.g., LUCAS-2001 in Table 1), then 
negative cells are not a concern. If the objective is accuracy assessment 
or if a rare marginal element has a negative estimate, then Doran (1997), 
Simon and Chia (2002), and Knottnerus (2003 p. 379) present inequality 
constraints that can preclude negative estimates with RRE.

Equations 17 to 21 provide an example of sequential application of RRE 
for elements of a single series of land cover classifi cations. The discussion 
covers additional series of auxiliary census variables that deserve consid-
eration. These series all produce vector constants (i.e., R = 0 in Equations 
13 and 14). In addition, RRE can accommodate auxiliary measurements 
that are sample estimates (i.e., R ≠ 0 in Equations 13 and 14). Coulston 
(2008) and Frescino and others (2009) provide FIA examples. A multi-
stage design can use a census of remotely sensed variables at Stage One, 
a sample of more accurate and detailed remotely sensed data for cluster 
plots at Stage Two, and a sub-sample of fi eld measurements within each 
cluster plot at Stage Three. The initial application of RRE can combine 
Stages One and Two into a more effi cient population-vector estimate for 
the Stage Two variables. These RRE estimates can then be input into RRE, 
which improves population estimates for Stage Three fi eld measurements. 
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Knottnerus (2003) and Czaplewski (2010) provide details and approach-
es to these and other complex sample survey estimators. In addition, the 
Kalman fi lter, which is a generalization of RRE, is a dynamic time-series 
estimator. It uses recursive least squares to conveniently and effi ciently 
combine simple components of a complex estimator (Duncan and Horn 
1972, Wolter 1979, Diderrich 1985, Knottnerus 2003 p. 39). Therefore, the 
Kalman fi lter offers a robust and unifi ed approach to combining adminis-
trative data with multiple time-series of auxiliary remotely sensed data and 
time-series of panel data measured in the fi eld.

Both RRE and PS estimators assume the auxiliary-variables are inde-
pendent of the random errors from the sample of PSUs. However, those 
same PSUs are often used as “training data” to fi t “supervised classifi ers” 
or regression models that predict land characteristics (i.e., a thematic map) 
with remotely sensed and other geospatial data as predictor variables. 
Abundant examples appear in the remote sensing literature. Today’s mod-
eling tools include classifi cation and regression trees (e.g., Blackard and 
others 2008), k-nearest neighbor non-parametric regression (e.g., Tomppo 
2002), and artifi cial neural networks (e.g., Mas and Flores 2008). However, 
this modeling connection breaks the assumed independence among PSU 
auxiliary-variables; a different sample would produce a slightly differ-
ent thematic map. It is commonly assumed that this dependence is small 
and can be ignored. Breidt and Opsomer (2008) provide some objective 
support for this assumption. However, this assumption is unnecessary 
if the geospatial variables are directly used without fi tting a prediction 
model with PSU data. Examples of truly independent geospatial auxiliary-
variables include the Normalized Difference Vegetation Index (e.g., 
Carlson and Ripley 1997) and the Tassel Cap (e.g., Healey and others 
2005) transformations of remotely sensed multispectral data; physiograph-
ic variables derived from Digital Elevation Models; isopleths for climatic 
variables; ecoregion classifi cations; and landownership and geopolitical 
entities. Likewise, unsupervised classifi cation (e.g., Vogelmann and oth-
ers 1998) does not directly use the sampled PSUs. Pixel-level predictions 
from complex models should be used as auxiliary data only if they yield 
signifi cantly more effi cient estimates of the study-variables.

Conclusions
The Recursive Restriction Estimator (RRE) offers novel opportunities 

to improve the effi ciency and accuracy of detailed sample survey statistics 
with remotely sensed and other geospatial auxiliary data. However, judi-
cious applications require attention to numerical hazards and monitoring 
of residuals to detect anomalies. Otherwise, results are not necessarily reli-
able, and unreliable results can persist undetected. These hazards are not 
well recognized in the sample survey literature, which might explain the 
paucity of survey applications that use RRE, especially given the wide-
spread applications of the closely related Kalman fi lter in engineering, 
econometrics, atmospheric sciences, and physical oceanography.

RRE is a powerful solution to diffi cult sample survey problems. It sepa-
rates a large complex sample survey into smaller components, each of 
which is more easily addressed. These components are sequentially reas-
sembled into more effi cient and accurate population estimates. RRE offers 
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the opportunity to consider complex sampling designs that would other-
wise be too daunting.

Post-Stratifi cation (PS) is a familiar and simple approach in large gov-
ernment survey programs of natural resources, such as FIA and LUCAS. 
It poses no extraordinary risks. However, PS is an impediment to statisti-
cal effi ciency and achievement of FIA strategic goals for remote sensing. 
RRE is slightly more complex, but it can improve effi ciency by assimi-
lating larger quantities of remotely sensed auxiliary information. Results 
from either estimator can be represented as expansion values in a plot-
level database. Either RRE or PS can be applied post hoc, without disrupt-
ing investments in previous fi eld measurements.

A decision to convert from PS to RRE depends on the compromise 
among implementation costs, risks, effi ciency, accuracy, and long-term 
cost savings. The decision can be reversible. If the costs of implementation 
and risk management with RRE are unacceptable in a large government 
survey program, then RRE might remain an attractive choice for special 
analytical studies whenever extra accuracy merits extra effort.
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Endnotes
1 FIA uses an infi nite-population model of points, each with a 0.067-ha support region 

(Reams and others 2005a). The FIA sampling frame is approximately a 5-km systematic 
triangular grid (Bechtold and Scott 2005). The total sample size in the USA is approxi-
mately 360,000 Primary Sampling Units (PSUs), of which 30 percent sample forest 
conditions.

2 In 2001, LUCAS used a systematic sample of 90-ha cluster plots (PSUs) on an 18-km 
systematic rectangular grid, with a total sample size of approximately 10,000 PSUs.

3 The EU15 are those nations in the European Union prior to May 2004: Austria, Belgium, 
Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Nether-
lands, Portugal, Spain, Sweden, and the United Kingdom.

4 The census of full-coverage remotely sensed pixels may be composed of images acquired 
at different dates, which are subsequently merged into a single multivariate database 
containing all pixels in the population. Even so, some portions of the population may 
be obscured by clouds, cloud shadows, haze, or missing pixel measurements. Obscured 
pixels may be treated as a category separate from the CORINE categories land cover. 
To reduce complexity, the obscured condition is not illustrated in the CORINE example.

5 Särndal and others (1992) use the term “study-variables” for the target statistics, such 
as area of forest. Zhang (2000) uses the equivalent term “object-variables,” and Rao 
(2003) uses the term “variables of interest.”

6 See Maybeck (1979) and Czaplewski (2010) for the more general case in which the ran-
dom measurement errors are not independent of the random estimation errors for the 
state-vector.

7 Gallego and Bamps (2008) did not report exact sample size. The approximation of 
m = 1114 is merely an example.

8 Gallego and Bamps (2008) use 17 categories that are simplifi cations of the 44 CORINE 
categories. These are further collapsed here into 12 categories as a more concise ex-
ample.

9 Gallego and Bamps (2008) use 12 categories that are simplifi cations of the 57 LUCAS 
categories for land cover and 14 categories of land use. These are further collapsed here 
into nine categories as a more concise example.

10 The multivariate census of pixel values in Equation 1 has the null covariance matrix 
R = 0. Therefore, it is not exactly analogous to the univariate composite estimator.

11 All computations and data storage should use double precision numerics to reduce in-
sidious round-off errors.

12 Figure 2 displays the standardized residuals with the normal distribution as a backdrop. 
The purpose is to emphasize that two residuals have unexpectedly extreme values. The 
expectation of zero mean and unit variance is a necessary component of the proposed 
analysis of residuals. However, the choice of the normal distribution is merely an as-
sumption, which cannot be rigorously tested with 12 residuals.

13 Czaplewski (2001) makes a similar connection through the perspective of the matrix 
inversion lemma as applied by Householder (1964).

14 The margins of the contingency table are suffi cient statistics to estimate the sample co-
variance matrix for a multinomial variable (e.g., Fattorini and others 2004).
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Appendix A: Approximate Sample Covariance Matrices

Gallego and Bamps (2008) do not provide suffi cient statistics to re-
produce their covariance matrices. This covariance matrix is needed for 
Equation 3 and to compare effi ciency of RRE with Gallego and Bamps’ 
Post-Stratifi cation (PS) estimate. The following approximation is based 
on the multinomial distribution, which assumes simple random sampling 
of n = 1114 homogeneous PSUs7. In reality, each PSU is a heterogeneous 
cluster plot, which is expected to be more effi cient. Therefore, the approxi-
mation for Equation 3 is heuristically scaled using relative effi ciencies 
reported by Gallego and Bamps in their Table 4. Additional assumptions 
about relative sampling errors for the CORINE variables were employed 
to assure that the residuals do not exceed four standard deviation units.

The approximation begins with the multinomial second moment matrix

 
( ) ( )( )LUCASLUCASLUCAS

2

MULTNOMIALLUCAS
ˆˆˆdiag

1114
361800ˆˆ ttttV ′−=   (25)

where A = 361,800-ha. See Knottnerus (2003 p. 367) or Fattorini and oth-
ers (2004) for details on the covariance matrix for a vector representation 
of a multinomial variable.

The covariance matrix for systematic sampling is approximated with 
the 108-by-108 diagonal scaling matrix HSYS to estimate the covariance 
matrix needed in Equation 3:

( ) ( )[ ] ⊗==

0.8852
0.9849
0.6378
0.9289
0.7358
0.4123
0.4950
0.5992
0.4605

diag

1.0
1
20
10
1
5
1
1
70
1
1
1

diag  where,ˆˆˆˆ
SYSSYSMULTNOMIALLUCASSYSSYSLUCAS HHtVHtV   (26)

The covariance matrix for PS of the same sampling units with four strata, 
which is the improvement offered by Gallego and Bamps, is approximated 
with the 108-by-108 diagonal scaling matrix HSTR:
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( ) ( )[ ] ⊗==

0.8394
0.8955
0.5634
0.8413
0.6311
0.3823
0.4424
0.4932
0.3725

diag

1.0
1
20
10
1
5
1
1
70
1
1
1

diag  where,ˆˆˆˆ
STRSTRMULTNOMIALLUCASSTRSTRLUCAS HHtVHtV  (27)

where the “diag” operator creates a diagonal matrix with the object vector 
placed on the matrix diagonal. With these approximations, PS reduces the 
trace of the covariance matrix in Equation 27 by 0.80 times the trace of the 
covariance matrix with systematic sampling alone (Equation 26), which, 
in turn, is about 0.50 times the trace of the covariance matrix, assuming 
homogeneous PSUs rather than heterogeneous cluster plots (Equation 25).
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Appendix B: Simplifi cation with Multinomial Distribution

This Appendix briefl y considers reduction in the dimensions of RRE. It 
uses the margins of the contingency table instead of the entire table. In the 
example given in Table 1, there are 12 CORINE categories in the auxiliary 
census statistics and 9 categories in the target LUCAS-2001 classifi cation 
system. Equations 2 to 24 use the (12 × 9 = 108)-by-1 vector estimate 
of this 12-by-9 contingency table. This posed no detectable numerical 
problems with RRE. However, constraints on categorical auxiliary census 
variables might further enlarge the dimensions, which can accumulate nu-
merical errors.

Dimensions may be reduced to a (12 + 9 = 21)-by-1 vector using the 
margins of the contingency table rather than all interior cells of Table 1. 
If the individual cell estimates are of no particular interest, then attention 
focuses on optimal estimation of the 9-by-1 vector of LUCAS-2001 vari-
ables on the column margin of Table 1. From Equations 15 and 22

 

( ) ( )
( )xxyyxy

yy

ttKHtH

tHt

ˆˆ

ˆˆ
RRERRE

−+=

=
  (28)

where ( )RREt̂   is 108-by-1, ( )yRREt̂  is 9-by-1, and ( )xx tt ˆ−   is 12-by-1. The 
9-by-12 weighting matrix HyK in Equation 28 expands to

 

( ) ( )[ ]
( ) ( ) 1

1

ˆˆˆˆˆ

ˆˆˆˆ

−

−

=

′′=

xxy

xyxxxyxyy

tVttV

HtVHHtVHKH
  (29)

where the 9-by-12 matrix ( ) ( ) xyxyxy HtVHttV ′= ˆˆˆˆˆ  contains the estimat-
ed covariances among the row and column margins. In the special case of 
homogeneous point plots as the PSU, the multinomial distribution applies, 
and Equation 29 equals

 

( ) 1ˆˆˆdiagˆˆ −
′−′−

=
mm

xxxxy
y

ttttt
KH   (30)

Therefore, in this special case , the 12−by−1 row margin xt̂  and the 
9-by-1 column margin yt̂  of Table 1 are suffi cient statistics for RRE, and 
there is no loss of optimality when the cross-classifi ed cell values are ig-
nored. The same holds for Equation 26, where the 108-by-108 covariance 

matrix ( ) ( )( )[ ] SYSSYS
ˆˆˆdiagˆˆ HtttHtV ′′−= myxyxyxyx . 

In other cases, such as the LUCAS cluster plot, Equation 29 does not 
equal Equation 30, and sole use of the margins would yield a sub-optimal 

RRE. However, the 9-by-12 matrix difference ( )( ) ( ) mxyxyxy ttHtVH ′−′ ˆˆˆˆ  
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and the 12-by-12 matrix difference ( ) ( )( ) mxxxxyxx tttHtVH ′−−′ ˆˆˆdiagˆˆ  
can be relatively small and the sacrifi ce in optimality can be relatively 
minor. Estimates are readily made with both the 108-by-1 and 21-by-1 
versions of the population-vector, and the differences between the result-
ing variance estimates would help guide the decision between effi ciency 
and dimension reduction.
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