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Abstract

A simple analytical formula is developed for estimating the frequency attenuation of eddy covariance fluxes due to sensor
response, path-length averaging, sensor separation, signal processing, and flux averaging periods. Although it is an approxi-
mation based on flat terrain cospectra, this analytical formula should have broader applicability than just flat-terrain providing
the peak frequencies of the logarithmic cospectra are known. Comparing the integral and analytical formulations for momen-
tum flux, heat flux, vapor flux, and closed-path and open-path CO2 eddy covariance systems demonstrates that, except for a
relatively uncommon atmospheric condition, the absolute difference between the integral and approximate correction factors
is less than±0.06 for both stable and unstable atmospheric conditions (0≤z/L≤2). Because closed-path systems can have the
tube entrance separated longitudinally from the sonic anemometer, a cospectral transfer function is developed for the phase
shift caused by the intrinsic time constant of a first-order scalar instrument and the longitudinal separation of the mouth of the
tube and the sonic anemometer. The related issues of tube lag time and other spectral transfer functions are also discussed.
In general, it is suggested that the simple formula should be quite useful for experimental design and numerical correction of
eddy covariance systems for frequency attenuation. Published by Elsevier Science B.V.
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1. Introduction

The eddy covariance technique is now used rou-
tinely for direct measurements of surface layer fluxes
of momentum, heat, and trace gases (CO2, H2O and
O3) between the surface and the turbulent atmosphere.
This technique employs a sonic anemometer for verti-
cal velocity fluctuations, sonic thermometry for virtual
temperature fluctuations, and a scalar sensor for den-
sity fluctuations. However, all sensors display some
high frequency attenuation caused by the relatively
slow response of the scalar sensors (i.e. first-order
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instruments often characterized by time constants of
0.1 s or greater), the spatial separation of the instru-
ments, and line or volume averaging effects associated
with sensor design. Furthermore, low frequencies are
also attenuated when the flux is estimated by block
averaging over a finite length of time (usually be-
tween 5 and 40 min or so, e.g. Panofsky, 1988; Kaimal
et al., 1989), by high-pass recursive digital filtering
(often incorporated as part of the data acquisition sys-
tem, e.g. McMillen, 1988), or by linear detrending of
the raw data time series (e.g. Gash and Culf, 1996;
Rannik and Vesala, 1999).

Although some flux loss is inevitable with any eddy
covariance system, there are a variety of methods, each
having its own strength and weakness, which can be
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used either to correct the measured fluxes or to min-
imize flux losses through experimental design. For
example, it is possible to correct flux measurements
in situ (e.g. Laubach and McNaughton, 1999). This
method has the advantage of being relatively free of
cospectral shape, even though it assumes cospectral
similarity between heat and water vapor fluxes. How-
ever, it requires more than one measurement of the
virtual temperature flux (w′T ′

v), and it does not correct
for finite acoustic path length (sonic line averaging).
In addition, becausew′T ′

v is the standard by which all
other scalar fluxes are corrected, this method becomes
less reliable asw′T ′

v approaches zero. Other meth-
ods employ spectral transfer functions, which have
the advantage of being relatively comprehensive (e.g.,
Moore, 1986), but require a priori assumptions about
the cospectral shape. If the true cospectrum resem-
bles the assumed shape, Moore’s approach (Moore,
1986) does give reasonable estimates of the correc-
tion factors (Leuning and King, 1992). However, if
the true cospectrum departs significantly from the as-
sumed shape, then the correction factor can be in error
(Laubach and McNaughton, 1999). Another possibil-
ity is to estimate a cospectrum for each block averag-
ing period by Fourier transform, correct the cospec-
trum, and then integrate the corrected cospectrum to
obtain the desired flux. This Fourier transform method
may be the best method of all because it requires the
fewest assumptions. However, it is numerically inten-
sive and, therefore, impractical for long duration ex-
periments comprised of many block averaged periods.
Finally, Horst (1997) suggested a simple analytical
alternative to Moore’s comprehensive numerical ap-
proach (Moore, 1986), but, because Horst’s develop-
ment focuses on the (usually) slower responding scalar
sensor, it does not include the effects of line averag-
ing, sensor separation, or the data acquisition system.

The present study, which incorporates and extends
Horst’s (1997) approach develops and tests a gen-
eral analytical formula for estimating the flux loss
caused by attenuation effects associated with the sonic
anemometer, the scalar sensor, sensor separation and
design, and the data acquisition system. The initial for-
mulation of this analytical method is in terms of the flat
terrain cospectra of Kaimal et al. (1972). But, because
the approximations developed for this study result in
flux loss parameterizations that are functions of the
maximum frequencyfx of the logarithmic cospectrum,

f Co(f ), they can be used with cospectra that differ
from the flat terrain cospectra. Consequently, be-
cause the present methods assume a relatively smooth
cospectra they require either an in situ determination of
fx or a reasonable parameterization for it. The primary
focus of the present study is on the most challenging
scenarios: the extremum cases for the analytical ap-
proximation, i.e. the heat flux as measured by sonic
thermometry (smallest corrections) and the closed-
path flux system (largest corrections). Nevertheless,
the approximation is also tested for momentum and
water vapor flux measurements. An additional cor-
rection term to the formal analytical approximation is
developed to improve the analytical correction factors
for the relatively infrequent situation of fluxes mea-
sured during windy, stable atmospheric conditions
using first-order scalar sensors with time constants
≥0.1 s.

Section 2 discusses the mathematical issues related
to this study and summarizes many of the transfer
functions used with eddy covariance. Section 3 com-
pares the eddy covariance correction factors estimated
by the simple analytical model with the complete in-
tegral formulation. The final section summarizes the
results of this study and provides suggestions and rec-
ommendations that can be drawn from it.

2. Transfer functions and mathematical
development

2.1. Integral expression

The true eddy flux,w′β ′, can be represented as the
integral over frequencyf of the one-sided cospectrum
Cowβ (f):

w′β ′ =
∫ ∞

0
Cowβ(f ) df (1)

where w′ and b′ are the fluctuations of vertical ve-
locity and either horizontal wind speed or scalar con-
centration. However, the measured flux,(w′β ′)m, is
usually limited by the effects of sonic line averaging,
sensor separation, block averaging when computing
the fluxes, discrete time sampling, anti-noise filters,
etc. The influence of these limitations is usually rep-
resented by multiplying the cospectrum by one or
more transfer functions:
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(w′β ′)m =
∫ ∞

0
H(f )Cowβ(f ) df (2)

where for N total transfer functions,H(f ) =∏N
i=1Hi(f ).
Although the design of the sensors and, to a certain

extent, the signal processing filters may vary from one
eddy covariance system to another, there is one filter
that is inescapable. It results from block averaging
the fluxes over a fixed time period (Panofsky, 1988;
Kaimal et al., 1989). Explicitly including this filter in
Eq. (2) yields

(w′β ′)m=
∫ ∞

0

[
1 − sin2(π fTb)

(π fTb)2

]
H(f )Cowβ(f ) df

(3)

whereTb is the block averaging period (usually be-
tween 5 and 40 min) andH(f) is now understood to be
the product of the remaining transfer functions. The
block averaging transfer function is in essence a high
pass filter that removes low frequency components of
the turbulent flux.

2.2. High pass filters

In an effort to ensure a (relatively) stationary time
series, additional high pass filters are sometimes
employed. These include high pass digital recursive
filtering of the raw data (e.g. McMillen, 1988) or,
alternatively, real time linear detrending of the raw
data (Gash and Culf, 1996). Implementation of the
high pass digital recursive filter uses a running mean
such thatx′

i = Axi − Ayi−1 = A(xi − xi−1) + Ax′
i−1

(Moore, 1986; McMillen, 1988), where the subscript
i refers to the sampled datum collected at timeti , x′

i

the fluctuating (or high pass filtered) datum,xi de-
notes the raw (or unfiltered) datum;yi−1 represents
the value of the running mean at the previous time
step; andA is related to the time constant of the fil-
ter (discussed below). The Fourier transform of this
recursive filter yields, after some complex arithmetic,
the following transfer function (e.g. Moore, 1986)

hr(ω) = [A + A2][1 − cos(ω/fs)] + j [A − A2][sin(ω/fs)]

1 − 2Acos(ω/fs) + A2
(4)

where ω=2π f, fs is the sampling frequency (usu-
ally between 5 and 25 Hz for eddy covariance), and

A = e−1/(τrfs) with τ r as the filter’s time constant
(McMillen, 1988). McMillen’s (1988) experience
suggestsτ r≈150 s and the mathematical analysis of
Kristensen (1998) suggests thatTb/8<τ r<Tb. Results
of both these studies suggest that for all reasonable
choices ofτ r and fs, 0<1-A<0.0014, i.e.A is always
less than, but very close to, 1. Therefore, for frequen-
cies of interest the phase introduced by this type of
filtering can be disregarded because it is small and
affects all instrument signals equally. Consequently
and with no loss of generality, the cospectral transfer
function associated with the high pass digital recur-
sive filter is taken as the real part of Eq. (4). That is

Hr(ω) ≈ Re[hr(ω)] = [A + A2][1 − cos(ω/fs)]

1 − 2Acos(ω/fs) + A2
(5)

Because both the individualω′ andβ ′ time series are
recursively filtered,H 2

r (ω) is the cospectral trans-
fer function to be used when numerically evaluating
Eq. (3).

Although not directly employed in the present study,
the filtering effects of a linear detrending of the flux-
averaging time series is also included (see Table 1).
The corresponding high pass filter is discussed by
Kristensen (1998) and Rannik and Vesala (1999).

2.3. Sensor and system related transfer functions-low
pass filters

All other transfer functions cause high frequency
attenuation of the cospectrum because they result from
the inherent design and deployment geometry of the
sensors. For the sake of brevity, these transfer func-
tions (as well as those discussed above and others that
have appeared in the recent literature) are summarized
in Table 1 along with the reference(s) from which
they are taken. Clearly, there is some overlap be-
tween this study and Moore’s (1986) study. However,
there are some significant differences as well. When
numerically evaluating Eq. (3) this study makes no
approximation to any transfer function. Moore (1986)

approximated some transfer functions so as to allow
the numerical integration to be done in real time by
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Table 1
Equivalent time constants for sensors and associated filters for eddy covariance systemsa

Cause of attenuation Reference Equivalent time constant
of a first order filter

Sonic anemometer line averaging Kaimal et al., 1968 (lu/2.8u) (horizontal)
(momentum flux) (lw/5.7u) (vertical)

Sonic anemometer line averaging
(scalar flux)

Kristensen and Fitzjarrald, 1984 (lw/8.4u)

Lateral separation Kristensen and Jensen, 1979 (l lat/1.1u)
Longitudinal separation without first

order instrument,Qa=0
Hicks, 1972; Kristensen and Jensen, 1979 (l lon/1.05u)

Longitudinal separation with first order
instrument,Qa=0 (l∗lon=l lon+Ltu/Ut )

Appendix A (4/3)[l∗lon /u(1/2(l∗lon/u)+τ1)]1/2

Line averaging scalar sensor Gurvich, 1962; Silverman, 1968 lscalar/4.0u
Volume averaging right circular

cylinder 0.2≤d/lright≤2.0
Andreas, 1981 (0.2+0.4(d/lright))(lright/u)

Tube attenuation
Turbulent flow Massman, 1991 (

√
3Lta/0.83Ut)

= (
√

(3a/Lt)/0.83)(Lt/Ut)

Volume averaging spherical volume Zeller et al., 1989 R/u
Butterworth anti-noise filter Moore, 1986 1/π fs
Low pass recursive digital filter Goulden et al., 1997 τ r

High pass recursive digital filter Moore, 1986; McMillen, 1988 τ r

High pass filtering block averaging Kaimal et al., 1989 Tb/2.8
High pass filtering linear detrending Kristensen, 1998; Rannik and Vesala, 1999 Tb/5.3

a Here the quadrature spectrum is denoted byQa and path length, separation distances, etc., by a subscriptedl. τ1 is the intrinsic time
constant of any first-order instrument andd the diameter associated with volume averaging by a scalar instrument. The horizontal wind
speed is denoted byu. Lt denotes the length of a closed-path sampling tube,a its radius,3 is a function of the Reynolds number for tube
flow, andUt the tube flow velocity.R is the radius for spherical volume averaging by a scalar instrument.Tb denotes the block averaging
period for calculating the fluxes,fs the sampling frequency, andτ r the time constant for digital recursive filters. The sonic anemometer is
assumed to have orthogonal collocated axes. The tube lag time,Lt /Ut , is usually removed from consideration by digital time shifting. It
is included here as part of the longitudinal separation effects for completeness.

the data acquisition system. Furthermore, this study
incorporates two transfer functions that were not avail-
able at the time of Moore (1986). The first of these
is given by Massman (1991) for tube attenuation ef-
fects associated with closed-path sensors. The second,
denotedHphase(ω) and derived in Appendix A, is the
transfer function associated with the phase shift asso-
ciated with closed-path systems. It is relevant to situ-
ations where, for example, the mouth of the sampling
tube of a closed-path (first-order scalar) instrument is
attached to the boom arm of the sonic anemometer,
but located behind the sonic anemometer relative to
the direction of the wind flow.Hphase(ω) is given as

Hphase(ω) = cos[φlon(ω) + φt(ω)]

−ωτβsin[φlon(ω) + φt (ω)] (6a)

whereφlon(ω) is the phase shift associated with the
longitudinal separation between the mouth of the in-

take tube and the sonic anemometer,φt(ω) is the phase
shift associated with tube flow, andτβ is the response
time of the first-order instrument. Hereφlon(ω)=ω

l lon/u, where l lon is longitudinal separation distance
andu is the horizontal wind speed, andφt(ω)=ωLt/Ut,
whereLt denotes tube length andUt is the tube flow
velocity. Therefore,Hphase(ω) can be written as

Hphase(ω) = cos

[
ω

(
llon

u
+ Lt

Ut

)]

−ωτβsin

[
ω

(
llon

u
+ Lt

Ut

)]
(6b)

As shown by Appendix A this transfer function is
a generalization of the more familiar one given by
Hicks (1972) and Kristensen and Jensen (1979) [i.e.
cos(ω l lon/u), Table 1], which is valid only if the scalar
instrument is sufficiently fast thatτβ can be ignored
and if Lt/Ut, the tube lag time, is either sufficiently
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small thatφt(ω) can be ignored for all frequencies of
importance or if (as is usually the case) thew′ time se-
ries is shifted digitally in time to compensate. Because
most closed path systems implement the digital time
shift to remove the tube lag time effects, this study will
assume thatLt/Ut=0 as far as the phase shift is con-
cerned. However, the unified treatment of the phase
shift developed for this study does offer some insights
into the use of the maximum correlation method for the
determination ofLt/Ut (e.g., McMillen, 1988). This
discussion is deferred until Section 3.2.

AssumingLt/Ut=0, Eqs. (6a) and (6b) are valid only
if the separation distance is not too great. In fact, the
same constraint applies to all other transfer functions
shown in Table 1 that are associated with horizontal
(lateral or longitudinal) separation (Lee and Black,
1994). However, it is difficult to be precise about how
far is too far. For example, Laubach and McNaughton
(1999) found that for both stable and unstable atmo-
spheric conditions the transfer function developed by
Kristensen and Jensen (1979) for lateral separation dis-
tances is relatively accurate for a separation of 0.25 m.
Leuning et al. (1982) found that during unstable day-
time conditions, increasing the lateral separation dis-
tance between the fast response temperature sensor
and the sonic anemometer from 0.05 to 0.45 m reduced
heat fluxes by only 3%. Mindful of these experiences
and for numerical purposes only, this study therefore
assumes that the maximum horizontal separation dis-
tance is 0.30 m.

In Table 1 neither attenuation effects associated
with vertical displacement, nor Moore’s (1986) pro-
posed corrections for aliasing are included. To date
no analytical transfer function has been developed
for vertical separation effects. However, Kristensen
et al. (1997) have developed numerical methods for
estimating these effects and it is worth repeating their
recommendation that scalar sensors be placed below
the level of the sonic in order to minimize the flux loss
due to vertical separation (Kristensen et al., 1997).
Concerning aliasing, Horst (2000) points out that it is
wrong to correct fluxes for aliasing. This is because
aliasing results from digitizing (or discretely sam-
pling) a continuous time series (Jenkins and Watts,
1968). The power present within the continuous time
series at frequencies beyond the Nyquist frequency,
fs/2, will be aliased, but aliasing itself will neither
attenuate nor amplify this power when computing the

flux or variance. Aliasing can distort the spectrum or
cospectrum, but it will not influence the total flux or
variance. The aliased power will simply appear to be
located at frequencies below the Nyquist frequency.
Consequently, aliasing need to be considered only
for frequency-dependent processing of a discretely
sampled time series, such as anti-noise filters or spec-
tral analysis. It is not something that must inherently
be included when estimating the correction factors
associated with Eq. (3).

On the other hand, if anti-noise filters (or anti-
aliasing filters as they are sometimes called) are used,
they will attenuate frequencies above and below the
Nyquist frequency and their influence on the fluxes
should be included with other corrections. When mea-
suring fluxes such filters are used to eliminate any
common source of noise that appears in both theω′
and theβ ′ signals. The most likely source for this type
of noise is high frequency AC line noise and anti-noise
filters can be quite effective at reducing it. For the
present purposes anti-noise filters are not assumed to
be part of the data acquisition system. However, for
the sake of completeness, Table 1 includes a Butter-
worth anti-noise filter with its half-power point at the
Nyquist frequency (e.g. Moore, 1986).

2.4. Analytical approximation

This section develops an approximation to Eq. (3)
for both momentum and scalar fluxes by generaliz-
ing Horst’s (1997) approach. His attenuation formula,
which was derived for scalar fluxes measured with a
first-order instrument, is

(w′β ′)m

w′β ′ = 1

1 + (2πnxτβu/z)α
(7)

where forz/L≤0, a=7/8 andnx=0.085 and forz/L>0,
α=1 and nx=2.0–1.915/(1+0.5z/L). Here z denotes
the eddy covariance measurement height,L is the
Monin–Obukhov length,u the mean horizontal wind
speed, andnx represents the non-dimensional fre-
quency (nx=fxz/u) corresponding tofx . The simplicity
Horst (1997) was able to achieve results from assum-
ing similarity betweenw′T ′ andw′β ′ cospectra and
from approximating thew′T ′ cospectrum (for both
stable and unstable atmospheric conditions) by
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f Cowβ(f )

w′β ′ = 2

π

f/fx

1 + (f/fx)2
(8)

The present study, likewise, assumes similarity be-
tween w′T ′ , w′T ′

v, and w′β ′ cospectra and uses
Eq. (8) to approximate the observedw′T ′ cospec-
trum. A similar approximation can be made for the
u′w′ cospectrum and all variance spectra as well, ex-
cept thatnx and the quality of the approximation may
vary somewhat with each quantity being considered.
Approximating by Eq. (8) the universal flat terrain
curves of Kaimal et al. (1972) as given by Kaimal and
Finnigan (1994) permits the following assignment
for nx for the momentum cospectrum:nx=0.079 for
z/L≤0 andnx=0.079(1+7.9z/L)3/4 for z/L>0.

In addition to approximating cospectra, this study
also approximates all instrument and system response
functions with their first-order equivalents as listed
in Table 1. Specifically, it is assumed that any low
pass transfer function can be reasonably well ap-
proximated by 1/(1 + ω2τ2

1 ) and that any high pass
filter transfer function can be well approximated
by 1 − (1/(1 + ω2τ2

1 )), here τ1 is the equivalent
first-order time constant as determined by matching
the half power point,f1/2, of any given transfer func-
tion, H(ω), to the half power point of the first-order
filter; i.e. τ1=1/(2π f1/2). Obviously, this method of
approximating transfer functions will introduce some
errors, the largest of which is likely to be associated
with approximatingHphase(ω). The difficulty with
this transfer function is thatHphase(ω) can be neg-
ative (Appendix B) and the first-order filter cannot
capture this change of sign. This is not too serious a
problem for the approximation (or for the raw eddy
covariance flux estimates) if the critical frequency
(ωc) at which Hphase(ω)=0 is well into the inertial
subrange, i.e. ifωc�2π fx. In this case the inability
of the first-order filter approximation to capture the
behavior ofHphase(ω) for ω≤ωc means that the flux
corrections will be slightly underestimated.

A further approximation to Eq. (3) results from
combining all the high frequency filters into one
equivalent first-order filter. This requires estimating
an equivalent first-order time constantτe, for the en-
tire set of low pass filters associated with sonic line
averaging, sensor separation, finite response times
etc. are shown in Table 1. One approximation forτe
that was found to be quite adequate is

τe =
√√√√ M∑

i=1

τ2
i (9)

whereM is the total number of instrument filters and
theτ is are their associated equivalent first-order time
constants (Table 1). The advantage that Eq. (9) has
over other approaches of providingτe is that it auto-
matically determines which filters contribute the most
to the high frequency flux attenuation.

Incorporating these approximations into Eq. (3) and
changing the variable of integration yields the follow-
ing expression for the flux loss:

(w′β ′)m

w′β ′ = 2

π

∫ ∞

0

(
1

1 + x2

) (
a2x2

1 + a2x2

)

×
(

a2x2

1 + a2x2

) (
b2x2

1 + b2x2

) (
1

1 + p2x2

)
dx

(10)

where a=2π fxτh, b=2π fxτb, and p=2π fxτe and
τh and τb are the equivalent time constants associ-
ated with trend removal (τh) and block averaging
(τb). The four terms of the integrand (from left to
right) are the approximated cospectrum, 1/(1+x2); the
two high pass filters associated with trend removal,
a2x2/(1+a2x2); block averaging,b2x2/(1+b2x2); and
the approximate first-order low pass filter associated
with high frequency attenuation due to instrument
design and signal processing, 1/(1+p2x2). The ana-
lytical approximation to Eq. (10) is given as follows
and derived in Appendix B.

(w′β ′)m

w′β ′ =
[

ab

(a + 1)(b + 1)

] [
ab

(a + p)(b + p)

]
[

1

(p + 1)

] [
1 − p

(a + 1)(a + p)

]
(11)

Although Eq. (11) is a reasonably precise analytical
approximation to Eq. (3), comparisons to the numer-
ical evaluation showed that Eq. (11) could be further
improved. First, for unstable atmospheric conditions
each of the factorsa, b, and p can be raised to the
power of 0.925. This slight correction to the original
formulation was suggested by Horst (1997) and com-
pensates in part for the relatively poorer approxima-
tion of the unstable cospectrum by Eq. (8). It should
also be noted that the present value of 0.925 for the
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exponent is used rather than Horst’s original value of
0.875 because 0.925 gave slightly better agreement
with Eq. (3). The second correction is most useful
when deploying a first-order scalar instrument (which
herein is assumed to have an intrinsic response time
τβ≥0.1 s) during stable atmospheric conditions with
high winds. Under these conditionsfx increases sig-
nificantly andτe→τβ , in turn, causing Eq. (11) to
progressively underestimate the true value of the in-
tegral. Again a combination of mathematical analysis
and trail and error suggested that for this relatively
rare situation Eq. (11) can be improved by including
an additional multiplicative term:

1 + 0.9p

1 + p

Table 2 summarizes all the analytical approxima-
tions to Eq. (3) and the next section examines the per-
formance of these analytical expressions. Finally, it
should be reemphasized here that when evaluating the
exact integral, Eq. (3), the Kaimal et al. (1972) flat
terrain cospectra are used and no approximations are
made to any transfer function.

3. Comparison of integral and analytical
approaches

3.1. Lt /Ut phase effects have been removed by
digital time shifting

Five different eddy covariance scenarios were tested
for this study: momentum flux, virtual temperature

Table 2
Recommended analytical formulae for spectral corrections to measured momentum and scalar fluxesa

Stable atmospheric conditions (0<z/L≤2)

Fast−response open path systems
(Flux)m

Flux
=

[
ab

(a + 1)(b + 1)

] [
ab

(a + p)(b + p)

] [
1

(p + 1)

] [
1 − p

(a + 1)(a + p)

]

Scalar instrument with

0.1–0.3 s response time
(Flux)m

Flux
=

[
ab

(a + 1)(b + 1)

] [
ab

(a + p)(b + p)

] [
1

(p + 1)

] [
1 − p

(a + 1)(a + p)

] [
1 + 0.9p

1 + p

]

Unstable atmospheric conditions (z/L≤0)
(Flux)m

Flux
=

[
aαbα

(aα + 1)(bα + 1)

] [
aαbα

(aα + pα)(bα + pα)

] [
1

(pα + 1)

] [
1 − pα

(aα + 1)(aα + pα)

]
a The subscript m refers to the measured flux. Herea=2pfxτh, b=2π fxτb, and p=2π fxτe. The numerical value of the exponent is

dependent upon cospectral shape. For relatively broad cospectra with relatively shallow peaks, such as the flat terrain neutral/unstable flat
terrain cospectrum of Kaimal et al. (1972),α=0.925. For sharper, more narrowly peaked cospectra, such as the stable flat terrain cospectra
of Kaimal et al. (1972),α=1.

flux (sonic thermometry), water vapor flux with an
open path Krypton hygrometer, and both open- and
closed-path CO2 systems. This study focuses on the
latter two scenarios and the sonic thermometry virtual
temperature flux because they represent the extremum
cases for the analytical approach and they are proba-
bly of somewhat greater interest in general. For these
simulations the following assignments are made
1. the sonic anemometer has collocated vertical (lw)

and horizontal (lu) paths of length 0.15 m; the block
averaging period,Tb is 30 min; the high pass re-
cursive time constant,τ r, is 450 s (=Tb/4, after
Rannik and Vesala, 1999); the sampling frequency,
fs, is 10 Hz; the measurement height above the
zero plane displacement (z or z-d) is 5 m; and no
anti−noise filter is applied;

2. for the closed path system, the longitudinal sep-
aration, l lon, is assumed to be 0.15 m; the lateral
separationl lat is 0.15 m; the time constant of the
CO2 instrumentτβ , is taken to be 0.1 s; and for the
purposes of calculating tube attenuation (Table 1),
the tube lag time,Lt/Ut, is 2.0 s and the tube as-
pect ratio

√
3a/Lt is 0.03, where from Massman

(1991)3 is a function of the tube flow Reynolds
number anda is the tube radius;

3. for the open path system the lateral separation is
0.30 m; the CO2 sensor path length is 0.20 m with
an aspect ratio for volume averaging over a right
circular cylinder (=[diameter]/[path length]) of 0.2
(Andreas, 1981); and no longitudinal separation is
assumed.
Many of these parameters are intentionally chosen

to be either on the lower side or high side of normal
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Fig. 1. Numerically integrated correction factors forω′T ′
v measured

using sonic thermometry. Correction factors are given for neutral
and unstable atmospheric conditions (solid line,z/L≤0) and for
stable conditions (dotted line,z/L=1; dashed line,z/L=2).

operating conditions or geometric factors, because this
tends to produce the worst case scenarios and provides
bounds on the quality of the analytical approximation.

Fig. 1 shows the correction factors,w′T ′
v/(w

′T ′
v)m ≤,

determined for three stability classes (z/L≤0 and
z/L=1, 2) by numerical integration of Eq. (3) for the
virtual temperature flux measured by sonic thermom-
etry. (Note that the correction factor is the inverse of
Eq. (3) and that throughout this study the maximum
value ofz/L is taken to be 2 because it is a reasonable
upper limit for atmospheric observations). For wind
speeds greater than 1 m/s the spectral correction fac-
tors are always less than 1.06 and the absolute differ-
ence (not shown) between the numerical integration
and the analytical approximation is less than 0.01. For
wind speeds less than 1 m/s and unstable conditions,
the correction factor is large because as the wind
speed decreases the cospectral peakfx also decreases
(Section 2.4 above). Therefore, progressively more
low frequencies are attenuated at the low wind speeds
due to the block averaging and detrending filters. A
similar effect is noticeable during stable atmospheric
conditions, but it is less pronounced becausefx is
higher during stable conditions than during unstable
conditions. Nevertheless, regardless of stability the
analytical approximation differed from the numerical
results (i.e. Fig. 1) by no more that 0.045 (absolute)
at extremely low wind speeds (u≤0.2 m/s) and by less
than 0.005 otherwise. (Note that throughout this study
only absolute differences are discussed; the relative
differences between Eqs. (3) and (11) are not partic-

ularly useful because of the nature of the application
of the correction factors to the flux calculations.) A
similar result was found for momentum flux, although
the spectral correction factors were slightly greater
than shown in Fig. 1 because sonic line averaging
for scalar fluxes is less than for momentum fluxes
(Table 1). The high quality performance of the analyt-
ical approach for sonic thermometry and momentum
flux should not be surprising because these measure-
ments involve sensors with relatively short time con-
stants and relatively small characteristic length scales.

Fig. 2 shows correction factors,w′β ′/(w′β ′)m, as
determined by numerical integration of Eq. (3) for
both the open- and closed-path systems for the sta-
bility classesz/L≤0 andz/L=1, 2. For all cases with
u<1 m/s, the corrections associated with the open-path
system exceed the closed-path corrections. For this
exceptional case, the lateral separation distance for the
open-path system is dominant (and twice that of the
closed-path system) so that the correction factor as-
sociated with the open-path system is slightly greater
than the closed-path system. Forz/L≤0 with wind
speeds between 1 and 10 m s−1 the corrections for both
systems are typically less than 1.2. However, as the
atmosphere becomes more stably stratified (increasing
z/L) the correction factor can become quite large and
can exceed a value of 2 for the closed-path system. For

Fig. 2. Numerically integrated correction factors for open- and
closed-path CO2 eddy covariance systems. The open-path instru-
ment is taken to be the instrument developed at NOAA/ATDD
(Auble and Meyers, 1991). Correction factors are given for neutral
and unstable atmospheric conditions (solid line,z/L≤0) and for
stable conditions (dotted line,z/L=1; dashed line,z/L=2). Regard-
less of atmospheric stability, for wind speeds greater than 2 m/s
the correction factor for the closed-path system exceeds that for
the open-path system.
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the open-path system the largest correction is slightly
less than 1.5, which is probably the maximum value
most researchers would be comfortable in using. In
addition, it is also worth noting that for wind speeds
greater than about 1 m/s the correction factor for the
closed-path system increases with increasing wind
speed, whereas for the open-path system they do not.
Furthermore, this divergence gets progressively worse
as stability increases. Leuning and Moncrieff (1990)
noted the same behavior. This is a direct consequence
of using a first-order system with a ‘relatively large’
and fixed time constant (i.e.τβ≥0.1 s). As wind speed
or z/L increasesfx also increases, and as a result the
low pass filtering effects associated withτβ become
progressively dominant and, in turn, they progres-
sively attenuate more high frequencies. In the case of
the open path system all time constants decrease with
increasing wind speed (Table 1) compensating for the
change infx . This is in essence why the open-path sys-
tem shows virtually no wind speed dependency when
u≥1 m/s. Consequently, at high wind speeds there is
a compensating effect with the open-path system that
does not occur with the closed-path system.

Figs. 3 and 4 show the difference between the
numerically integrated corrections factors and their
analytical approximations for the closed-path system.
Fig. 3 does not include the additional correction term,
(1+0.9p)/(1+p), whereas Fig. 4 does. Because this
correction term is not needed for neutral or unsta-

Fig. 3. Difference in the correction factors (numerical integration
— analytical method) for the closed-path eddy covariance sys-
tem as a function of atmospheric stability (z/L) and horizontal
wind speed. The correction factor does not include the additional
correction term for stable atmospheric conditions with high wind
speeds. The zero line is highlighted.

Fig. 4. Difference in the correction factors (numerical integration-
analytical method) for the closed-path eddy covariance system as a
function of atmospheric stability (z/L) and horizontal wind speed.
The correction factor includes the additional correction term for
stable atmospheric conditions with high wind speeds. The zero
line is highlighted.

ble cases thez/L≤0 difference curve is the same on
both figures. Comparison of these two figures clearly
shows the usefulness of this additional correction fac-
tor. The overall agreement is improved particularly
at wind speeds below about 10 m/s. Nevertheless, it
is possible to make further improvements. For ex-
ample, it is possible to parameterize this additional
correction term in terms of stability orτβ . This is be-
cause the degradation of the analytical approximation
at high wind speeds and stable conditions shown in
Fig. 3 gets worse asτβ increases. Nevertheless, this
is not done in the present study because the ‘true’
correction factor exceeds 2 and applying such a large
correction factor can be done only with considerable
uncertainty and skepticism. In other words, no further
development of the analytical approximation seems
warranted at this time.

Although not shown in this study, the analytical
approximation performed very well for the open-path
water vapor and CO2 eddy covariance flux scenarios.
In the water vapor case all differences were less than
0.02 (absolute) and for the CO2 case they were less
than 0.06 (absolute) for all wind speeds. The integral
correction factors for the water vapor case are very
similar to that shown in Fig. 2 for the open-path CO2
case, differing only in that they are slightly smaller
than for the CO2 because the volume averaging effects
are slightly smaller for the krypton hygrometer.

The approximations developed for this study are
based, at least in part, on the shape of the cospectrum
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as a function of stability. Horst (1997) notes that
the neutral/unstablew′T ′ cospectrum is in general
somewhat broader with a shallower peak than the sta-
ble cospectrum. Interestingly thew′CO′

2 cospectrum
given by Anderson et al. (1986) for neutral conditions
tends to peak more sharply and be less broad than
the neutral/unstablew′T ′ cospectrum of Kaimal et al.
(1972). In other words, the neutral/unstablew′CO′

2
cospectrum may resemble the stablew′T ′ cospectrum
more than the neutral/unstablew′T ′ cospectrum. This
suggested an examination of the influence that cospec-
tral shape may have on the analytical approximation.
This sensitivity analysis was performed by numeri-
cally integrating Eq. (3) forz/L=0 using the more
peaked stable cospectrum, rather than the broader
neutral/unstable cospectrum, and then comparing how
well the approximations (as given in Table 2 for the
casez/L≤0) agreed with these new numerically in-
tegrated corrections. This test was performed for all
five eddy covariance scenarios. In general the ana-
lytical formula overestimated the corrections for all
scenarios (not shown). Except for the closed path CO2
system, the differences were all less than 0.03 for
wind speeds greater than 1 m/s, and for wind speeds
less than 1 m/s the differences were all less than 0.12.
For the closed path CO2 system the differences were
less than 0.05 for wind speeds greater than 0.5 m/s
and less than 0.12 for lower wind speeds. These
results suggest that the approximation is relatively
insensitive to cospectral shape at least for a relatively
smoothz/L≤0 cospectrum. Therefore, departures of
(smooth) cospectrum from the flat terrain cospectral
shapes presented by Kaimal and Finnigan (1994) are
much less likely to cause an error in estimating the
correction factor than a shift in the cospectral peak
fx away from the values they presented. For rela-
tively ‘nosier’ cospectrum Laubach and McNaughton
(1999) also noted the importance offx in determining
the magnitude of the spectral corrections. By their
nature the present analytical approximations capture
much of the influencefx has on the spectral correc-
tions without being particularly sensitive to spectral
shape. Nevertheless, if there is evidence or reason to
believe that for any given site the cospectral shape for
z/L≤0 cospectrum is peaked more sharply than sug-
gested by the flat terrain neutral/unstable cospectrum,
then the performance of the analytical approximation
can be significantly improved by adjusting the 0.925

exponent (α of Table 2) back to a value of 1. This
change virtually eliminated any difference between
the numerical and analytical results. In other words,
for more peakedz/L≤0 cospectra there is no need for
a (non-unity) exponent.

Finally, a comparison between the numerical inte-
gration of Eq. (3) for the closed-path CO2 system and
Horst’s (1997) approximation indicated that Horst’s
(1997) formula cannot be used for closed path sys-
tems. This is because the present study includes more
cospectral attenuation effects than those involving a
first-order scalar instrument and a sonic anemometer.

3.2. Determination of Lt /Ut for a closed path system
by the maximum correlation method

For any given estimate of the flux the maximum
correlation method can be used to determine the total
lag time (total time shift,Tshift) between thew′ time
series and the scalar time series (e.g. Jenkins and
Watts, 1968; McMillen, 1988). The flux is then cor-
rected for the relative phase shift between the two sig-
nals by shifting one time series relative to the other by
the integer part offsTshift. If Tshift does not vary from
one block averaging period to another then it is easy
to include the time shift automatically as part of the
on-line or real time data processing, as is often done
for the tube lag timeLt/Ut. However, it is important to
keep in mind thatTshift 6=Lt/Ut and that in generalTshift
can vary from one block averaging period to another.

For example, as discussed in Section 2.3 and Ap-
pendix A, for any given flux estimateTshift=(1/ω)tan−1

(−ωτβ )–(l lon/u)−(Lt/Ut). Although it is true that for
a constant flow rate, the tube lag time,Lt/Ut, should
remain constant for any given flux estimate, the hori-
zontal wind speedu, can vary significantly from one
block averaging period to another. To further com-
plicate matters the longitudinal separation distance
l lon is a function of wind direction. For example, the
present study assumes that the wind direction is ba-
sically parallel to the axis (mouth) of the sonic and
that the mouth of the intake tube is located a distance
l lon directly behind theω axis. However, as the wind
direction rotates to 90◦ off axis the longitudinal sep-
aration progressively becomes a lateral separation,
which is not associated with any phase or time shift.
Therefore,l lon is influenced by the angle between the
direction of the wind and the line between theω axis
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and the mouth of the intake tube. A similar argument
can be used for any lateral separation as well. Conse-
quently, a coordinate rotation may be required to esti-
matel lon andl lat for any given block averaging period.
Finally, it is not particularly obvious what influence
the last term, (1/ω)tan−1(−ωτβ ), can have on any
determination ofTshift by the maximum correlation
method. In general this term is not well represented
in the maximum correlation method. Therefore, in
summary, any digital time shift determined with the
maximum correlation method has the potential for
some significant uncertainties and to vary with wind
direction, wind speed, and possibly the intrinsic time
constant of the instrument (which could vary with in-
strument performance). Consequently, it may be more
insightful and accurate to study the total phase shift,
φshift(ω)=ωTshift=tan−1(−ωτb)–ω(l lon/u)–ω(Lt/Ut)
as a function of frequency (e.g., Shaw et al., 1998)
than to rely on the maximum correlation method to
determineTshift.

Finally there is the issue of representing the phase
shift as a digital (integer) shift between the two time
series because a relatively low sampling frequency can
impose additional uncertainties on the flux estimates.
For example, consider a closed-path system with a
tube lag time of 2.1 s sampling at 5 Hz. Under this
scenario, this lag time can only be represented as ei-
ther 2.0 or 2.2 s. Therefore, there still remains a phase
shift associated with the remaining unresolved±0.1 s.
However, the present formulation forHphase(ω) could
be used in conjuction with any digital time shift to
correct or evaluate any uncertainty in the fluxes asso-
ciated with the unresolved portion of the lag time or
Tshift. In general therefore, given these issues concern-
ing the phase shift, it does not seem prudent to rely
solely on the maximum correlation method to deter-
mine and correct forLt/Ut or Tshift.

4. Summary and recommendations

The primary purpose of this study is to develop and
test an analytical approximation for estimating eddy
flux corrections. In the process of attempting this goal
it proved necessary to clarify some scientific aspects of
making these corrections and to summarize or derive
transfer functions that either had not been previously
considered in the literature or have not received suf-

ficient attention. A secondary goal is to clarify some
aspects of the general methodology used for deriving
transfer functions.

Results of the present study indicate that the ana-
lytical method (Tables 1 and 2) when compared with
the numerical integration of Eq. (3) gave reasonable
estimates of the correction factors for 0≤z/L≤2 and
0.1 ms−1≤u≤20 ms−1 for eddy covariance fluxes of
momentum, virtual temperature (sonic thermometry),
water vapor (open-path Krypton Hygrometer), and
open- and closed-path CO2 systems. The analytical
development of these approximations also demon-
strated that they improve the smaller they are and that
they appear to be less sensitive to variations in spec-
tral shape than to variations in the cospectral peak
fx. Horst (1997) reached similar conclusions. These
approximations are clearly easier to employ than nu-
merical approaches and are applicable even when
fluxes are so small as to preclude the use of in situ
methods. Nevertheless, the present approach is subject
to the same conditions as Horst’s (1997) approach,
including the need for (i) a horizontally-homogeneous
upwind fetch, (ii) the validity of cospectral simi-
larity, (iii) sufficiently long averaging periods, and,
preferably, (iv) relatively small corrections.

Mindful of the shortcomings, some recommenda-
tions and conclusions from this study are the following
1. For issues involving design and sensor deployment

and for routine corrections to scalar and momen-
tum eddy covariance fluxes, the results presented in
Tables 1 and 2 can be recommended as reasonable
substitutes for the integral method.

2. Because of the potential importance offx in de-
termining the magnitude of the corrections, further
scientific information and possible parameteriza-
tions of fx , or more preciselynx , as a function of
z/L are required.

3. Given the magnitude of the corrections for stable
atmospheric conditions, more research is needed on
cospectrum during stable atmospheric conditions.

4. Because the present analytical approximation is
fairly general it may prove useful for correcting
eddy covariance measurements of velocity and
scalar variances as well, although accomplishing
this requires numerical testing and parameteriza-
tions of fx or nx(z/L).
Concerning (II) and (III) above, some caution

should also be noted. As Horst (1997) points out,
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any determination offx from a typical cospectrum is
difficult, first because the individual cospectral ampli-
tudes often possess low signal-to-noise ratios, making
it difficult to locate the peak cospectral frequency
with any certainty, and second, distortions in the
cospectrum caused by frequency dependent attenua-
tion can shift the apparent peak to lower frequencies.
Therefore, when making any eddy covariance flux
measurements, researchers should give careful con-
sideration to their methods and instrumentation when
investigating cospectra and when developing transfer
functions or applying any methodology for making
spectral corrections. It is hoped that the present study
will help in many of these considerations.

Acknowledgements

The author would like to thank Dr. T. Horst for his
comments on earlier drafts of this manuscript and for
many helpful discussions on eddy covariance transfer
functions.

Appendix A. Derivation of the longitudinal
transfer function

The complex cospectrum,Cωβ , of a sonic
anemometer and a first-order instrument (denoted
by β) separated longitudinally (i.e. in the direction
of the mean horizontal wind) by a distancel lon and
employing a sampling tube of lengthLt is

Cωβ = [hω(ω)Zω][hβ(ω)Zβ
∗]

×[e−jωllon/u][e−jωλrealLt/Ut ] (A.1)

whereZω andZβ are the Fourier transforms ofω′ and
β ′; ω is the angular frequency (=2π f); u is the hor-
izontal wind speed;λreal is the real part of the first
complex eigenvalue that describes spectral attenuation
by tube flow (Massman, 1991);Ut is the tube flow
velocity; hω(ω) andhβ (ω) are the Fourier transforms
of the instruments’ filter functions; j= √−1; and the
superscript∗ indicates complex conjugation. The first
phase shift,ωl lon/u=φlon, is introduced to account for
longitudinal separation between the sonic anemometer
and the mouth of the intake tube and is parameterized
after Kristensen and Jensen (1979), who show that it

is valid providingl lon/u is small compared to the mean
lifetime of the eddies. The second phase shift,ωλreal
Lt/Ut=φt, can be immediately inferred from Eqs. (2)
and (4) of Massman (1991). Althoughλreal was not
discussed by Massman (1991), it was calculated as
part of his original analyses. His (1991 unpublished)
results showed thatλreal=1 for all �≤10 (where� is
non-dimensionalized frequency, Massman, 1991) and
that for �≤10, λreal decreases very slowly as� in-
creases, which agrees with similar analyses of Barton
(1983) and Chatwin (1973), and the observations and
discussions of Lenschow and Raupach (1991). For the
purposes of the present discussion,λreal≡1 can be as-
sumed.

Substituting for the transfer function of the first-
order instrument [hβ (ω)=1/(1−jωτβ ), with τβ as the
time constant ofβ] and rearranging Eq. (A.1) yields

Cωβ = hω(ω)

(1 + ω2τ2
β )

[cos(φlon + φt) − j sin(φlon + φt)]

× [1 − jωτβ ]ZωZβ
∗ (A.2)

As discussed by Kaimal and Finnigan (1994),
the real part of the cross spectrumZωZβ

∗ is the
true cospectrum Co, and the imaginary part is the
true quadrature spectrum Qa, i.e.ZωZβ

∗=Co–jQa.
Eq. (A.2) is further simplified by two important as-
sumptions. First, it is quite reasonable to neglect the
quadrature spectrum (Horst, 1997) and second, it can
be assumed that the sonic anemometer does not in-
troduce any time delay or phase shift between theω′
andβ ′ signals for eddies larger than the path length
of the sonic anemometer (Kristensen and Fitzjarrald,
1984). The first assumption allows the following sub-
stitutionZωZβ

∗=Co. The second identifieshω(ω) as a
real quantity, i.e.hω(ω)=Hω(ω). Finally, identifying
the measured cospectrum Com, as the real part ofCωβ

yields

Com = Hω(ω)Hβ(ω)[cos(φlon + φt)

−ωτβsin(φlon + φt)]Co (A.3)

where Hβ (v)=1/(1+ω2τβ
2). Therefore, the transfer

function associated with the phase shift caused by a
longitudinal separation of a first-order instrument with
a sampling tube and a sonic anemometer,Hphase(ω),
is cos[ω(l lon/u+Lt/Ut)]–ωτβ sin[ω(l lon/u+Lt/Ut)] as
given in the text by Eq. (6b).
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Finally, it should be noted thatHphase(ω) does
cause the cospectrum to change sign at high frequen-
cies. At ω=0, Hphase(ω)=1 as expected. However,
asω increases,Hphase(ω) decreases to 0 and beyond
a critical valueωc, can become negative. This crit-
ical value is the smallest value ofω that satisfies
cos[ω(l lon/u+ Lt/Ut)] – ωτβsin[ω(l lon/u+Lt/Ut)]=0,
which indicates thatωc is a function ofτβ , l lon/u, and
Lt/Ut.

Appendix B. Development of analytical correction
formula

The purpose of this appendix is to demonstrate
that Eq. (11) is an approximate analytical solution to
Eq. (3). As outlined in the text this is accomplished
(mathematically) using three simplifications. First, all
cospectra are approximated following Horst (1997).
Second, the transfer function of each filter is approx-
imated by an equivalent first-order transfer function.
Third, all high frequency attenuation effects can be
lumped into a single first-order transfer function.
Consequently, the following expression is used to
approximate Eq. (3):

2

π

∫ ∞

0

(
1

1 + x2

) (
a2x2

1 + a2x2

) (
a2x2

1 + a2x2

)

×
(

b2x2

1 + b2x2

) (
1

1 + p2x2

)
dx (B.1)

wherea=2π fxτh with τh as the equivalent time con-
stant of the high pass filter associated with digital
recursive filtering or linear detrending of the raw data
time series,b=2π fxτb with τb as the equivalent time
constant of the high pass block averaging filter, and
p=2π fxτe with τe as the equivalent time constant of
the low pass filter associated with sensor response,
path length averaging, sensor separation, etc. There-
fore, the first term in the integrand is the approxi-
mated cospectrum; the ‘a’ terms correspond to the
approximated high pass filters that are associated with
filters intended to insure temporal stationarity of each
of the raw data time series; the ‘b’ term is the block
averaging filter associated with the flux sampling
period; and the ‘p’ term corresponds to the approxi-
mated effects of all high frequency sensor attenuation,
e.g.τe≤5 s.

The analytical result to (B.1) is[
ab

(a + 1)(b + 1)

] [
ab

(a + p)(b + p)

]

×
[

1

(p + 1)

]
[F(a, b, p)] (B.2)

where

F(a, b, p) = a2

(a + 1)(a + p)

×
{

1 +
(

1 + p

2a

) (
1 + a + 1

b + a

)

×
(

1 + a + p

b + a

)}
(B.3)

Typical values forτh, τb, andτe allowF(a,b,p) to be
further simplified. Specifically, noting (from previous
discussions and Table 1) thatτa≈Tb/5,τb≈Tb/2.8, and
τe�τh, yields (1+((a+1)/(b+a)))(1+((a+p)/(b+a)))
≈2, which in turns can be used to simplifyF(a,b,p)
to 1−(p/((a+1)(a+p))). Substituting this last ex-
pression forF(a,b,p) into Eq. (B.2) yields Eq. (11)
of the text.
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