United States Department of Agriculture

Forest Service

Intermountain

 Forest and Range Experiment Station Ogden, UT 84401General Technical Report INT-159

December 1983

Climate of Priest River Experimental Forest, Northern Idaho

Arnold I. Finklin

THE AUTHOR

ARNOLD I. FINKLIN is a meteorologist at the Northern Forest Fire Laboratory, Missoula, Mont. Specializing in climatology, he is currently with the Fire Effects and Use Research and Development Program. Previous assignments at this location were with Project Skyfire and the Fire in Multiple Use Research, Development, and Application Program. He received a master's degree in atmospheric science from Colorado State University before joining the laboratory in 1967.

RESEARCH SUMMARY

This report describes the climate of Priest River Experimental Forest, in the northern Idaho panhandle. Primary year-round data are from the "control station" located at its present site near Forest headquarters since 1916. The analysis includes temperature and precipitation fluctuations or trends. Further details are provided by fire-weather data, summarized for valley and lookout locations. Topographic and local site differences in climate are examined, utilizing data obtained from past studies in the Forest. Climatic characteristics at Priest River are found to apply to much of the Idaho panhandle area.

CONTENTS

Introduction 1Description of the Area 1
Stations; Data; Methods 3
Fire-Weather Data 4
Averages; "Normals" 4
Condensed Climatic Summary 5
Details of the Climate 6
Precipitation 6
Annual Precipitation 6
Monthly Distribution 8
Daily Precipitation 9
Snowfall 9
Streamflow 10
Fire-season Precipitation 11
Thunderstorms 11
Precipitation Trends 11
Temperature 12
Frost-Free Period 13
Temperature Trends 15
Relative Humidity 15
Temperature and Relative Humidity During Fire
Season 16
Wind 18
Wind During Fire Season 18
Cloudiness; Sunshine; Solar Radiation 20
Comparison with Surrounding Area 21
Temperature, Annual Regime 21
Precipitation, Annual Regime 22
Afternoon Temperature, Relative Humidity, and
Wind During Fire Season 24
Concluding Remarks 25
Publications Cited 26
Appendix: Detailed Listings and Summaries of Data-Tables 14-3328

Climate of Priest River Experimental Forest, Northern Idaho

Arnold I. Finklin

INTRODUCTION

Established in 1911, the Priest River Experimental Forest, in the northern Idaho panhandle, has long served as a field laboratory for research into timber management, genetic improvement of trees, forest insects and diseases, forest fire hazard and control, watershed management, and wildlife habitat (Wellner 1976). (For brevity, this locale will also be referred to as "Priest River," "the Experimental Forest," or "the Forest.") Throughout this time, weather data have been collected to gain knowledge about the relevant weather and climatic factors. Climate and weather not only affect the trees directly, acting as controls on their growth and the distribution of forest types, but also influence the effects of fire, insects, and diseases. Many of the studies at Priest River up to 1950 are described in detail by Wellner and others (1951). For an extensive listing of publications reporting research results, see Wellner (1976).

Studies on the relationship of weather or climate to fire danger and occurrence include those by Larsen and Delavan (1922), Gisborne (1925, 1931), and Hayes (1941). Relationships between climate and forest types or cover are presented by Jemison (1934) and Larsen (1930, 1940). In the field of watershed management, Packer $(1962,1971)$ and Haupt (1979) have studied the effects of altitude, aspect, and forest cover on snow accumulation and melt. Additional references are mentioned and quoted in the course of this report.

The first comprehensive summary of Priest River climatological data was presented by Jemison (1932a); tables covering 50 years of data were prepared by Doty (1961). The present report updates and expands upon these summaries, for the purpose of providing information of use to forest researchers and managers in the Experimental Forest and adjacent areas; climatic similarity with adjacent northern Idaho is examined. Topographic and local site variations in climate are included. This report does not cover climate-related or derivative factors such as soil temperature, evaporation, fuel moisture, and fire-danger indexes. Measurements of the first two factors have been largely limited to earlier years and are included by Jemison (1932a).

Because our objective is to present climatic information, physical or technical explanations have been largely assigned to references. Where needed, elementary
background knowledge of weather and climate may be gained from Schroeder and Buck (1970); Critchfield (1974).

DESCRIPTION OF THE AREA

The Priest River Experimental Forest is located 12 air miles (20 km) north-northeast of the town of Priest River, Idaho, in the Kaniksu National Forest (fig. 1). It covers an area of 6,368 acres (2758 ha). Latitude is about $48^{\circ} 21^{\prime} \mathrm{N}$; longitude, mostly $116^{\circ} 45^{\prime}$ to $116^{\circ} 50^{\prime} \mathrm{W}$.

Figure 1.-Location of Priest River Experimental Forest (PREF), Idaho, and adjacent stations mentioned in text.

Situated near the southern end of the Selkirk Mountains, on a generally westerly slope, the Experimental Forest has an elevational range from about $2,220 \mathrm{ft}$ to nearly $6,000 \mathrm{ft}$ (675 to 1825 m). The mountainous terrain is cut by Canyon Creek and Benton Creek, leaving ridges that run in a generally east-west direction (fig. 2).

The Experimental Forest contains most of the forest cover types of the Northern Rocky Mountains. The percentage-area distribution has changed with time, due to cutting, disease, insects, and natural succession. Western white pine (Pinus monticola) was, for many years, the most abundant timber type; now (Wellner 1976) the dominant types are western larch-Douglas-fir (Larix occidentalis-Pseudotsuga menziesii) and Douglasfir, followed by western hemlock-grand fir (Tsuga
heterophylla-Abies grandis) and subalpine fir (Abies lasiocarpa). About two-thirds of the forest cover is over 100 years old.
Since its establishment, there have been no large wildfires within the Experimental Forest other than the Highlanding Fire in 1922 (Wellner 1976); this burned 400 acres (160 ha). There were close calls from the 18,000-acre (7 300-ha) Quartz Creek Fire in 1926 (Gisborne 1927) and the 31,000 -acre (9450 -ha) Freeman Lake Fire in 1931 (Jemison 1932b). These fires came within 1 to 2 miles of the Experimental Forest. The Sundance Fire in 1967 did not threaten this Forest but occurred as close as 7 miles (11 km) to the north; it burned more than 50,000 acres (20000 ha) in 9 hours (Anderson 1968).

Figure 2.-Topography of Priest River Experimental Forest and locations of stations or measurement places mentioned in text. Elevation contours (labeled in hundreds of feet) are drawn at $500 \cdot \mathrm{ft}(152 \cdot \mathrm{~m})$ intervals, except for dashed lines at $100 \cdot \mathrm{ft}(30 \cdot \mathrm{~m})$ intervals. HQ denotes control station at headquarters; CC, clearcut, or fire-weather station site; HC, half-cut site; FT, full-timbered site; BD, Benton Dam; BS, Benton Spring; GIS, Gisborne Lookout; EXP, Experimental Lookout. 27N, 27S, 38N, 38S, 55N, and 55S are altitude-aspect station sites on north (N) and south (S) slopes at 2,700, 3,800 , and $5,500 \mathrm{ft}(825,1160$, and 1675 m$)$ elevation. BF is original control station (1912-16) on Benton Flat; SW and NE, southwest and northeast slope stations during same years. SC denotes end points of Benton Spring snow course (dashed line); TR, transect for snow studies. Benton Meadow snow course is in HQ vicinity.

STATIONS; DATA; METHODS

Station locations, past and present, are included in figure 2. The year-round data summarized in this report are primarily from the "control" weather station, located near the Experimental Forest headquarters building (figs. 3A and 3B); elevation is $2,380 \mathrm{ft}(725 \mathrm{~m}$). This station has been at its present site since 1916; the original control station was $0.25 \mathrm{mi}(0.4 \mathrm{~km})$ to the west-northwest-in a former clearing on Benton flat-at a similar elevation. The recorded data are based on a 24 -hour period ending at 5 p.m. P.s.t., the daily observation time. Such a long, continuous record at the same site is exceptional in the Northern Rocky Mountains. There has, however, been some change in the immediate surroundings due to growth of trees. The station was in the center of a clearing in earlier years (Jemison 1932a), but now the forest edge is much closer.

Most of the control station data through 1977 were obtained from a magnetic tape provided by Dr. Myron Molnau, State Climatologist, University of Idaho, Moscow. With this tape, 10-day summary tables were produced by computer programs described by Bradshaw (1981). Further data were hand-tabulated from "Climatological Data" monthly summaries for Idaho, published by the National Oceanic and Atmospheric Administration (NOAA) and predecessor agencies such as the U.S. Weather Bureau.

Figure 3.- "Control" weather station, Priest
River Experimental Forest. A: Location, near headquarters building. B: Close-up view; precipitation gages toward left-weighingtype gage on platform, thermometer shelter in center.

The year-round precipitation data have been augmented by measurements at two additional stations (figs. 4 A and 4 B)-located at Benton Dam ($2,650 \mathrm{ft}$ [808 m]) and near Benton Spring (at 4,775 ft [1455 m]); records date from 1941 and 1960, respectively. The amounts at Benton Dam-from a weighing-type recording gage-were compiled from U.S. Weather Bureau (1964), original forms, and "Hourly Precipitation Data" summaries published for Idaho. The amounts for Benton Spring-read monthly from a storage gage-were obtained mostly from an annual publication, "Storage-gage Precipitation Data for the Western United States," discontinued in 1977. More recent data for this station and Benton Dam were provided by Priest River annual reports (for example, Carpenter 1979) and personal communication from Mr. Calvin L. Carpenter, Superintendent of Priest River Experimental Forest.

This report also utilizes monthly snowpack datadepth and water content-from snow-survey courses adjoining Benton Spring and Benton Meadow (near the control station), published by the Soil Conservation Service, as well as streamflow data recorded at Benton Dam. The latter were obtained from Stage (1957) and the Forestry Sciences Laboratory, Moscow, Idaho. The year-round monthly temperature averages at mountaintop level have been estimated from those at two former

Figure 4.-Additional stations at Priest River Experimental Forest. A: Benton Dam precipitation and stream-gaging station; B: Benton Spring precipitation gage, storage type with wind shield.
stations-Mullan Pass, Idaho, and Mount Spokane, Wash.-obtained, respectively, from U.S. Weather Bureau (1964) and "Climatological Data" monthly summaries for Washington.

Fire-Weather Data

Climatic details for the fire season were obtained from tapes at the National Fire-Weather Data Library, Fort Collins, Colo. (Furman and Brink 1975), used with the computer programs of Bradshaw (1981); also from original fire-weather observation forms filed at the Northern Forest Fire Laboratory, Missoula, Mont. The data include relative humidity, wind, and lightning activity, as well as temperature and precipitation. In the Priest River valley area, the fire-weather data base covers the months May through October. The observations were begun in 1922; official records were from the control station until 1945, thereafter from the clearcut flammability-station site (Hayes 1941). This location (figs. 5 A and 5 B) is $2,800 \mathrm{ft}(850 \mathrm{~m}$) southwest of the control station and $80 \mathrm{ft}(25 \mathrm{~m})$ lower in elevation. Observations were discontinued in 1978. Comparative data have been summarized for the continuing fireweather (or fire-danger rating) station 17 miles (27 km) to the north-northwest at Priest Lake Ranger Station (fig. 5 C), elevation $2,590 \mathrm{ft}(790 \mathrm{~m})$; the station was located 4 miles (6 km) further north prior to 1964. Until about 1970, the observation season at Priest Lake generally covered only the months June through September.

Fire-weather data, limited to July-August, are also summarized for Gisborne Mountain Lookout (figs. 6AD), which maintained observations from 1933 until 1978. (This lookout was named Looking Glass prior to 1951.) Elevation at the tower base is $5,595 \mathrm{ft}$ (1706 m), but the weather station (except for wind measurements) was on slightly lower ground to the southeast. The mountaintop observations were originally taken at Experimental Lookout, $5,983 \mathrm{ft}$ (1824 m), which was located at the southeastern tip of the Forest, 1.4 miles (2.2 km) from Gisborne; records date from 1917 (Larsen 1922a) to 1932.

The fire-weather observation time was at $4: 30$ or 5 p.m. P.s.t. in earlier years and near 3 p.m. from about 1950 through 1973, after which it was changed to 12 noon. The respective changes were made in accordance with regional and national standards. Until the late 1940's, observations were also made in the morning at 8 a.m.

Our examination of topographic and local site variations in climate utilized recording charts from former altitude-aspect and flammability stations (Jemison 1934; Hayes 1941; Wellner 1976). These charts, from the 1930's, are filed at the Northern Forest Fire Laboratory.

Averages; "Normals"

Climatic averages presented in this report include those for standard 30-year "normal" periods, as adopted by international convention; the normal values are revised every 10 years. The 30 -year length tends to balance out short-term fluctuations, but actually a longer period such as 50 years is desirable for precipitation (World

Figure 5.-A and B: Fire-weather station in clearcut area, Priest River Experimental Forest; discontinued in 1978. View toward southeast, in 1966 (A); site as it appeared in 1982, looking north (B). C: Fire-weather station at Priest Lake, Idaho, at airstrip across road from Ranger Station. Wind sock and anemometer are on pole to left (southsoutheast), outside of picture.

Figure 6.-Views at or from Gisborne Mountain Lookout, Priest River Experimental Forest. A: Tower, looking west. B: Fire-weather station, discontinued in 1978, as it appeared in 1982. Site is short distance southeast of tower. C: View to north, showing Priest Lake and Sundance Mountain (right). D: View to south.

Meteorological Organization 1967) and has thus been employed here. A 20 -year data sample, however, has been used for averages (and frequency distributions) for some of the fire-weather elements; plotted 10-day values have been smoothed. This shorter length is based on availability of data at an unchanged observation time. In other cases, adjustments of short-term averages to longer (or standard) periods have been made, based on the "ratio method" for precipitation and the "difference method" for temperature. These methods, described further by Oliver (1973), use comparisons with adjacent stations having the full length of record.

Detailed listings and tabular summaries of data are given in the appendix. Further climatic details for Priest River and the surrounding northern Idaho area may be found in tables presented by the Pacific Northwest River Basins Commission (1968).

CONDENSED CLIMATIC SUMMARY

The climate of the Priest River area, like that of other places, is controlled by a combination of large-scale and small-scale factors, whose effects may vary with the
time of year. The large-scale factors here include latitude, relative position on the North American continent, prevailing hemispheric wind patterns, and extensive mountain barriers. Small-scale or local factors include the topographic setting and position (valley, slope, or ridge location), as well as orientation or aspect, and vegetative cover. Elevation may cover various scales.
Broadly, the Priest River-Idaho panhandle climate is transitional between a northern Pacific coastal type and a continental type. The Pacific influence is noted particularly by the late autumn and winter maximum in cloudiness and precipitation; also in the relatively moderate average winter temperatures, compared with areas east of the Rocky Mountains. Summer is characteristically sunny and dry, though July and August are the only distinct summer months. July and August are thus also the peak fire-danger months.
Annual precipitation (rain and melted snow) averages 32 inches (817 mm) at the Forest headquarters; about 50 inches (1270 mm) at locations near $5,500 \mathrm{ft}(1675 \mathrm{~m}$) elevation. Wettest months are normally November, December, and January. Close to 60 percent of the annual total occurs during the period November through

March. A slight, secondary peak in precipitation normally appears in May and June, followed by a sharp decrease in July. Snowfall accounts for more than 50 percent of the total precipitation at elevations above $4,800 \mathrm{ft}(1460 \mathrm{~m})$. Snow cover usually persists in the valley from early December through the end of March; seasonal maximum depth averages 30 inches (75 cm). High-elevation snowpack reaches a depth of $5 \mathrm{ft}(1.5 \mathrm{~m})$ or more in March and April and may linger into June.

The main season of lightning (or thunderstorm) activity extends from late May through August. Storms occur within the Priest River vicinity on an average of 3 or 4 days each in June, July, and August.

Monthly mean temperatures at headquarters range from $24^{\circ} \mathrm{F}\left(-4^{\circ} \mathrm{C}\right)$ in January to $65^{\circ} \mathrm{F}\left(18^{\circ} \mathrm{C}\right)$ in July; these are midpoint values between the average daily maximum and minimum temperatures (based on a 5 p.m. observation time). The annual mean is $44^{\circ} \mathrm{F}\left(7^{\circ} \mathrm{C}\right)$. A large diurnal range occurs in summer, with July maximum temperatures averaging $83^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{C}\right.$); January maximums average $30^{\circ} \mathrm{F}\left(-1^{\circ} \mathrm{C}\right)$. Site differences in the valley, as related to coverage by timber canopy, can make a difference of close to $10^{\circ} \mathrm{F}\left(6^{\circ} \mathrm{C}\right)$ in summertime diurnal range. Extreme temperatures have been as high as 103° to $105^{\circ} \mathrm{F}$ (about $40^{\circ} \mathrm{C}$) and as low as -36° $\mathrm{F}\left(-38^{\circ} \mathrm{C}\right)$. Temperature inversions are commonplace, particularly on the clear summer and early autumn nights. The July mean temperature at Gisborne Lookout is only $4^{\circ} \mathrm{F}$ lower than at headquarters ($3,200 \mathrm{ft}$ [975 m] lower in elevation), due to daily minimums averaging 4° F higher.

The frost-free season, defined as the period with minimum temperatures staying above $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$, has an average length in the valley of 96 days at headquarters but only 65 days in a clearcut area (at the former fire-weather station); close to 120 days under a full timber canopy. The season is longer at adjacent slope locations, particularly in the "thermal belt" around $3,500 \mathrm{ft}(1070 \mathrm{~m}$), but is less than 100 days again at $5,500 \mathrm{ft}(1675 \mathrm{~m})$.

Relative humidity is usually high throughout the day in late autumn and winter, averaging 70 to 80 percent or higher in midafternoon. In July and August, afternoon values average near 35 percent in the valley and 45 percent at $5,500 \mathrm{ft}$. Humidity below 20 percent was observed in the clearcut on about 20 percent of the days from late July to late August. Summer nighttime humidity in the valley typically recovers to over 90 or 95 percent by dawn. On the slopes above the temperature inversion, at the same time, humidity may average only 50 to 60 percent.

Winds in this area have a prevailing (most frequent) direction from the southwest during all or most of the year. Local terrain effects modify the larger-scale wind that occurs in the adjacent free atmosphere. A nighttime drainage effect is indicated in the headquarters area by a prevailing early morning wind direction from the northwest during the fire-weather season. Observed windspeeds are quite low throughout the year in the valley area, due in part to the sheltering by surrounding timber. Summer afternoon winds at $20 \mathrm{ft}(6 \mathrm{~m})$ above ground in the clearcut average 3 to $4 \mathrm{mi} / \mathrm{h}(5-6 \mathrm{~km} / \mathrm{h})$;
nearby above the treetops, about $6 \mathrm{mi} / \mathrm{h}(10 \mathrm{~km} / \mathrm{h})$; at mountaintop locations, about $9 \mathrm{mi} / \mathrm{h}(15 \mathrm{~km} / \mathrm{h})$.

Two summers of continuous wind recording at Gisborne Lookout showed highest average speeds around midnight, between 10 and $11 \mathrm{mi} / \mathrm{h}(17 \mathrm{~km} / \mathrm{h})$; a minimum in late morning. This pattern is nearly opposite of that observed in the valley.
Sunshine duration is at a minimum in December, when it may average only 20 percent of the maximum possible, giving a monthly total of about 50 hours; this is estimated from adjacent stations. July has close to 80 percent of the maximum possible, with about 375 hours of sunshine in fully exposed locations.

A basic statistical summary of the climate is given in table 1.

DETAILS OF THE CLIMATE Precipitation

ANNUAL PRECIPITATION

Annual precipitation (rain and melted snow) at Forest headquarters averages 32 inches (817 mm), based on the 50 years 1931-80. A listing of the monthly and annual amounts for each year of record is given in table 14 (appendix); successive 10 -year averages and 30 -year normals are summarized in table 2. Ten-day averages and extremes are shown in table 15 (appendix). Water-year (October-September) totals have ranged from 17 inches (442 mm) in 1976-77 to 47 inches (1188 mm) in 1973-74. Ten-year (decadal) annual averages have ranged from 26 inches (650 mm) during 1921-30 to 34 inches (861 mm) during 1951-60. A 40-year comparison shows annual precipitation averaging about 2 percent greater at Benton Dam, 1.3 miles (2.1 km) to the east.
The Benton Spring storage gage, near 4,800 ft (1 460 m), indicates a relatively small elevational increase in precipitation, with the annual total here averaging 37 inches (950 mm). The Benton Spring snow survey data, however, indicate that the gage catch is too low. For example, the average snowpack water content for 1963-77 (latest 15-year period used by the USDA Soil Conservation Service for comparative purposes) shows an increase of 5.6 inches (142 mm) during January and 3.8 inches (97 mm) during February; the corresponding average precipitation inside the gage was only 4.6 inches $(117 \mathrm{~mm})$ and 2.9 inches (75 mm), respectively.

Gage catch can easily be reduced by wind (Hayes 1944)-particularly in the case of snow (Wilson 1954; Linsley, Jr. and others 1958), but the Benton Spring gage site (fig. 4B) is rather sheltered. The gage itself is equipped with a standard shield to reduce wind effects. A possible alternate explanation is interception of windborne snow by the sheltering trees. On the snow course, there is a noticeable variation in snowpack between measuring points (from which an average is obtained), although this is attributed to differences in canopy situated more directly overhead (communication from Calvin L. Carpenter). An adjustment of the Benton Spring precipitation, as described below, gave an annual average of 42 inches (1070 mm).
Much heavier precipitation is indicated, by snow surveys, to the east in the Schweitzer Basin ski area,
Table 1．－Climatic averages and extremes at Priest River Experimental Forest control station，Based on 24 hour perlod ending at 5 p．m．P．s．t．，and on years $1931-80$ for averages and

돋	Wind		Average number of days							
			$\begin{aligned} & \text { La/ } \\ & \frac{\mathbf{\omega}}{巴} \end{aligned}$		$\begin{aligned} & \text { 各 } \\ & \text { 亭 } \end{aligned}$					
Jan．	1.3	SW	5	5	21	18	9		0	30
Feb．	1.4	SW	7	7	14	13	5	＊ 8	0	26
Mar．	1.9	SW	9	10	12	13	3	＊	0	28
Apr．	2.1	SW	10	9	11	11	＊	1	0	21
May	2.1	SW	11	10	10	11	＊	3	－	7
June	2.0	SW	10	10	10	11	0	4	1	1
July	1.9	SW	19	8	4	5	0	，	7	＊
Aug．	1.7	SW	19	7	5	6	0	，	5	1
Sept．	1.5	SW	14	7	9	8	＊		1	6
Oct．	1.2	SW	11	7	13	11	－	＊	0	15
Nov．	1.1	SW	5	6	19	14	3	＊	0	24
Dec．	t． 2	SW	5	4	22	17	8		0	29
Year	1.6	SW	126	89	150	438	28	16	14	188
${ }^{1}$ For period 1931－80．Highest in earlier years：March， 70 in 1915；June， 97 in 1912；July， 102 In 1924. Lowest in eänler years：June， 24 in 1918；July， 29 in 1917；Augusi， $26 \ln 1914$. ${ }^{2}$ For perlod $1912.3 \mathrm{~B}^{2}$ ；measurements 8 ft above ground． ${ }^{3}$ For period 1912－47． ${ }^{4}$ For period 1981－70． $5_{*}^{+}=$Occurrence also in earller years． ${ }^{\text {＊＊}}=$ Less than onehalf． ${ }^{7} \mathrm{~T}=$ Trace，an amount too small to measure．										

Table 2.-Ten-year (decadal) and 30-year "normal" average precipitation, inches, Priest River Experimental Forest control station

Period	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
Decade													
1912-20 (9 years)	3.79	2.96	2.77	2.18	2.55	2.00	1.34	1.30	1.97	2.28	4.30	3.57	31.01
1921-30	3.43	2.80	1.90	1.76	1.62	1.63	. 41	1.25	1.68	2.45	2.94	3.76	25.60
1931-40	4.52	2.99	2.90	1.81	1.26	1.82	. 73	. 40	1.46	2.90	3.55	5.72	30.05
1941-50	3.15	3.01	3.03	2.18	2.94	3.28	1.10	. 99	1.88	3.91	4.00	4.05	33.52
1951-60	5.26	3.41	2.59	2.09	2.35	2.71	. 88	1.28	1.46	3.06	4.22	4.57	33.88
1961-70	4.75	2.81	2.85	1.97	2.32	2.17	. 83	1.21	1.64	2.68	4.27	4.95	32.47
1971 -80	3.72	3.29	2.35	1.99	2.54	1.60	1.43	1.88	1.52	1.57	4.10	5.00	30.99
30 Years													
$\begin{gathered} 1912-40 \\ (29 \text { years }) \end{gathered}$	3.92	2.92	2.51	1.91	1.78	1.81	. 81	. 97	1.69	2.55	3.57	4.37	28.81
1921 -50	3.70	2.93	2.61	1.92	1.94	2.24	. 75	. 88	1.67	3.09	3.50	4.51	29.74
1931-60	4.31	3.13	2.84	2.03	2.18	2.59	. 90	. 89	1.60	3.29	3.92	4.78	32.46
1941 -70	4.39	3.08	2.83	2.08	2.54	2.71	. 94	1.16	1.66	3.22	4.17	4.52	33.30
1951-80	4.58	3.17	2.60	2.02	2.41	2.16	1.05	1.46	1.54	2.44	4.20	4.84	32.47

6 to 7 air miles (10 km) from Benton Spring (see later section). Within the Experimental Forest, an annual average of about 50 inches (1270 mm) is indicated at $5,500 \mathrm{ft}(1675 \mathrm{~m})$, based on 4 years of intensive snow sampling (Packer 1962); an adjustment has been made for the abnormally high snowpack during this period, 1949-52. The seasonal maximum water content at this elevation averaged 37 inches (940 mm). The corresponding average at $4,800-\mathrm{ft}$ ($1463-\mathrm{m}$) locations was 23 inches (585 mm); it was actually a few inches more than this at Benton Spring (with snowpack about 25 percent above normal).

MONTHLY DISTRIBUTION

The pattern of monthly precipitation (fig. 7) shows a decided peak in late autumn-early winter. Amounts at Priest River headquarters average 4.0 inches (100 mm) or greater in November, December, and January, with

close to 5.0 inches (125 mm) in December. Extreme monthly totals have reached 11 inches (285 mm). A slight secondary peak occurs in May and June, followed by a sharp decrease to the summertime minimum in July and August. Monthly amounts then average around 1.0 inch (25 to 29 mm). The averages shown for Benton Spring include an adjustment for the suspected deficiency, mentioned above. The adjustment, limited to the snow season, used a smoothed curve of ratios of Benton Spring/headquarters monthly precipitation based on 22 years; the ratios-initially relatively low in winter-were extrapolated upward from those in spring and early autumn. About 59 percent of the annual precipitation at headquarters is received during the months November through March; the proportion is 60.5 percent at Benton Spring using the adjusted averages, only 56 percent using the observed gage catch.

Figure 7.-Monthly average precipitation, Priest River Experimental Forest. Lower panel: At headquarters (control station), based on 50 years 1931-80; snowfall (open bars) is plotted on scale (right side) proportional to that of precipitation, assuming an average of 1.0 inch water equivalence from 12.0 inches snowfall. Upper panel: Near Benton Spring ($4,800 \mathrm{ft}$), 22 years of storage gage data adjusted to 1931-80 (hatched bars or portions of bars); averages further adjusted for deficient gage catch of snow are shown by shaded bar extensions.

DAILY PRECIPITATION

Frequencies of various daily precipitation amounts at headquarters are shown in table 16 (appendix). The maximum on record for any day (5 p.m. to 5 p.m.) is 2.4 inches (61 mm) in November 1959; Benton Dam received 2.5 inches (63 mm) during a different 24 -hour period in the same storm. These amounts are well below the 24 -hour maximum expected according to maps by Miller and others (1973); they show 3.6 inches (91 mm) for a 100 -year period and 3.0 inches (76 mm) for only a 25 -year period.
Maximum 1-hour precipitation at Benton Dam is summarized in table 3. The extreme for the 40-year period, $1941-80$, is 0.90 inch (23 mm), recorded in both June 1948 and July 1958. This amount is somewhat higher than that calculated for a similar period using the above reference; a 1 -hour extreme of 1.0 inch (25 mm) is calculated for a 100-year period. A 6 -hour extreme of 1.5 inches (38 mm) occurred at Benton Dam in December 1961. The cool-season precipitation, nevertheless, occurs with relatively low 1 -hour maximum amounts; it accumulates over long durations. For the years 1941-66, Benton Dam had an average of 147 hours in both December and January with 0.01 inch (0.25 mm) or more, compared with 19 hours in July and 27 hours in August.

SNOWFALL

Annual snowfall at headquarters averages 88 inches (225 cm), based on the years 1931-80. This amount represents the sum of individual daily accumulations, before melting or settling occurs. The monthly average snowfall is included in figure 7; the averages are plotted on a scale such that their approximate water equivalent may be compared with the total precipitation (shown by the shaded bars). For this purpose, we assumed an overall snowfall density of 0.083 -that is, 1.0 inch (25 mm) of water in 12.0 inches (30.5 cm) of newly fallen snow, though much variation can be expected between individual storms. A similar average density has been found elsewhere (Landsberg 1958).
Monthly and annual amounts for each year (or snow season) of record are listed in table 17 (appendix). December and January are usually the snowiest months, with 50 -year averages of 25 and 29 inches (63 and 74 cm), respectively, at headquarters (table 1). Even so, figure 7 indicates that over half of the December precipitation here occurs as rain; almost half in January. Overall, about 23 percent of the annual precipitation is contributed by snowfall.

Seasonal snowfall totals at headquarters have ranged from 26 inches (66 cm)-most recently in 1976-77-to 154 inches (391 cm) in 1949-50. Monthly totals have been as high as 89 inches (226 cm) in January 1969; only 2 inches (6 cm) fell during January 1981. Maximum 1 -day snowfall of 20 inches (51 cm) occurred in December 1951; 2-day snowfall reached 25 inches (64 cm) in January 1951.

Annual snowfall probably averages over 300 inches $(760 \mathrm{~cm})$ at a $5,500-\mathrm{ft}(1675-\mathrm{m})$ elevation. Here, it contributes about 55 percent of the annual precipitation (based on stations in the northern half of Idaho [Finklin 1983]).

Snow Cover; Snowpack.-In an average season, the headquarters area has about 120 days with 1 inch or more of snow cover. The number of such days has varied from 152 in 1935-36 to 35 in 1980-81. The period of continuous, day-to-day, cover has a median duration from December 5 to March 30. This cover has begun as early as November 10, 1931, and has remained as late as April 18, 1975. Snow cover was present during the entire month of January in all but 2 of the 50 years 1931-80 and throughout February in all but 4 years. But in 1981, there was practically none during these two months.
Snow depth at headquarters (table 4) has been as great as 54 inches (137 cm), in January 1969, compared with an average seasonal maximum of 30 inches (75 cm). The maximum occurs more frequently in February than in January. At the Benton Spring snow course, the depth usually peaks in March or April; it averages close to $5 \mathrm{ft}(1.5 \mathrm{~m})$ on the March 1 and April 1 monthly survey dates. A record depth of 93 inches (236 cm) was measured in 1956, on March 1. The snow lasts well into May here and into June at higher locations. Water content on April 1 at Benton Spring averages 20 inches $(515 \mathrm{~mm})$. To the east, water content averages 31 inches $(785 \mathrm{~mm})$ at Schweitzer Bowl (at a similar, $4,800-\mathrm{ft}$ [$1463-\mathrm{m}$] elevation) and 48 inches (1215 mm) at Schweitzer Ridge ($6,200 \mathrm{ft}$ [1890 m]).

Detailed measurements cited by Wellner and others (1951) show much less snowpack on south-facing slopes than on north-facing slopes- particularly toward late season (March and later). The ground becomes bare about a month earlier on the south slopes at lower and middle elevations; perhaps 2 weeks earlier on the south slope at $5,500 \mathrm{ft}(1675 \mathrm{~m})$. Consistently more snow was indicated in forest openings than under timber, except near the time of disappearance. Larsen (1940) showed similar slope-related differences, comparing lower-slope

Table 3.-Monthly maximum 1-hour precipitation, inches, at Benton Dam, Priest River Experimental Forest, during 40 years 1941-80

Item	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Annual												
Median	0.15	0.15	0.15	0.13	0.17	0.20	0.19	0.21	0.15	0.15	0.15	0.15
Highest	.40	.32	.28	.28	.50	.90	.90	.52	.81	.29	.27	.29
Year	1966	1972	1958	1961	1978	1948	1958	1964	1942	1961,	1942	1961
										1970		1948
											1958	

Table 4.-Average snow depth (D) and snowpack water content (W), at end of month; maximum snow depth (Max D) during month; Priest River Experimental Forest

Location, period of record		Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May
Control station,									
$1931-80$	D	*1	3	12	20	19	5	0	
1912-81	Max D	5	21	41	54	51	50	28	
	Year	1919	1915	1964	1969	1969	1916	1917	
Benton Meadow, $1937-80$									
Benton Spring,$1937-80$									
	D		12	31	47	55	56	36	0
	W		M ${ }^{2}$	8.4	13.7	18.2	20.4	15.4	0

$1^{* *}=$ Occurrence too rare for meaningful average.
${ }^{2} \mathrm{M}=$ Missing; not measured.
stations having southwest and northeast aspects. Elevation, aspect, and canopy effects on snowpack are analyzed by Packer (1962), using statistical methods. Packer (1971) also analyzes the effects on snowmelt.

STREAMFLOW

The streamflow (or runoff) regime of Benton Creek is compared in figure 8 with that of precipitation. (The precipitation, based on the 50 years 1931-80, is within 1 percent of its average for the 34 years, 1940-73, of available runoff data.) The effect of water storage in snowpack and subsequent release with snowmelt is very
evident. Overall, 32 percent of the total runoff occurs in May; 53 percent in April and May combined. The average date of peak runoff is May 4; median date, May 10. The peak has occurred as early as February 26, in 1958, and as late as May 29, in 1962. The springtime peak flows are analyzed in detail by Haupt (1968).
For the 950 -acre (385 -ha) drainage area above Benton Dam, annual runoff averages about 1,275 acre- ft ($157 \mathrm{ha}-\mathrm{m}$), from a discharge rate averaging just $1.8 \mathrm{ft}^{3} / \mathrm{s}$ $\left(0.05 \mathrm{~m}^{3} / \mathrm{s}\right)$; the rate averages $6.6 \mathrm{ft}^{3} / \mathrm{s}\left(0.19 \mathrm{~m}^{3} / \mathrm{s}\right)$ in May. Highest daily average discharge was $22.6 \mathrm{ft}^{3} / \mathrm{s}(0.64$ $\mathrm{m}^{3 / \mathrm{s}}$) on April 27, 1952. Depth of runoff distributed

Figure 8.-Comparison of average water-year regimes of precipitation and runoff in Priest River Experimental Forest. Precipitation is a two-station average, from control station and Benton Spring, based on or adjusted to 50 years 1931-80. Runoff is that of Benton Creek, measured at Benton Dam, during 1940-73. Monthly and cumulative monthly amounts are in percentage of water-year total.
uniformly over the drainage would be 16 inches (400 mm), or about 40 percent of the areal average precipitation of close to 40 inches (1000 mm). About 24 inches $(600 \mathrm{~mm})$ of this precipitation is apparently utilized in evapotranspiration. Annual runoff depth has varied from 6.0 inches (153 mm) in water year 1944 to 25.3 inches (643 mm) in 1956.
The water-year runoff has only a fair correlation with water-year precipitation at the control station; the $34-$ year correlation coefficient, r , was 0.71 . Using September-August, September-June, or October-June precipitation, r was 0.78 to 0.79 . Dividing the precipitation into seasons, Stage (1957), with 16 years of data, obtained a multiple regression having a correlation coefficient of 0.92 .

FIRE-SEASON PRECIPITATION

Ten-day details of valley-area precipitation (taken from tables 15 and 16, appendix) are given in figure 9; these cover the official fire season, May through October, and about a month before and after. Much of the irregularity seen in the averages and frequencies, even with 50 years of data, is probably accidental. The broader features show the large decrease in precipitation that usually commences around early July and a moderate increase

Figure 9.-Average regimes of 10 -day precipitation and thunderstorm occurrence, Priest River Experimental Forest headquarters area (control station); based on 50 years 1931-80. In bottom panel, totals for 11-day periods have been adjusted to 10 days.
in late August, with little further change during September; then, an upward trend to wet late autumn conditions. Although July and August are normally dry, large variation can occur from one year to another and between decades (tables 2 and 14). At the control station, the 2 -month precipitation totaled 0.3 inch (8 mm) in 1967; 6.4 inches (163 mm) in 1978.

Ten-day averages and frequencies are presented also for Priest Lake Ranger Station and Gisborne Lookout, in tables 18 and 19 (appendix); these cover a shorter season and some of the periods have incomplete data. Overall, the July-August precipitation at Priest Lake averages about 10 percent greater than at the Priest River control station. For the same months, Gisborne Lookout receives about 25 percent more than the control station.

THUNDERSTORMS

The main season of lightning (or thunderstorm) activity extends from late May through August (fig. 9, top panel). During this time, storms within about a 20 -mile ($32-\mathrm{km}$) distance occur on about 10 to 15 percent of the days. Thus, July and August, the peak fire-danger months, each have an average of 3 days with storms observed at the valley location; 4 days at Gisborne Lookout. Detailed lightning observations at this lookout during 1956-71 for Project Skyfire, Northern Forest Fire Laboratory, showed that 73 percent of the JulyAugust storms began between 12 noon and 12 midnight, P.s.t. Based on 15 -minute counts of cloud-to-ground discharges during 1960-71, the Lightning Activity Level (LAL) as defined in the National Fire Danger Rating System (Deeming and others 1977) was 2 on 51 percent of the thunderstorm days (or on 6 percent of all days). LAL was 3 on 21 percent of the storm days; 4 , on 7 percent; 5 , on 21 percent.

PRECIPITATION TRENDS

Precipitation trends or fluctuations during the past 70 years are depicted in figure 10, using two forms of smoothing. These employ 11-year running means and 5 -year weighted means, both representing overlapping sequences of years. The first form gives equal weighting to each year's data; the second, portraying short-term fluctuations, applies successive weighting of $1,4,6,4$, and 1. Values are plotted as percentages of the 1931-80 average.

The graphs of annual precipitation show the wellknown dry period centered in the 1920's and 1930's. Analyzing tree rings in northern Idaho, Leaphart and Stage (1971) found that this period represented the most adverse growth conditions for western white pine in three centuries. Following a recovery centered in the 1950's, an overall downward tendency is indicated in more recent years. The "winter" (November-March), late spring (May-June), and summer (July-August) graphs also show dry conditions in the 1920's and 1930's, but they display some opposing tendencies since that time. For example, May-June precipitation was rather high in the 1940's (opposite of the winter pattern), then declined until very recently; while July-August precipitation

Figure 10.- Precipitation fluctuations during 70 years since 1912 at Priest River Experimental Forest, control station. Elevenyear running means (solid lines) and 5 -year weighted means (dashed lines) are plotted at midpoint years (for example, the means for 1970-80 and 1973-77 are plotted at 1975).
shows an irregular increase into the 1950's, then an exceptional increase during the 1970 's. The 5 -year weighted mean summertime precipitation centered around 1976, 1977, and 1978 was nearly 200 percent of the 1931-80 average; this mean had been as low as 25 percent in the early 1930's.

Graphs representing stations farther south in northern Idaho and extreme eastern Washington (Finklin 1983) show similar precipitation characteristics. For earlier years, these graphs indicate a relatively wet period near the beginning of this century.

Temperature

The normal yearly course of temperature is portrayed in figure 11, for both headquarters and a 5,500 ft (1 675 m) elevation. Averages at this mountaintop level have been estimated from those atop Mount Spokane, Wash., and Mullan Pass, Idaho, at about 5,900 to $6,000 \mathrm{ft}$ (1800 to 1835 m). The estimates-adjusting for elevation and period of record-were tuned to be consistent with the July and August averages from Gisborne Lookout.

For the normal period, 1951-80, average daily maximum temperatures at headquarters range from $30^{\circ} \mathrm{F}$ $\left(-1^{\circ} \mathrm{C}\right)$ in January to $82^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{C}\right)$ in July; average

Figure 11.-Average daily maximum ana minimum temperatures at valley and mountaintop locations, Priest River Experimental Forest; based on 24 hours ending at 5 p.m. and 30 -year normal period, 1951-80. Mountaintop averages are estimated (see text).
minimums range from $18^{\circ} \mathrm{F}\left(-8^{\circ} \mathrm{C}\right)$ to $47^{\circ} \mathrm{F}\left(8^{\circ} \mathrm{C}\right)$. Monthly mean temperatures-taken as midpoint values between the maximum and minimum-are thus $24^{\circ} \mathrm{F}$ $\left(-4^{\circ} \mathrm{C}\right)$ in January and $65^{\circ} \mathrm{F}\left(18^{\circ} \mathrm{C}\right)$ in July; the annual mean is $44^{\circ} \mathrm{F}\left(7^{\circ} \mathrm{C}\right)$. These means are based on 24 -hour maximum and minimum data observed at 5 p.m. P.s.t., and may be about $1^{\circ} \mathrm{F}$ higher than means based on actual calendar-day data or individual hourly readings (explanations are given by Rumbaugh 1934; Baker 1975). At $5,500 \mathrm{ft}(1675 \mathrm{~m}$), the monthly means range from about $20^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C}\right)$ to $61^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$-only a few degrees lower than those at headquarters. This small elevational decrease reflects the presence of temperature inversions. These are mainly a nighttime phenomenon but also affect daytime temperatures in autumn and winter.

Inversion effects on daytime (or maximum) temperature are greatest in December and January, when, most often, a warmer airmass aloft may override cold air entrenched in the valley. Conversely, the daytime temperature decrease with elevation, or "lapse rate," is generally strongest in spring; average maximums at $5,500 \mathrm{ft}(1675 \mathrm{~m})$ then run 13° or $14^{\circ} \mathrm{F}$ (7° or $8^{\circ} \mathrm{C}$) below those at headquarters. The difference is 1° or $2^{\circ} \mathrm{F}$ less in July and August. On the other hand, during these two months and early autumn, nighttime inversions-from radiational cooling favored by clear skies (Schroeder and Buck 1970)-result in lower average minimum temperatures at headquarters than at $5,500 \mathrm{ft}$.

Temperatures for each year of record at the control station, through 1982, are listed in table 20 (appendix); successive 10 -year averages and 30 -year normals, in table 5. Ten-day averages and extremes are shown in tables 21, 22, and 23 (appendix); frequency distributions of daily values, in tables 24 and 25 (appendix). The coldest month of record is January 1937, with a mean of $6.5^{\circ} \mathrm{F}\left(-14^{\circ} \mathrm{C}\right)$, including an average minimum of -4.4° F $\left(-20^{\circ} \mathrm{C}\right)$. The warmest month is July 1975 , with 70.4° $\mathrm{F}\left(21^{\circ} \mathrm{C}\right)$, resulting from a high average minimım; the highest average maximum, $90.7^{\circ} \mathrm{F}\left(33^{\circ} \mathrm{C}\right)$, occurred in August 1967. Extreme maximum for any day is $103^{\circ} \mathrm{F}$ $\left(39^{\circ} \mathrm{C}\right)$ recorded in August 1961-the clearcut (fireweather) station reached $105^{\circ} \mathrm{F}\left(41^{\circ} \mathrm{C}\right)$; the minimum is $-36^{\circ} \mathrm{F}\left(-38^{\circ} \mathrm{C}\right)$ in December 1968. The extremes show a smaller range at higher elevations. Mount Spokane, Wash., had $-28^{\circ} \mathrm{F}\left(-33^{\circ} \mathrm{C}\right.$) in December 1968; Gisborne Lookout, $95^{\circ} \mathrm{F}\left(35^{\circ} \mathrm{C}\right)$ in August 1961.

For most months of the year, the 1971-80 average minimum temperatures (table 5) show an increase over those during 1961-70 and preceding decades; the increase is particularly large in July and August, about 3° $\mathrm{F}\left(1.5^{\circ} \mathrm{C}\right)$. Possibly up to $1.0^{\circ} \mathrm{F}$ of this summertime increase may be a result of a change that occurred in observation practice-using a hygrothermograph trace, rather than actual maximum and minimum thermometer readings, to obtain the daily temperature extremes. There may thus be effects of slower response often found in hygrothermographs, as well as possible bias in calibration.
A comparison in table 6 shows that the $3^{\circ} \mathrm{F}$ increase in control station minimum temperature was slightly greater than that observed at the Priest River fire-
weather station (before its termination in 1978) and at Priest Lake. Data from five adjacent climatological stations give a corresponding increase averaging only 0.5° F relative to $1961-70 ; 1.5^{\circ} \mathrm{F}$ since 1951-60, though this ranges from $0.4^{\circ} \mathrm{F}$ at Sandpoint to $2.7^{\circ} \mathrm{F}$ at Newport.

FROST-FREE PERIOD

As shown in table 7, the control station has an average length of 96 days between last-spring and firstautumn minimum temperatures of $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ or lower. The respective average threshold dates are June 4 and September 8. There is an average length of 137 days between occurrences of $28^{\circ} \mathrm{F}\left(-2^{\circ} \mathrm{C}\right)$ or lower. These temperatures are usually reached under fair-weather conditions-by radiational cooling-and are accompanied by frost formation.
The frost-free season is shorter at the clearcut site, averaging 29 days shorter between dates of $32^{\circ} \mathrm{F}$. For both the $32^{\circ} \mathrm{F}$ and $28^{\circ} \mathrm{F}$ thresholds, the season at valley locations may average close to 2 months longer under a full timber canopy than in the clearcut. This is indicated by 6 years of recording charts from the former flammability stations. Four years of charts indicate an even longer season without freezing temperatures at the former $2,700-\mathrm{ft}(823-\mathrm{m})$ and $3,800-\mathrm{ft}(160-\mathrm{m})$ altitudeaspect stations. The season becomes short again at highest elevations, as shown in table 7 for Mount Spokane and Mullan Pass, at 5,900 to 6,000 ft (1800 to 1835 m); it may be about 2 weeks longer than this at $5,500 \mathrm{ft}(1675 \mathrm{~m})$. The threshold occurrences at these elevations are often with blustery conditions, sometimes with late-spring and early-autumn storms that bring snow.

Table 5.-Ten-year (decadal) and 30 -year "normal" average daily maximum and minimum temperatures, ${ }^{\circ} \mathrm{F}$, at Priest River Experimental Forest control station

Period		Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
Decade														
1912-20	Max.	30.5	36.8	45.4	57.5	64.2	74.0	82.1	81.6	69.7	55.0	39.8	31.5	55.8
(9 years)	Min.	15.2	17.3	22.4	28.3	34.4	39.7	43.5	41.9	36.0	29.9	25.8	18.5	29.4
1921-30	Max.	29.1	37.0	46.5	57.3	67.5	74.5	84.7	82.4	70.1	57.1	39.7	31.2	56.5
	Min.	15.8	18.7	24.2	29.5	36.0	42.7	44.8	43.7	36.9	31.4	26.7	19.4	30.9
1931-40	Max.	31.5	35.1	46.0	58.8	68.9	74.7	83.8	83.3	72.4	57.5	39.9	34.3	57.3
	Min.	18.9	15.9	24.9	30.3	36.9	43.3	46.1	42.4	38.9	33.3	26.5	23.7	31.8
1941-50	Max.	29.1	38.5	46.0	58.6	67.0	71.9	82.6	81.1	71.5	56.6	40.0	33.0	56.4
	Min.	13.4	19.1	23.4	30.1	37.7	43.6	46.4	44.5	38.6	32.9	27.4	21.5	31.6
1951-60	Max.	31.1	36.8	43.7	56.3	67.2	72.4	82.6	79.9	71.6	56.5	39.2	32.6	55.8
	Min.	18.9	20.0	22.4	29.3	37.5	43.1	45.8	43.9	38.7	32.7	24.5	22.7	31.6
$1961-70$	Max.	30.5	38.7	45.0	54.9	66.2	74.5	82.6	82.3	71.5	55.3	39.5	31.4	56.0
	Min.	19.4	22.2	23.7	29.8	37.1	44.2	45.9	44.8	38.8	32.7	27.9	22.3	32.4
1971-80	Max.	28.6	36.2	44.1	55.9	66.2	73.6	82.2	81.2	70.9	57.0	37.1	31.4	55.3
	Min.	16.8	23.6	25.9	31.0	38.9	45.1	48.5	47.6	40.6	32.9	27.0	23.0	33.4
30 Years														
1931-60	Max.	30.6	36.8	45.2	57.9	67.7	73.0	83.0	81.4	71.8	56.9	39.7	33.3	56.5
	Min.	17.1	18.3	23.6	29.9	37.4	43.3	46.1	43.6	38.7	33.0	26.1	22.6	31.6
1941.70	Max.	30.2	38.0	44.9	56.6	66.8	73.0	82.6	81.1	71.5	56.2	39.9	32.3	56.1
	Min.	17.2	20.4	23.1	29.7	37.4	43.6	46.0	44.4	38.7	32.8	26.6	22.2	31.9
1951-80	Max.	29.9	37.2	44.3	55.7	66.5	73.5	82.4	81.1	71.3	56.3	38.6	31.8	55.7
	Min.	18.4	21.9	24.0	30.1	37.8	44.1	46.7	45.5	39.4	32.8	26.5	22.7	32.5

Table 6.-Station comparison by decades, of average daily maximum and minimum temperatures, ${ }^{\circ} \mathrm{F}$, observed during July and August

1PREF denotes Priest River Experimental Forest Control Station; PRFW, Priest River fire-weather station (terminated after 1977); PLFW, Priest Lake fire-weather station (location since 1964); BONF, Bonners Ferry, Idaho; CDAL, Coeur d’Alene, Idaho; NEWP, Newport, Wash.; PTHL, Porthill, Idaho; SAPT, Sandpoint, Idaho; 5STA,
average of five preceding stations.
${ }^{2}$ Time based on 24 -hour clock; thus 17 denotes 5 p.m. local time.
${ }^{3}$ Time changed to 12 in 1974.
4Time changed to 07 in 1975.

Table 7.-Freezing temperature thresholds, ${ }^{\circ} \mathrm{F}$. Observed dates of last occurrence in spring (or until July 31) and first occurrence in autumn (or after July 31), Priest River Experimental Forest valley area and adjacent mountain stations

	Date ${ }^{1}$ of last spring minimum			Date of first autumn minimum			Number of days between dates		
	24°	28° or lower	32°	$\Rightarrow \quad 32^{\circ}$	28° or lower	24°	24°	$\begin{gathered} 28^{\circ} \\ \text { or lower } \end{gathered}$	32°
Priest River control station, 50 years 1931-80:									
Mean	4/17	5/11	6/4	9/8	9/24	10/14	180	136	96
Standard dev., days	13	13	19	14	13	15	20	21	27
Median	4/19	5/12	,5/31	9/9	9/22	10/14	182	133	101
Earliest, year	$\begin{array}{r} 3 / 17 \\ 1958 \end{array}$	$\begin{array}{r} 4 / 13 \\ 1980 \end{array}$	$\begin{array}{r} 4 / 17 \\ 1980 \end{array}$	$\begin{array}{r} 8 / 7 \\ 1946 \end{array}$	$\begin{array}{r} 9 / 3 \\ 1956 \end{array}$	$\begin{array}{r} 9 / 8 \\ 1962 \end{array}$			
Latest,	5/11	6/13	7/30	10/7	11/5	11/14			
year	1959	1952	1933	1940	1940	1956			
Maximum, year							$\begin{array}{r} 228 \\ 1940 \end{array}$	$\begin{array}{r} 203 \\ 1940 \end{array}$	$\begin{array}{r} 139 \\ 1968 \end{array}$
Minimum, year							$\begin{array}{r} 133 \\ 1965 \end{array}$	$\begin{array}{r} 92 \\ 1952 \end{array}$	34 1933
Priest River fire-weather station (clearcut), 28 years 1946-73:									
Mean		5/18	6/19	8/23	9/10			115	65
Difference, days ${ }^{2}$		+6	+14	-15	-11			-17	-29
Median		5/19	6/18	8/23	9/10				

Mullan Pass, Idaho (10 to 15 years during 1942-57) and Mount Spokane, Wash. (12 years during 1959-72); two-station average:

Mean	$5 / 12$	$6 / 6$	$6 / 23$	$9 / 9$	$9 / 21$	$10 / 5$	146	107	78
Median	$5 / 9$	$6 / 8$	$6 / 26$	$9 / 9$	$9 / 22$	$10 / 5$			

[^0]
TEMPERATURE TRENDS

Past trends or fluctuations of temperatures at the control station are depicted in figure 12. As with precipitation in figure 10, the observed values have been smoothed; here they are plotted as degree differences from the 1931-80 average.

The graphs-for annual, winter, and summer mean temperatures-all show a warming trend from the beginning of record until about 1940; this is generally concurrent with the notable period of below-average precipitation (fig. 10). Graphs for an area to the south (Finklin 1983) indicate that this warming trend had begun only a few years earlier. The 11-year annual and summertime means in that area varied little for at least 30 years prior to the 1910's; wintertime means rose $4^{\circ} \mathrm{F}\left(2^{\circ} \mathrm{C}\right)$ from about the mid- 1880 's to 1900 , then fell $2^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right)$ by the early 1910's. After 1940, figure 12 shows a cooling until about 1950 to 1955; since then, to date, an overall warming for the year and summer-this has occurred without the dry conditions of the 1930's. The more irregular winter temperature pattern indicates an overall decline since the early 1960's.

Recent 11-year July-August means at the control station have been about $1.0^{\circ} \mathrm{F}$ higher than those of the

Figure 12.-Temperature fluctuations during 70 years since 1912 at Priest River Experimental Forest, control station; based on averages of observed daily maximum and minimum values. Eleven-year running means (solid lines) and 5 -year weighted means (dashed lines) are plotted at midpoint years.

1930's, but this excess is due to the higher minimum temperatures noted earlier-maximum temperatures are down (table 5). For the above-mentioned area to the south, a graph shows recent July-August means peaking about $0.5^{\circ} \mathrm{F}$ above the 1930 's level. The 1960's and 1970's temperature trends in northern Idaho are contrary to some of the cooling publicized for eastern parts of the United States. This difference may follow from the east-west spacing between prevailing upper-air trough and ridge locations.

Relative Humidity

Relative humidity is recorded continuously throughout the year on hygrothermograph charts at the control station, but the data have not been tabulated; accuracy is uncertain, particularly during winter. Available yearround humidity averages, based on psychrometer readings, cover only the period prior to 1919 and a 5 p.m. P.s.t. observation time. Otherwise, humidity data for Priest River are limited to the fire-weather seasonwith readings at 8 a.m. and 5 p.m. until about 1950; once-daily at $3 \mathrm{p} . \mathrm{m}$. in subsequent years. In the valley these data are from the clearcut site beginning in 1945.
The general annual pattern of relative humidity may be obtained from figure 13. Afternoon averages at Priest River (valley location) are shown, together with afternoon and early morning averages elsewhere in the Northern Rockies; both a valley and a ridgetop location are represented. Relative humidity tends to vary inversely

Figure 13.-Graphs of monthly average relative humidity at 4 a.m. (A) and 4 p.m. (P) at Kalispell, Mont., airport (based on years 1950.70) and Mullan Pass, Idaho (1950-54 data adjusted to longer period). Superimposed are averages for Priest River Experimental Forest, valley area, at 4:30-5:00 p.m. (based on 1921-50, except $1912-18$ for March) and at 3 p.m. (based on 1951-70). Times are P.s.t.
with temperature (Schroeder and Buck 1970), and this largely accounts for the diurnal differences seen in this figure; also for higher afternoon values at higher elevations. The 3 p.m. averages at Priest River, during May through October, are generally similar to the afternoon averages shown for Kalispell, Mont.; higher values occur at Priest River by 5 p.m., particularly in late season. Early morning humidity in the Priest River valley area probably averages higher throughout the year than at Kalispell; it averages above 90 percent in summer, as seen later. As inferred from figure 13, relative humidity in the Experimental Forest is high throughout most days during November through February, averaging 70 to 80 percent or higher in midafternoon. With a slight interruption in the showery month of June, the afternoon average decreases sharply during spring, reaching July-August levels of about 34 percent in the valley.

TEMPERATURE AND RELATIVE HUMIDITY DURING FIRE SEASON

Figure 14 shows the trends of midafternoon temperature and relative humidity during the fire season. Even with smoothing, the 10 -day averages show a pronounced change near the end of June, toward the warm and dry conditions peaking in mid-July to midAugust. This change corresponds with the decrease in

Figure 14.-Ten-day average dry bulb temperature and relative humidity at 3 p.m. P.s.t. at valley and mountaintop locations, Priest River Experimental Forest; based on years 1951-70. Curves are drawn through smoothed values plotted at middle of 10-day period; smoothing used 1-4-1 weighting applied to original values of three consecutive periods.
rainfall seen in figure 9. With an elevational difference of about $3,280 \mathrm{ft}(1000 \mathrm{~m}$), the temperature differences indicate an average summer afternoon lapse rate of $4.0^{\circ} \mathrm{F}$ per $1,000 \mathrm{ft}\left(7.3^{\circ} \mathrm{C}\right.$ per $\left.1,000 \mathrm{~m}\right)$ between the valley bottom (clearcut area) and the lookout. As shown later, however, temperatures at intervening slope locations can vary several degrees or more from lapse-rate estimates. Further temperature and humidity details are given in tables 26 and 27 (appendix). Noteworthy is the combination of extremely high afternoon temperature and low relative humidity that persisted during the 10 -day period August 11-20, 1967-the year of the Sundance Fire run, north of the Experimental Forest (Anderson 1968). The lowest recorded daily humidity value at Priest River, 5 percent, occurred in August 1961.
Percentage frequencies (or probabilities) of various temperature and humidity values are graphed in figure 15. Again, the curves reveal a turn toward summertime levels near the end of June. Occurrence of a midafternoon relative humidity below 30 percent in the valley has a 23 percent chance in mid-June; a 62 percent chance by late July. Additional details are given in tables 28 and 29 (appendix).
Combined frequencies of temperature and relative humidity, together with windspeed, are given in table 30 (appendix). The frequencies of values beyond certain

Figure 15.-Ten-day frequencies of specified dry bulb temperature and relative humidity at 3 p.m. P.s.t. at valley and mountaintop locations, Priest River Experimental Forest; based on years 1951-70. Curves are drawn through smoothed values, as in figure 14.
limits, rather than within the classes shown, may be obtained by appropriate summation.
Ten-day details are also given (tables 31 and 32, appendix) for average daily maximum and minimum temperatures. The Priest River data-from the clearcut area-differ somewhat from those in tables 16 and 17 (appendix) for the control station; the frequency distributions (not shown) also differ. Periods of record are different, but the site differences are the main factor. For the same 20 -year period, 1951-70, July-August maximum temperatures averaged $1.3^{\circ} \mathrm{F}$ lower at the control station than in the clearcut; the minimums, $2.6^{\circ} \mathrm{F}$ higher.

Topographic and Local Site Effects.--Further local and topographic variations in temperature are summarized in table 8. This tabulation utilizes data from fire-weather observation forms and also the recording charts for the 1930's altitude-aspect and flammability stations. The averages, though based on only four summers, demonstrate that temperatures at a slope location do not necessarily fit a simple elevational gradient or lapse rate. Local surroundings are an important consideration in addition to aspect. The thermal belt described by Hayes (1941) is a few hundred feet below the 3,800-ft ($1160-\mathrm{m}$) elevation. Here, near the average nighttime inversion top, minimum temperatures during July-August averaged as much as $15^{\circ} \mathrm{F}\left(8^{\circ} \mathrm{C}\right)$ higher than at the clearcut site. A similar inversion and thermal belt was detected by a mobile survey described by Schaefer (1957), which also found large contrasts in dewpoint temperature. The inversion magnitude may average about half as large during the more cloudy, showery months of May and June (Hayes 1941). Average JulyAugust temperatures at headquarters were very similar to those at the half-cut site in table 8. The clearcut, half cut, and full-timber sites show notable differences in diurnal temperature range-differences amounting to as much as $9^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right)$-but have a close similarity in monthly mean temperature.
Jemison (1934) presents maximum temperatures at these three sites during July-August 1933, showing differences similar to those in table 8. He also reveals large differences in soil temperature, duff temperature, relative

Table 8.-Comparison of average temperatures, ${ }^{\circ} \mathrm{F}$, in Priest River Ex perimental Forest during study by Hayes (1941); data for July and August combined, 1935-38

Station, elevation (ft)	Minimum, overnight	Maximum, daytime	Mean
Lookout, 5,580	51.4	69.1	60.3
$5,500, \mathrm{~N}$ aspect	51.7	69.3	60.5
5,500, S	51.2	68.1	59.7
3,800, N	55.4	78.4	66.9
3,800, S	56.6	77.2	6.9
2,700, N	49.7	81.2	65.5
2,700, S	52.6	81.6	67.1
Control, 2,380	44.5	80.9	62.7
Clearcut, 2,300	41.9	83.1	62.5
Half-cut, 2,300	44.3	80.5	62.4
Full-timber, 2,300	45.7	78.4	62.1

humidity, fuel moisture, wind, and evaporation. Afternoon relative humidity in the clearcut averaged 9 percent lower than in full timber; 2 percent lower than in the half-cut area. A summary of measurements nearby at "open, one-third cover, and uncut" locations in JulyAugust 1919 is given by Larsen (1922b; 1924).
A contrast between the original control station and two nearby, lower-slope stations-at about $2,500 \mathrm{ft}$ (762 m) elevation-is shown by Larsen (1940); data covered the years 1912-16. Maximum temperatures during the May-September period averaged $4.5^{\circ} \mathrm{F}\left(2.5^{\circ} \mathrm{C}\right)$ higher on a southwest slope than on a northeast slope; afternoon relative humidity, 7 percent lower. Overall, during the year, minimum temperatures on these slopes averaged 4° or $5^{\circ} \mathrm{F}\left(2^{\circ}\right.$ to $\left.3^{\circ} \mathrm{C}\right)$ higher than on the flat.

Diurnal Variation of Temperature and Humidity.-The average daily course of temperature during July-August at low and high elevations is depicted in figure 16; relative humidity, in figure 17. As noted in the legends, the curves are based on available recording charts covering only a few years; they do, however, give averages compatible with long-term afternoon and early morning data. The contrast seen between locations illustrates earlier comments about diurnal range, nighttime inversion effects, and the dependence of relative humidity on temperature. The curves show the warmest, driest time of day is usually between 2 and 4 p.m. P.s.t. The fireweather observation time of 3 p.m., used prior to 1974,

Figure 16.-Average diurnal course of temperature, July-August, Priest River Experimental Forest. Curve for control station is based on averages from recording charts at clearcut site, adjusted to smaller diurnal range. Curve for $5,500 \mathrm{ft}$ uses several years of charts from Looking Glass (now Gisborne) Lookout and 1937.38 charts from northaspect and south-aspect stations.

Figure 17.-Average diurnal course of relative humidity, July-August, Priest River Experimental Forest. Curve for control station is based on 1935-39 recording charts from former half-cut flammability station. Curve for $5,500 \mathrm{ft}$ is based on stations used in figure 16.
thus tended to represent the afternoon extreme conditions. At the observation time now in use throughout the Northern Rockies, 12 noon P.s.t. (1 p.m. m.s.t.), it can be seen that temperatures in the Priest River area may average 2° or $3^{\circ} \mathrm{F}\left(1.5^{\circ} \mathrm{C}\right)$ lower than previously; relative humidity, perhaps 5 percent higher.

Comparison with Priest Lake Fire-Weather Data.Because fire-weather observations are no longer taken at Priest River, a comparison of past data may aid in making estimates from the continuing observations at Priest Lake Ranger Station. This station has been at its present site since 1964. (Earlier data were observed $4 \mathrm{mi}[6$ km] further north.) Table 9 shows average differences in observed values during 1964-73; also the differences prior to 1964 to indicate effects of the Priest Lake station change. Overall, during June through September, the afternoon temperature at Priest Lake averages $1^{\circ} \mathrm{F}$ lower than at the Priest River clearcut site. The relative
humidity averages practically the same-within ± 1 percent-at the two stations in June, July, and August, but 3 percent higher at Priest Lake in September; humidity at the earlier Priest Lake station averaged about 5 percent higher in July-August. Table 9 also indicates higher windspeeds at Priest Lake, which can be expected from its more open station location (fig. 5C).

Wind

Average windspeeds observed in the Priest Rivernorthern Idaho area are summarized in figure 18. Comparability among the available stations is affected by differences in period of record and anemometer heightthe present standard (Fischer and Hardy 1976) is 20 ft (6 m) above open, level ground or nearby treetops.
Nevertheless, figure 18 shows some distinct features. The graph for Mullan Pass indicates that on exposed high terrain, windspeeds may average highest in winter; lowest, in July and August. This is the tendency of the free-atmosphere wind, above the mountainous topography and its local effects, as indicated on normal upper-air maps near $10,000 \mathrm{ft}$ (3000 m). In contrast, in the sheltered valley area at headquarters, 24 -hour average speeds at $8 \mathrm{ft}(2.4 \mathrm{~m})$ above the ground are very light throughout the year, with the least wind in autumn and winter.
Prevailing. (most frequent) wind direction was from the southwest or south during most of the year at Mullan Pass; northwest in summer. At the control station, the prevailing direction during daylight hours is southwesterly year-round. In comparison, average wind in the free air near $10,000 \mathrm{ft}(3000 \mathrm{~m})$ is from the west or west-northwest in winter, west-southwest in summer.

WIND DURING FIRE SEASON

In the Priest River area, figure 18 indicates that summer afternoon windspeeds on the mountaintops average 8 or $9 \mathrm{mi} / \mathrm{h}$ (13 to $14 \mathrm{~km} / \mathrm{h}$); the same average applies for a 24 -hour period. In the valley, afternoon speeds during May through August average near $3.5 \mathrm{mi} / \mathrm{h}(6 \mathrm{~km} / \mathrm{h})$ in the clearcut; $6 \mathrm{mi} / \mathrm{h}(10 \mathrm{~km} / \mathrm{h})$ at $150 \mathrm{ft}(45 \mathrm{~m})$ above ground and well above surrounding treetops. These valley averages decrease in September and October. The speeds at 150 ft are similar to those observed at the Priest Lake Ranger Station airstrip. Combined frequencies of afternoon speeds and directions are presented in

Table 9.-Differences in average temperature, relative humidity, and windspeed at Priest Lake Ranger Station (PL) and Priest River Experimental Forest, clearcut site (PR)

Month	Difference, PL minus PR, during 1964.73 (and during 1951-63, in parentheses, at previous PL location)			
	Temperature, ${ }^{\circ} \mathrm{F}$		Relative Humidity, percent	Wind, mi/h
	At 3 p.m.	Minimum	at 3 p.m.	at 3 p.m.
June	-0.7	-2.8	+0.7	+ 2.7
July	-0.7 (-1.0)	-2.4 (0.0)	$-0.7(+4.8)$	+3.2 (+2.3)
August	-1.2 (-1.1)	-2.1(-0.1)	$-0.1(+5.6)$	+3.2 (+2.2)
September	-1.6	-2.2	+3.2	+2.3

Figure 18.-Average windspeed for 24 -hour period or midafternoon observation time, as noted in parentheses, Priest River Ex. perimental Forest (PREF)-northern Idaho area. At Mullan Pass (MLP), based on years 1950-54; PREF headquarters (HQ), at $8 . \mathrm{ft}$ height, based on 1912.36, and 150 -ft height, 1924-33; PREF fire-weather station (in clearcut, CC) and Priest Lake Ranger Station (PL), 1951-70; Gisborne Lookout (GIS), 1933-60; Experimental Station Lookout (EXP), 1926-32.
table 33 (appendix); the directions, at both valley and lookout locations, are predominantly from the southwest. Frequencies of windspeeds may also be obtained from table 30 (appendix).
As indicated in figure 19, winds in the valley area typically decrease in late afternoon and evening. Atop the $150-\mathrm{ft}(45-\mathrm{m})$ tower, average speeds were down to 3 $\mathrm{mi} / \mathrm{h}(5 \mathrm{~km} / \mathrm{h})$ from about $10 \mathrm{p} . \mathrm{m}$. to $6 \mathrm{a} . \mathrm{m}$. during JulyAugust. At Gisborne Lookout, at over $50 \mathrm{ft}(15 \mathrm{~m})$ above ground, chart recordings available for two summers often showed a wind increase during the evening, giving highest average speeds $-10 \mathrm{mi} / \mathrm{h}(16 \mathrm{~km} / \mathrm{h})$-at around midnight; the wind reached a minimum at around 10 a.m. At this time, the speed was nearly the same as in the valley above the forest canopy. Nighttime wind increases have been characterized for mountaintop locations (Baughman 1981). Though such increases do not show up everywhere (Court 1978), they have previously been noted in averages obtained at two lookouts in southern Idaho (Hanna 1933).

Nighttime wind directions do not appear to change much on the mountaintops; 8 a.m. winds at Gisborne during July-August 1933-40 were from a southerly quadrant (S, SW, or SE) on 76 percent of the days. At the headquarters location, prevailing $8 \mathrm{a} . \mathrm{m}$. wind direction during 1931-44 was from the northwest, suggesting

Figure 19.-Average diurnal course of windspeed during July-August, Priest River Experimental Forest; atop $150-\mathrm{ft}$ tower near headquarters (based on years 1938-40), and at Gisborne Lookout (based on 1942 and 1944). Heavy dots denote average 8 a.m. and 5 p.m. speeds at 150 ft (based on 1931-44, including data from former exposure on towering treetop). Open circles denote average 8 a.m. speeds (during 1933-47) and 3 to 5 p.m. speeds (during 1933-60) at Lookout.
nighttime air drainage down the Priest River Valley. Even so, at least at this daylight hour, this wind direction occurred on only 45 percent of the July-August days; south or southwest, on 32 percent. The prevalence of southwest and south winds in the afternoon may be enhanced by a daytime upvalley breeze (Schroeder and Buck 1970).

The mountaintop windspeed pattern in figure 19 differs from that shown by Hayes (1941) for a median day in August, 1936-38. His diagrams, using measurements $7.5 \mathrm{ft}(2.3 \mathrm{~m})$ above ground, portray an afternoon maximum at all elevations on slopes up to $5,500 \mathrm{ft}$ (1675 m). This maximum is greater on south slopes than on north slopes, possibly as a result of greater upslope breeze and also greater exposure to the larger-scale wind. The maximum speed shown at $5,500 \mathrm{ft}$ was $6 \mathrm{mi} / \mathrm{h}$ ($10 \mathrm{~km} / \mathrm{h}$); nighttime speeds were down to 3 or $4 \mathrm{mi} / \mathrm{h}$ in contrast with speeds of $10 \mathrm{mi} / \mathrm{h}(16 \mathrm{~km} / \mathrm{h})$ in figure 19. Differences in anemometer height could possibly explain the difference in afternoon speeds (Ayer 1960).

An examination by decades reveals a peculiar decrease in windspeeds observed at Gisborne Lookout. Table 28 (appendix) for this station is thus based only on the years 1951-60, rather than 1951-70. The afternoon speeds averaged $10.0 \mathrm{mi} / \mathrm{h}(16 \mathrm{~km} / \mathrm{h})$ in July-August $1933-40 ; 9.0 \mathrm{mi} / \mathrm{h}$ in 1941-50; $8.5 \mathrm{mi} / \mathrm{h}$ in 1951-60; 6.1 mi / h in 1961-70. The most recent decrease seems too large to be explained by natural variation. The anemometer has remained exposed atop the lookout (fig. 6A and communication from Calvin L. Carpenter).

A change in instrument (from 4-cup anemometer to a more accurate 3-cup type) may account for some of the decrease in earlier years.

Extreme July and August windspeeds shown by Hanna (1939) reached $49 \mathrm{mi} / \mathrm{h}(79 \mathrm{~km} / \mathrm{h})$ at Gisborne Lookout; this was the maximum 5-minute average recorded at any time of day during an 8 -year period in the 1930 's. The individual monthly extreme values averaged $32 \mathrm{mi} / \mathrm{h}(52 \mathrm{~km} / \mathrm{h})$. Near headquarters at 150 feet (45 m) above ground, the corresponding values recorded during a 5 -year period were $29 \mathrm{mi} / \mathrm{h}$ and 23 $\mathrm{mi} / \mathrm{h}(47 \mathrm{~km} / \mathrm{h}$ and $37 \mathrm{~km} / \mathrm{h}$).

Local Site Effects.-The reduction of windspeed within a dense timber stand is shown by Gisborne (1941). Measurements were made near headquarters on the $150-\mathrm{ft}(45-\mathrm{m})$ tower, which was constructed in the 1930 's (Fitzgerald 1958) (fig. 20). Wind at $2 \mathrm{ft}(0.6 \mathrm{~m})$ and 49 ft (15 m) heights, under the canopy, averaged only 1 or 2 mi / h on the windiest days. Speeds on these days were near $15 \mathrm{mi} / \mathrm{h}(24 \mathrm{~km} / \mathrm{h})$ atop the tower, which was about $50 \mathrm{ft}(15 \mathrm{~m})$ above the surrounding trees at that time.

Differences in windspeed related to local exposure or aspect are shown by Larsen (1940), using 24 -hour data recorded $9 \mathrm{ft}(2.7 \mathrm{~m})$ above ground. Wind during the period May-September averaged $2.9 \mathrm{mi} / \mathrm{h}(4.7 \mathrm{~km} / \mathrm{h})$ on a southwest slope near headquarters; $0.9 \mathrm{mi} / \mathrm{h}(1.4 \mathrm{~km} / \mathrm{h})$ on a northeast slope; $1.7 \mathrm{mi} / \mathrm{h}(2.7 \mathrm{~km} / \mathrm{h})$ on the flat.

Figure 20.-The $150 \cdot \mathrm{ft}$ meteorological tower within timber stand near headquarters, Priest River Experimental Forest, as it appeared in 1982.

Cloudiness; Sunshine; Solar Radiation

The period late autumn through early winter is the cloudiest time of year; summer, the clearest. The monthly average numbers of days characterized as clear, partly cloudy, and cloudy at Priest River are listed in table 1. Such observations were recorded and published until 1948. The three categories are based on cloud cover, sunrise to sunset, averaging 0 to 3 tenths, 4 to 7 tenths, and 8 to 10 tenths, respectively. The average numbers of clear days range from 5 each in November, December, and January to 19 in July and August; the numbers of cloudy days, from 4 in July to 22 in December. More cloudy days and fewer clear days are noted at the nearest airport stations, which record such days on the basis of hourly observations. For example, Kalispell, Mont., Lewiston, Idaho, and Spokane, Wash.-drier locations than Priest River-all have averages of only 2 or 3 clear days in December and January; 25 or 26 cloudy days in December. Part of the difference may lie in classifiying days with high, thin (cirrus-type) clouds through which the sun can shine.

Actual sunshine information for this area is lacking. A solar-radiation recorder has been in operation at the control station for many years, but data tabulations from the charts are not available. Estimated values are thus presented, based on adjacent station data; also on maps from Environmental Science Services Administration (1968). These maps can, of course, give only an approximation in mountainous areas.

The estimated monthly percentages of maximum possible sunshine are shown in figure 21. These range from about 20 percent in December to nearly 80 percent in July. For a location with level horizons and no shading by trees, the percentages would translate into totals of about 50 hours of sunshine during December and 375 hours during July; about 2,500 hours for the entire year.

The incoming solar radiation-the solar energy received with sunshine and also through cloud cover-is estimated in figure 22. The values refer to radiation as received on an unobstructed horizontal surface at lower elevations. Values include the direct-beam radiation and the diffuse, or scattered, radiation (Reifsnyder and Lull 1965, Schroeder and Buck 1970). The average monthly totals (curve "a") range from near 2,500 langleys (gm-cal/ cm^{2}) in December to 19,000 langleys in July. The annual aggregate is about 125,000 langleys. Curve "b" indicates the radiation that may be received on the clearest days, free of haze. For conversion to units of Watt $\mathrm{h} / \mathrm{m}^{2}$, the numbers of langleys are multiplied by 0.0861 .

Within the Experimental Forest, differences from the above values can be expected according to slope aspect and angle; also due to local surroundings that block or reflect sunshine. Generally more radiation should be received on the mountaintops than in the valley bottom (Geiger 1965). The elevational difference in radiation loss, by absorption in the atmosphere above, is an important factor.

The effects of slope are greater in winter than in summer. During December and January, a south-facing 30° (58 percent) slope may receive nearly twice as much total

Figure 21. - Monthly average percentage of maximum possible sunshine duration, estimated for Priest River Experimental Forest.
radiation (direct and diffuse) as a horizontal surface. A north-facing 30° slope may receive one-half as much radiation as the horizontal and all of this will be diffuse. These estimates utilize direct radiation data obtained from Buffo and others (1972). During July, the 30° south slope should receive about the same total radiation as the horizontal; the north slope, perhaps 80 percent as much.

COMPARISON WITH SURROUNDING AREA

Although this report has focused on the Priest River Experimental Forest, the climatic description may apply also to a larger area of the Idaho panhandle, where the forests are similar. The panhandle area lies within a broadly similar climatic region, though horizontal gradients and local, topographic variations do occur. This final section examines how closely some climatic statistics at Priest River compare with those at other available stations. Year-round data are based on a 30 -year normal period and are limited to valley (or canyon) locations.

Figure 22. - Annual regime of solar radiation (direct and diffuse) estimated for Priest River Experimental Forest, lower-elevation location; langleys (gm-cal/cm²) per day received on unobstructed horizontal surface. Vertical marks represent midmonth.

Temperature, Annual Regime

Table 10 lists the monthly and annual mean temperatures at the valley locations. These means, which average the daily maximum and minimum values, offer a comparison that tends to reduce the influences of local exposure and related differences in diurnal temperature range; such differences have already been shown between sites at Priest River. Stations have been grouped into two forest areas in figure 23. Panel A indicates that the monthly mean temperatures at the control station are generally 1.0° to $1.5^{\circ} \mathrm{F}$ (about $0.7^{\circ} \mathrm{C}$) lower than those based on six other stations in the Kaniksu vicinity. Most of this difference could be attributed to the higher valley floor at Priest River, $345 \mathrm{ft}(105 \mathrm{~m})$ above the average elevation for the six stations. The elevational effect is countered very little by effect of latitude; the average location of the six stations is at a point just 14 miles (23 km) northeast of Priest River.

Noticeably larger temperature differences are seen in a comparison with four stations in the Coeur d'Alene-St. Joe vicinity; the overall elevation is similar to that at the control station. In this case, the geographic location,

Table 10. - Monthly and annual mean temperatures at Priest River Experimental Forest control station and at adjacent valley or canyon stations in Idaho panhandle, except as noted; based on 30-year normal period, 1941-70 (EF denotes Experimental Forest and RS denotes Ranger Station)

${ }^{1}$ Based on 23 or 24 years to 1965

Figure 23.-Comparison of monthly average temperature and precipitation at Priest River Experimental Forest control station (PREF) and adjacent valley or canyon stations in Kaniksu National Forest vicinity (KAN) and Coeur d'Alene-St. Joe National Forests vicinity (CSJ); based on 30 -year normals, 1941.70. Panel A: Temperature differences, PREF minus KAN (six-station average), solid line, and PREF minus CSJ (four-station average), dashed line. Panel B: Precipitation ratios, PREF to KAN and CSJ station averages.
averaging 68 miles (110 km) south-southeast of Priest River, could account for about 1.0° to $1.5^{\circ} \mathrm{F}$ (about 0.7° C) of the difference (based on average gradients in the free atmosphere near $10,000 \mathrm{ft}$ [3000 m]).
In table 11, the monthly temperatures are expressed relative to the annual mean. Although the actual monthly means differ between locations, the similarity in this table indicates that the shape of the annual curve at Priest River is typical for the Idaho panhandle.

Precipitation, Annual Regime

Table 12 lists the monthly and annual average precipitation. As indicated in figure 23B, amounts at the Priest River control station average somewhat higher than the overall average for valley locations in the Idaho panhandle. Amounts are about the same, however, at nearby Sandpoint and are slightly higher at valley (or canyon) stations to the southeast, near Avery, Heron, and Wallace. Table 13 compares the cumulative monthly precipitation, expressed in percentage of water-year total. The resulting distributions at Priest River and over the larger Kaniksu and Coeur d'Alene-St. Joe areas are nearly identical.
At higher elevations, snow surveys indicate that much of the Idaho panhandle has heavier precipitation than Priest River Experimental Forest. As noted earlier, at approximately $4,800 \mathrm{ft}(1463 \mathrm{~m}$), the April 1 snowpack water content at Schweitzer Bowl averages 31 inches (785 mm), compared with 20 inches (515 mm) at Benton Spring. At the four other snow courses near this elevation, the corresponding water content averages between 30 inches (755 mm) at Copper Ridge, east of Coeur d'Alene, and 49 inches (1240 mm) at Smith Creek, northwest of Bonners Ferry; the latter amount implies about 80 inches (2000 mm) annual precipitation.

Table 11.-Monthly mean temperatures, expressed as differences from annual mean temperature, based on 30-year normal period, 1941-70; at Priest River Experimental Forest control station (PREF) and groupings of stations in Kaniksu National Forest vicinity (KAN) and Coeur d'Alene-St. Joe National Forests vicinity (CSJ)

Station or grouping	Difference from annual mean											
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
PREF	-20.3	-14.7	-9.9	-0.8	+8.1	+ 14.3	+20.3	+ 18.8	+ 11.1	+0.5	- 10.9	- 16.7
KAN ${ }^{+}$	-20.7	-14.9	-9.7	-. 1	$+8.3$	+14.4	+20.5	+ 18.8	+ 11.0	+. 3	- 11.0	- 17.0
CSF ${ }^{2}$	-19.8	-14.2	-10.1	-1.5	+ 7.0	+13.3	+20.4	+19.2	+11.5	+ 1.4	-10.4	- 16.5

${ }^{1}$ Average from six stations: Bonners Ferry, Heron, Metaline Falls, Newport, Porthill, and Sandpoint.
${ }^{2}$ Average from four stations: Avery, Coeur d'Alene, Saint Maries, and Wallace (Woodland Park).

Table 12.-Average monthly precipitation at Priest River Experimental Forest control station and at adjacent valley or canyon stations in Idaho panhandle, except as noted; based on 30 -year normal period, 1941-70. (EF denotes Experimental Forest and RS denotes Ranger Station)

Station	Average precipitation												
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
							Inch						
Priest River EF	4.39	3.08	2.83	2.08	2.54	2.71	0.94	1.16	1.66	3.22	4.17	4.52	33.30
Avery RS (former location)	4.29	3.17	2.91	2.59	2.60	2.72	1.08	1.28	1.90	3.18	4.07	4.07	33.86
Bonners Ferry 1 SW	3.40	2.13	1.72	1.26	1.67	1.85	. 80	1.00	1.50	2.39	3.43	3.39	24.54
Coeur d'Alene RS	3.64	2.42	2.13	1.67	2.15	2.03	.67	. 97	1.26	2.38	3.27	3.44	26.03
Heron 2 NW, Mont.	4.63	3.47	2.84	2.11	2.48	2.89	. 81	1.39	2.07	3.15	4.39	4.47	34.70
Metaline Falls, Wash. ${ }^{1}$	3.14	2.28	1.97	1.70	2.43	2.84	1.19	1.39	1.53	2.73	3.20	3.49	27.89
Newport, Wash.	3.75	2.61	2.36	1.88	2.19	2.01	. 75	1.01	1.53	2.77	3.70	3.74	28.30
Porthill	2.40	1.57	1.44	1.20	1.81	2.11	. 82	1.22	1.44	1.91	2.50	2.45	20.87
Saint Maries	4.20	2.97	2.68	2.13	2.23	2.31	. 71	1.01	1.47	2.61	3.74	3.92	29.98
Sandpoint Exp. Sta.	4.52	3.23	2.74	2.08	2.36	2.44	. 73	1.17	1.83	3.32	4.27	4.52	33.21
Wallace, Woodland Park	4.75	3.44	3.20	2.64	2.58	2.83	1.07	1.23	2.12	3.62	4.60	4.84	36.92

${ }^{1}$ Based on 23 or 24 years to 1965, plus 5 or 6 years at Boundary Dam (located 9 miles to north).

Table 13.-Average cumulative water-year precipitation at end of each month, in percentage of annual total, based on 30 -year normal period, 1941-70; at Priest River Experimental Forest control station (PREF) and groupings of stations as in table 11

Station or grouping	Cumulative water-year precipitation, at end of month											
	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.
PREF	9.7	22.2	35.8	48.9	58.2	66.7	72.9	80.6	88.7	91.5	95.0	100.0
KAN ${ }^{1}$	9.6	22.2	35.3	48.1	57.2	64.9	70.9	78.6	86.9	89.9	94.2	100.0
CSF ${ }^{2}$	9.3	21.7	34.5	47.8	57.2	65.9	73.0	80.5	88.3	91.1	94.7	100.0

[^1]
Afternoon Temperature, Relative Humidity, and Wind During Fire Season

July-August average afternoon temperature and relative humidity at fire-weather stations are mapped in figure 24; wind, in figure 25. The data, for 1500 P.s.t., are based on only a 10-year period, 1961-70, to maximize the number of stations having comparable years of record. The stations are limited to the Kaniksu and Coeur d'Alene National Forests and vicinity. (Data shown for Spokane, Wash., are not included in the calculations.) The 2 -month average tends to compensate for unrepresentative averages of the individual months. For example, August 1961-70 afternoons, overall, were warmer than normal in the Idaho panhandle (example, table 5); July 1961-70, near or slightly cooler than normal. Adjustments were made for incomplete records at

——— 4000 FTELEVATION CONTOUR
Figure 24.-Summer afternoon average temperature, ${ }^{\circ} \mathrm{F}$ (upper number) and relative humidity, percent, at stations in Idaho panhandle and adjacent Washington; at 1500 P.s.t., average for July and August combined, based on years 1961-70. Small numbers below station names are elevations, ft m.s.l. Averages for lookouts (locations shown by triangles) have been adjusted for missing data (see text). Averages at Priest Lake (from 1964-73 data at present station) and Sandpoint (from 1963.70 data) have also been adjusted.
lookouts, which commonly are vacant in early July and late August-particularly with cool, moist conditions.

Calculations show that the temperature (or "dry bulb") at Priest River, clearcut site, averages $0.9^{\circ} \mathrm{F}\left(0.5^{\circ} \mathrm{C}\right)$ lower than at the eight other valley stations (which average slightly lower in elevation); relative humidity, 0.5 percent higher. Including the 11 lookouts, the overall lapse rate of afternoon dry bulb between stations is 4.1° F per $1,000 \mathrm{ft}\left(7.5^{\circ} \mathrm{C}\right.$ per 1000 m$)$-close to the rate found between the Priest River clearcut and Gisborne Lookout. Little relationship is found between average relative humidity and elevation at the valley stations (which lie within a narrow elevational range), but the higher averages at adjacent lookouts give an overall increase of 3.5 percent per $1,000 \mathrm{ft}(305 \mathrm{~m})$-near the rate of 3.8 percent per $1,000 \mathrm{ft}$ found at Priest River.

As within the Experimental Forest, summer afternoon winds are from a prevailing southwesterly direction over most of the Idaho panhandle (and adjacent eastern Washington) (fig. 25). Some exceptions are seen, related to local topography (such as intervening terrain and valley or canyon orientation). As shown earlier in the

——— 4000 FTELEVATION CONTOUR
Figure 25.-Summer afternoon average windspeed, mi/h, and prevailing direction at stations as in figure 24; based on available observations at 1500 P.s.t. during July-
August, 1961-70. Directions are shown by arrows (pointing downwind).
comparison with Priest Lake, windspeeds in the Priest River valley area are relatively low. Speeds at the other valley stations averaged generally near $5.0 \mathrm{mi} / \mathrm{h}$ $(8.0 \mathrm{~km} / \mathrm{h})$, one-third higher than at Priest River. Windspeeds at the 10 surrounding lookouts, at elevations averaging $5,615 \mathrm{ft}(1712 \mathrm{~m})$, had an overall average of $6.5 \mathrm{mi} / \mathrm{h}(10.5 \mathrm{~km} / \mathrm{h})$-just $0.5 \mathrm{mi} / \mathrm{h}$ higher than the Gisborne Lookout average for 1961-70, which earlier was found to be rather low when compared with speeds in previous decades. The lookout windspeeds, while higher than at adjacent valley locations, show a weak correlation with elevation (r was 0.36). The highest* lookout, on Roman Nose Mountain, did have the highest average speed, $10 \mathrm{mi} / \mathrm{h}(16 \mathrm{~km} / \mathrm{h})$.

In summary, the above comparisons indicate that the climatic data for Priest River Experimental Forest closely follow the pattern found over most of the Idaho panhandle. Numerical values are also similar in many cases, particularly when adjustments are made for elevation and latitude differences. Similar local topographic effects may be expected. The Priest River valley area, representing a location with well-timbered surroundings, does have lower windspeeds than surrounding fireweather stations.

CONCLUDING REMARKS

The Priest River Experimental Forest contains within its $10-\mathrm{mi}^{2}\left(25-\mathrm{km}^{2}\right)$ area the climatic characteristics identified with mountainous areas in general; these are superimposed upon the characteristics related to its geographic location. Resulting statistics have been presented. In a comparison with adjacent stations, these statistics were found to follow the seasonal pattern occurring over the larger Idaho panhandle area-numerical values were also similar in many cases.
Priest River stands out in its history of weather and climatological observations. These have been taken at permanent stations and also at a variety of sites as part of various studies. The aggregate of measurements represents the efforts of many persons throughout the years. Local effects of elevation, slope, and timber cover are reflected in the data thus obtained. Our climatic description has borrowed upon much of this resource; there were additional data not as readily available in publications or not as yet tabulated into usable form. The findings for Priest River, representing much of adjacent northern Idaho, add to the store of knowledge that researchers and managers may draw upon for inferences in forested mountain areas elsewhere.

PUBLICATIONS CITED

Anderson, Hal E. Sundance Fire: an analysis of fire phenomena. Res. Pap. INT-56. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1968. 39 p.
Ayer, Harold S. The wind profile at the crest of a large ridge. Mon. Weather Rev. 88(1): 19-23; 1960.
Baker, Donald G. Effect of observation time on mean temperature estimation. J. Appl. Meteorol. 14(4): 471-476; 1975.
Baughman, Robert G. Why windspeeds increase on high mountain slopes at night. Res. Pap. INT-276. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1981.6 p.

Bradshaw, Larry S. Climatology software package, user's guide. In: Systems for Environmental Management final report, Supplement No. 7, to Fire Effects and Use R\&D Program. Missoula, MT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Northern Forest Fire Laboratory; 1981. 36 p. plus appendixes.
Buffo, John; Fritschen, Leo J.; Murphy, James L. Direct solar radiation on various slopes from 0 to 60 degrees north latitude. Res. Pap. PNW-142. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1972. 74 p .
Carpenter, Calvin L. Priest River Experimental Forest report, 1979. Ogden, UT: U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station; 1979. 16 p. Unpublished.
Court, Arnold. Diurnal variation of winds at 3 km in the Sierra Nevada. In: American Meteorological Society, preprint volume, conference on Sierra Nevada meteorology; June 1978, South Lake Tahoe, CA; 1978: 53-54.
Critchfield, Howard J. General climatology, 3d ed. Englewood Cliffs, NJ: Prentice-Hall, Inc.; 1974. 446 p. Deeming, John E.; Burgan, Robert E.; Cohen, Jack D. The National Fire-Danger Rating System-1978. Gen. Tech. Rep. INT-39. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1977. 63 p.
Doty, Robert D. 50-year summary (1912-1961) climatological data, Priest River Experimental Forest. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1961. 16 p. Office report.
Environmental Sciences Services Administration, Environmental Data Service. Climatic atlas of the United States. Washington, DC: Environmental Sciences Service Adminstration; 1968. 80 p.
Finklin, Arnold I. Weather and climate of the SelwayBitterroot Wilderness. Moscow, ID: University Press of Idaho; 1983. In press.
Fischer, William C.; Hardy, Charles E. Fire-weather observers' handbook. Agric. Handb. 494. Washington, DC: U.S. Department of Agriculture; 1976. 152 p.
Fitzgerald, O. A. A man and his monument. Steelways. 14(4): 24; 1958.

Furman, R. William; Brink, Glen E. The national fire weather data library. Gen. Tech. Rep. RM-19. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station; 1975. 8 p.
Geiger, Rudolf. The climate near the ground. Rev. ed. Cambridge, MA: Harvard University Press; 1965. 611 p.
Gisborne, H. T. Using weather forecasts for predicting forest-fire danger. Mon. Weather Rev. 53(2): 58-60; 1925.

Gisborne, H. T. Meteorological factors in the Quartz Creek forest fire. Mon. Weather Rev. 55(2): 56-60. 1927.

Gisborne, H. T. A five-year record of lightning storms and forest fires. Mon. Weather Rev. 59(4): 139-150; 1931.

Gisborne, H. T. How the wind blows in the forest of northern Idaho. Missoula, MT: U.S. Department of Agriculture, Forest Service, Northern Rocky Mountain Forest and Range Experiment Station; 1941. 14 p. plus figures. Progress Report.
Hanna, R. T. Annual fire weather report for District No. 5, season of 1932. Boise, ID: U.S. Department of Agriculture, Weather Bureau; 1933. 35 p.
Hanna, R. T. Annual fire weather report for District No. 4, season of 1938. Missoula, MT: U.S. Department of Agriculture, Weather Bureau; 1939. 45 p.
Haupt, Harold F. The generation of spring peak flows by short-term meteorological events. Bull. Int. Assoc. Sci. Hydrol., 13(4-12): 65-76; 1968.
Haupt, Harold F. Effects of timber cutting and revegetation on snow accumulation and melt in north Idaho. Res. Pap. INT-224. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1979. 14 p.
Hayes, G. Lloyd. Influence of altitude and aspect on daily variation in factors of forest-fire danger. Circ. 591. Washington, DC: U.S. Department of Agriculture; 1941. 38 p.

Hayes, G. Lloyd. A method of measuring rainfall on windy slopes. Mon. Weather Rev. 72(5): 111-114; 1944.
Jemison, George M. Climatological summary for the Priest River Forest Experiment Station, 1912-1931, inclusive. Exp. Stn. Publ. Missoula, MT: U.S. Department of Agriculture, Forest Service, Northern Rocky Mountain Forest and Range Experiment Station; 1932a. 27 p.
Jemison, George M. Meteorological conditions affecting the Freeman Lake (Idaho) fire. Mon. Weather Rev. 60(1): 1-2; 1932b.
Jemison, George M. The significance of the effect of stand density upon the weather beneath the canopy. J. For. 32(4): 446-451; 1934.
Landsberg, Helmut. Physical climatology, 2d ed. DuBois, PA: Gray Printing Co., Inc.; 1958. 446 p.
Larsen, J. A. Weather records at lookout stations in northern Idaho. Mon. Weather Rev. 50(1): 13-14; 1922a.
Larsen, J. A. Effect of removal of the virgin white pine stand upon the physical factors of site. Ecology. 3(4): 302-305; 1922b.

Larsen, J. A. Some factors affecting reproduction after logging in northern Idaho forests. J. Agric. Res. 28(11): 1149-1157; 1924.
Larsen, J. A. Forest types of the northern Rocky Mountains and their climatic controls. Ecology. 11(4): 631-672; 1930.
Larsen, J. A. Site factor variations and responses in temporary forest types in northern Idaho. Ecol. Monogr. 10: 1-54; 1940.
Larsen, J. A.; Delavan, C. C. Climate and forest fires in Montana and northern Idaho, 1909-1919. Mon. Weather Rev. 50(2): 55-68; 1922.
Leaphart, Charles D.; Stage, Albert R. Climate: a factor in the origin of the pole blight disease of Pinus monticola Dougl. Ecology. 52(2): 229-239; 1971.
Linsley, Ray K., Jr.; Kohler, Max A.; Paulhus, Joseph L. H. Hydrology for engineers. New York-TorontoLondon: McGraw-Hill; 1958. 340 p.
Miller, J. F.; Frederick, R. H.; Tracy, R. J. Precipitationfrequency atlas of the western United States, volume V-Idaho. NOAA Atlas 2. Silver Spring, MD: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service; 1973. 43 p.

Oliver, John E. Climate and man's environment. New York: John Wiley and Sons; 1973. 517 p.
Pacific Northwest River Basins Commission, Meteorology Committee. Climatological handbook, Columbia Basin States, 3 volumes. Vancouver, WA: Pacific Northwest River Basins Commission; 1968: v. 1, 540 p., v. 2, 262 p.; v. 3, 641 p., plus appendixes.
Packer, Paul E. Elevation, aspect, and cover effects on maximum snow accumulation in a western white pine forest. For. Sci. 8(3): 225-235; 1962.
Packer, Paul E. Terrain and cover effects on snowmelt in a western white pine forest. For. Sci. 17(1): 125-134; 1971.

Reifsnyder, William E.; Lull, Howard W. Radiant energy in relation to forests. Tech. Bull. 1344. Washington, DC: U.S. Department of Agriculture, Forest Service; 1965. 111 p.

Rumbaugh, W. F. The effect of time of observation on mean temperature. Mon. Weather Rev. 62(10): 375-376; 1934.

Schaefer, Vincent J. Atmospheric studies from a moving weather observatory. Bull. Am. Meteorol. Soc. 38: 124-129; 1957.
Schroeder, Mark J.; Buck, Charles C. Fire weather. Agric. Handb. 360. Washington, DC: U.S. Department of Agriculture; 1970. 229 p.
Stage, A. R. Some runoff characteristics of a small forested watershed in northern Idaho. Northwest Sci. 31(1): 14-27; 1957.
U.S. Weather Bureau. Climatic summary of the United States-supplement for 1951 through 1960, Climatography of the United States No. 86-8, Idaho. Washington, DC: U.S. Department of Commerce; 1964. 66 p.
Wellner, Charles A. Frontiers of research-Priest River Experimental Forest, 1911-1976. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1976. 148 p.
Wellner, C. A.; Watt, R. F.; Helmers, A. E. What to see and where to find it on the Priest River Experimental Forest. Misc. Publ. 3. Missoula, MT: U.S. Department of Agriculture, Forest Service, Northern Rocky Mountain Forest and Range Experiment Station; 1951. 86 p.
Wilson, Walter T. Analysis of winter precipitation observations in the cooperative snow investigations. Mon. Weather Rev. 82(7): 183-199; 1954.
World Meteorological Organization. A note on climatological normals. Tech. Note No. 84. WMO-No. 208.TP.108. Geneva: World Meteorological Organization; 1967. 15 p.

Table 14. - Monthly and annual precipitation, 1911-82, at Priest River Experimental Forest control station

[^2]Table 15.-Precipitation statistics for Priest River Experimental Forest control station; amounts in inches. Mean totals are based on 50 years, 1931-80. Extremes are for 1912-82; listed year (first two digits omitted) is the most recent in cases of more than one occurrence. Number .00 denotes either zero or trace (less than 0.005 inch)

PRECIPITATION
BY 10 (OR 11)-DAY AND MONTHLY PERIODS
STATION NUPBER 147386 PRIEST KIVEK EXP FOR (CONTROL STN) YPS 1931-1980 EXCEPT AS NOTED

10-DAY ANO MONTHLY TOTALS

MONTH:

JAN	4.26	1.94	4.05	8.38	54	.70	49	1	1.74	67	.90	.38	.84
FEB	3.10	1.48	3.03	6.53	49	.57	13	I	1.73	70	.75	.37	.69
MAR	2.75	1.15	2.60	5.99	45	.25	26	1	1.90	66	.62	.29	.57
APR	2.01	1.08	1.99	4.53	55	.30	24	1	1.50	82	.59	.24	.60
MAY	2.28	1.39	1.80	6.24	41	.37	57	1	2.05	25	.65	.36	.57
JUN	2.31	1.19	2.23	4.92	48	.14	22	1	1.51	46	.67	.33	.66
JUL	0.99	.85	.71	3.43	48	.00	73	1	1.34	37	.37	.27	.34
AUG	1.15	.98	.85	4.24	26	.00	69	1	1.56	18	.49	.36	.43
SEF	1.59	1.09	1.55	7.50	27	.03	43	1	1.65	27	.59	.36	.51
OCT	2.82	1.94	2.73	8.31	47	.18	74	1	1.75	51	.76	.39	.67
NOV	4.03	2.23	3.64	10.46	73	.11	29	1	2.40	59	.90	.39	.86
OEC	4.86	1.83	4.57	11.22	33	.91	13	1	2.21	51	.91	.37	.91

Table 16．－Frequency distribution of daily precipitation amounts at Priest River Experimental Forest control station；based on years 1931 through 1977
PRECIPITATION－FLRCENTAGE FREQUENCY OF GAILY AMOUNTS（INCHES）
－GIVEH TO NEAREST TENTH PEKCENT．DECIMAL PCINT OMITTED
STATION NUMBER $1073 B 6$

PER	01	TOTAL NHMA	amolnt eglal to or greatek than												
BEGI	13s	DAYS	0.01	0.05	0.10	0.20	0.30	0.40	0 － 50	0.60	0.80	1.00	1.50	2.00	3.00
Jaid	1.	470	540	425	343	<38	164	130	35	64	28	13			
Jaiti	11	470	562	465	377	<47	177	134	102	77	34	30	11		
JA「io	21	51.7	509	398	319	<17	157	108	77	56	25	15	2		
F［i3	1	470	472	389	328	$\angle 11$	132	83	55	34	19	9	$?$		
FEB	1.1	470	447	330	253	157	119	87	68	49	17	11	2		
FEIS	2.1	362	446	$3 \in 6$	276	196	142	98	64	46	26	13	3		
MAR	1	470	421	343	262	± 79	123	72	4.3	21	9	6	2		
M足	11	470	445	336	266	177	109	70	36	13	6	4			
MAR	21	517	412	338	277	176	10 t	70	$\checkmark 7$	21	8				
APH	1	476	37 ？	277	185	12 E	72	55	30	19	2	2			
Api？	11	470	3411	251	196	115	A5	55	38	26	11				
APR	21	470	374	240	172	98	72	49	38	21	6	4			
MAY	1	470	419	300	228	132	70	45	2.6	13	4				
MAY	11	476	360	268	196	130	91	67	43	30	19	9	2		
MAY	21	517	340	232	184	1uと	64	48	31	23	14	10			
Juja	1	4710	394	298	234	164	102	70	43	28	15	9	2		
JUN	11	470	37 ？	289	232	145	98	77	53	36	9				
Jul！	2.1	47 C	32.3	249	191	115	E1	64	36	21	9	2			
JUL	1	47 C	221	177	106	64	49	30	19	11	4	2			
JリL	1 j	470	101	123	89	51	38	19	13	11	2	2			
JリL	21	517	114	85	72	43	23	10	4	4	2				
Aus	1	470	157	109	72	38	26	11	6	2					
AUG	11	475	140	98	79	49	3 H	30	19	2					
AUS	21	517	244	176	141	93	64	54	33	23	14	8			
SE！	1	470	21.7	145	106	12	51	40	28	26	15	9	2		
SEP	11	470	269	204	153	98	68	45	34	26	11	2			
SEP	21	47 u	272	189	147	91	66	45	30	19	11	2			
OCT	1	$47!$	$30 ?$	243	2.02	162	102	72	49	30	19	11	4		
OCT	11	470	311	232	179	128	98	74	50	43	19	6			
OCT	21	517	44.1	359	294	<07	149	99	68	4ϵ	25	14			
rov	1	47！	455	362	283	185	143	96	77	57	26	13			
40V	11	470	487	428	370	＜ 77	194	151	100	72	45	26	9	2	
Nov	21	470	485	398	332	232	168	115	83	57	34	17	4		
DEC	，	47ij	55．	47 ？	385	257	185	117	05	E． 7	30	19	2		
UEC	11	470	543	457	377	＜t6	$20 ?$	147	109	74	47	23	9	2	
JEC	21	517	594	497	406	28：	201	155	108	72	31	19			

MOUTH

JAN	44112	532	426	346	22^{5}	159	117	80	56	27	17	3	
FEH	4013	452	366	285	187	1.29	86	58	40	19	11	2	
MAR	4402	416	327	260	109	104	68	35	19	7	3	＊	
AP： 2	4250	363	257	188	115	77	49	33	20	6	2		
MAY	4402	365	258	197	119	72	49	29	20	11	5	1	
JJJid	4250	353	266	202	128	83	60	39	27	9	4	＊	
JUL	4402	167	118	81.	50	35	20	12	9	3	1		
Aug	4402	1 184	126	93	57	41.	31	20	12	7	4	＊	
SEP	4250	262	185	137	35	62	44	32	24	12	6	1	
oct	4402	358	280	223	154	109	76	55	35	19	9	1	
NOV	4260	465	3 35	31H	223	162	116	25	60	32.	17	3	＊
UEC	4402	550	454	367	255	185	134	47	$6 E$	34	19	2	＊

＊LESS THAR 1

Table 17.-Monthly and annual snowfall, 1911-82, at Priest River Experimental Forest control station

${ }_{2}^{1} M=$ missing.
${ }^{2} \mathrm{~T}=$ trace, an amount too small to measure.
3 Includes estimates for days with missing data.

Table 18.-Precipitation (inches) during fire season at additional stations in or near Priest River Experimental Forest; statistics based on indicated years

STATION		NUMBER	100204	PRIESt Lake R.S.					YRS 1951-1980					
PERIOU			$\begin{gathered} 10-\text { DAY } \\ \text { STD } \\ \text { DEV } \end{gathered}$	AND MONTHLY totals					I	MAXIMUM D			daily totals	
	NO.	MEAN			HIGHE		LOWE		I	EXTRE	ME	AVG	STD	
BEGINS	YRS	total		MEDIAN	тот.	YR	TOT	YR	I		YR	MAX	DEV	MEDIAN
JUN 1	17	. 651	. 464	. 660	1.48	67	. 00	65	I	. 88	71	. 318	. 235	. 300
JUN 11	20	. 767	. 480	. 630	2.00	65	. 03	69	I	. 87	52	. 389	. 225	. 360
JuN 21	19	. 616	. 577	. 500	2.15	69	. 00	77	1	. 82	67	. 313	. 260	. 300
JUL 1	30	. 565	. 604	. 340	1.96	78	. 00	73	I	1.28	78	. 325	. 329	. 260
JUL 11	30	. 338	. 394	. 185	1.33	56	. 00	73	I	1.09	56	. 226	. 275	. 125
JUL 21	30	. 239	. 398	. 040	1.43	75	. 00	80	I	. 78	61	. 148	. 220	. 035
aUg 1	30	. 318	. 404	. 055	1.18	76	. 00	79	I	. 94	53	. 217	. 289	. 040
Aug 11	30	. 586	. 8.99	. 150	3.51	68	. 00	73	I	1.65	80	. 307	. 445	. 100
aug 21	30	. 718	. 670	. 500	2.44	54	. 00	74	I	. 90	53	. 335	. 274	. 270
SEP 1	28	. 430	. 426	. 290	1.29	60	. 00	72	I	1.24	60	. 281	. 283	. 235
SEP 11	24	. 515	. 635	. 275	2.71	68	. 00	76	I	1.55	68	. 299	. 347	. 215
SEP 21	19	. 650	. 632	. 500	2.01	69	. 00	79	I	. 82	72	. 318	. 287	. 280

MONTH									I					
									T					
JUN	16	2.011	. 798	2.185	3.38	53	. 66	74	I	. 88	71	. 537	. 187	. 515
JUL	30	1.141	. 862	. 980	3.45	78	. 03	60	I	1.28	78	. 482	. 314	. 430
AUG	30	1.622	1.343	1.420	4.90	54	. 00	69	T	1.65	80	. 534	. 413	. 450
SEP	19	1.508	. 883	1.350	3.16	71	. 11.	75	I	1.55	68	. 516	. 224	. 570

PRECIPITATION
BY 10 (OR 11)-DAY AND MONTHLY PERIODS STATION NUMBER 100202 GISBORNE LOOKOUT YRS 1951-1978

			10-DAY	and monthly totals			I	MAXIMUM DAILY TOT				
PERIO	NO.	MEAN	STI		HIGHEST	LOWEST	I	EXTREM	Me	AVG	STD	
BEGINS	YRS	total	DEV	MEDIAN	TOT, YR	TOT, YR	I		YR	MAX	DEV	MEDIAN
JUL 1	26	. 623	. 637	. 355	2.2254	.0073	I	1.09	54	. 337	. 310	. 255
JUL 11	28	. 459	. 542	. 245	1.9275	. 0069	I	1.03	75	. 275	. 312	. 175
JUL 21	28	. 270	. 372	. 060	1.1555	.0073	I	. 87	58	. 164	. 229	. 060
AUG 1	28	. 393	. 491	. 190	1.8776	. 0078	J	. 70	53	. 224	. 225	. 150
AJJG 11	28	. 515	. 781	. 080	2.90\#68	. 0073	I	1.157	78	. 222	. 310	. 070
AUG 21	16	. 826	. 794	. 780	2.4377	. 0070	I	1.28	76	. 517	. 448	. 640

MONTH						I					
						J					
JUL	1.328*	3.52	55	. 00	53	I	1.09	54	. 503	. 299	. 515
AUG	1.734*	5.91	76	.00	69	I	1.28	76	. 558	. 414	. 640

PERICD
BEGINS

JULL	1	45	.489	.586	.300	2.22	54	.00	53	1	1.25	48
JUL	11	47	.379	.495	.150	2.02	75	.00	69	I	1.03	75
JUL	21	48	.289	.366	.110	1.31	48	.00	73	I	.87	58
AUG	1	48	.332	.483	.115	2.04	48	.00	78	I	1.47	48
AUG	11	48	.387	.638	.065	$2.90 \# 68$.00	73	I	1.15	78	
AUG	21	36	.697	.678	.475	2.43	77	.00	70	1	1.28	76

MONTH

JULY	$1.157 *$
AUG	$1.416 *$

[^3]Table 19.-Frequency distribution of daily precipitation amounts at stations as in table 18
PRECIPITATION - PERCENTAGE FREQUENCY OF [IAILY AMOUNTS (INCHES)

- GIVEN to NEAREST TENTH PERCENT, DECIMAL POINT OMITTED

STATION NLIBEK 100204 HRIEST LAKE R.S.
1951-1980

PRECIPITATIOF: - PERCENTAGE FREQUENCY OF DAILY AMOUNTS (INCHES)

- GIVES TO NEAREST TENTH PERCENT, DECIMAL POINT OMITTED

STATION NLGESER 100202 GISBORNE LOOKOUI
1951-1978

JuL	849	24	226	15.5	131	77	49	37	25	18	7
AJG	735	33	231	178	135	91	60	46	35	23	8

Table 20. - Monthly and annual average temperatures, 1911-82, at Priest River Experimental Forest control station; based on 24-hour period ending at 5 p.m. P.s.t.

Table 20.-(con.)

Table 20.-(con.)

Year	Average Daily Maximum and Minimum Temperatures												
	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
							--- ${ }^{\circ} \mathrm{F}$						
1971	31.8	36.3	40.7	54.5	69.5	69.6	82.7	87.8	64.9	53.1	36.7	28.5	54.8
	21.7	22.2	22.5	30.0	38.6	45.1	46.9	47.0	37.4	30.8	28.0	17.8	32.4
1972	27.7	36.2	46.2	50.8	69.1	72.5	79.1	85.1	65.8	57.7	39.1	27.6	54.8
	12.3	21.9	28.0	28.1	41.3	47.3	46.9	49.5	38.7	31.5	29.6	17.3	32.7
1973	28.5	39.0	46.8	57.0	69.0	73.7	86.2	84.0	71.5	53.6	35.2	32.1	56.5
	16.0	22.3	27.4	29.3	38.3	44.9	46.1	45.8	42.5	36.5	27.7	26.9	33.7
1974	28.8	36.5	42.7	55.2	61.2	78.9	80.8	82.5	76.0	61.8	40.0	34.0	56.6
	17.8	26.3	26.7	34.8	37.2	47.4	49.3	46.6	39.1	28.3	32.5	27.3	34.5
1975	29.4	33.0	41.0	51.4	66.4	71.4	86.7	77.3	75.9	53.7	37.0	32.8	54.8
	19.2	18.5	25.1	28.6	38.1	45.0	54.1	48.0	39.3	38.0	24.8	23.7	33.6
1976	31.8	35.1	40.1	53.7	69.1	69.4	80.2	75.6	76.4	57.4	39.3	31.5	55.0
	23.8	22.4	20.8	31.5	36.8	41.8	47.9	49.5	40.3	31.7	25.7	24.5	33.1
1977	26.9	39.2	44.3	62.6	60.4	76.1	79.5	82.7	65.3	56.2	36.0	31.5	55.1
	17.1	24.9	27.3	29.4	36.8	44.9	45.3	47.9	41.4	32.3	25.4	22.1	32.9
1978	32.3	38.1	48.5	56.3	62.1	76.4	81.3	76.2	66.3	59.0	35.2	25.5	54.8
	24.0	28.6	29.3	34.7	39.2	45.7	50.9	48.9	44.4	31.8	23.9	13.2	34.6
1979	18.4	32.8	47.1	54.5	68.4	77.0	84.9	85.7	77.4	59.5	34.3	36.6	56.4
	3.6	22.4	24.9	29.8	39.3	45.2	49.0	48.51	41.7	35.1	22.5	29.2	32.7
1980	26.5	35.7	43.5	62.7	66.5	70.7	80.1	74.7	69.7	57.9	38.6	34.0	55.1
	12.6	26.6	26.6	33.7	43.3	43.8	48.4	44.4	41.6	33.2	30.0	27.6	34.3
1981	33.1	39.5	51.1	54.4	62.7	65.9	79.0	84.5	71.3	52.3	41.0	31.9	55.6
	25.6	24.0	27.7	32.4	40.5	43.0	46.7	47.7	40.5	34.0	31.5	23.3	34.7
1982	28.1	34.3	44.8	52.5	66.8	77.6	77.0	79.9	69.8	52.5	34.9	30.2	54.0
	18.9	19.8	28.2	28.0	37.6	48.4	47.5	47.6	42.6	34.5	25.7	22.6	33.5
50-year average 1931-80													
	30.1	37.1	45.0	56.9	67.1	73.4	82.8	81.6	71.6	56.6	39.1	32.5	56.2
	17.5	20.2	24.1	30.1	37.6	43.9	46.5	44.7	39.1	32.9	26.7	22.6	32.2

[^4]Table 21.-Daily maximum temperatures $\left({ }^{\circ} \mathrm{F}\right)$ at Priest River Experimental Forest control station; statistics based on years 1931 through 1977, except 1912-82 where indicated, and on 24 -hour period ending at 5 p.m. P.s.t.
MAXIMUM DAILY TEMPERATURE
STATION NUREEAK $1 U 7386$ PRIEST RIVEK EXP FOR (CONTHOL STN)

10-DAY ANU MUNTHLY PEHIUD MEANS

HONTH								
Jan	30.4	4.6	31.0	39.5	53	17.4	37	I
FES	37.2	3.8	37.0	44.2	34	25.1	36	I
MAPR	44.5	3.6	44.0	55.9	41	37.3	55	I
AP! ${ }^{\text {P }}$	56.8	4.4	56.0	69.3	34	48.3	70	I
MAY	67.2	3.8	67.0	77.5	58	60.0	15	I
JHF	73.3	3.2	73.0	81.6	61	65.4	él	I
JUL	82.6	2.5	83.0	88.5	60	76.7	12	I
Aug	81.7	4.0	82.0	90.7	67	74.0	$1 ?$	I
SEP,	71. ϵ	$4 . \varepsilon$	71.0	81.8	67	62.1	41	I
OCT	56.4	3.8	55.5	67.4	5?	50.5	68	I
Suv	39.4	2.9	39.0	45.7	54	32.4	55	I
OEC	$32 \cdot 6$	2.6	32.0	38.7	33	25.5	78	I

MONTH										
49	53	42.7	4.0	43.0	-2	79	15.9	8.7	14.0	JAis
57	47	48.3	3.8	49.0	-1	23	23.9	8.8	25.c	FEB
70	15	57.7	6.2	57.0	18	60	32.4	5.8	33.0	$M A R$
88	34	73.5	7.1	73.0	29	36	42.7	3.8	42.0	$A P R$
97	36	32.6	5.3	82.0	41	67	49.7	4.5	49.0	MAY
97	12	88.0	3.8	08.0	46	66	56.9	4.5	57.0	Jun
102	24	94.4	3.3	94.0	55	55	66.4	4.9	66.0	JUL
103	61	93.3	3.5	94.0	49	12	55.5	6.3	66.0	AUG
96	38	86.7	5.0	27.0	43	34	54.2	5.3	55.0	SEP
	43	73.1	5.4	74.0	21	35	40.0	5.4	40.0	OCT
	65	52.1	4.8	52.0	12	55	27.5	5.2	29.0	r:OV
55	33	44.4	4.5	45.0	-10	68	19.6	7.3	22.0	DEC

Table 22.-Daily minimum temperature statistics as in table 21

MINIMMUM DAILY TEMPERATURE
STATION NUPAEK 107386 PRIEST RIVER EXP FOR (CONTFOL STI)

FEAA, STANDARD UEVIATION, AND EXTREME. VALUES
1931-1977 EXCEPT AS NOTED

	10-Day arum movthily peridgh ments					I			10-İAY ANO		monthly extreme daily values							
	1912-1782					1	1912-1982					1912-1982		AVG.	STD.	MEDIAN	PERIOD	
PERIU		Sti.		HIGHEST	LOLEST	I			AVF.	STO.	median							
BEGINS	\cdots	OEV.	MEEIAAAT	AVG, YF	AVLOY	I	HIGH	YR	HIGH	DEV.	HIGH	LCW,		LOW	OEV.	LOW	BEG	NS
Jan 1	18.4	9.1	20.6	30.639	-12.179	1	37	53	$\therefore 8.4$	5.6	30.0	-28	24	5.5	13.0	8.0	JAN	1
JAiv 11	13.4	9.7	15.0	32.053	-12. - $^{\text {c }} 6$	1	${ }^{0} 0$	20	28.9	5.7	31.0	-29	25	2.3	15.7	5.0	JAN	11
JAN 21	16.5	10.1	17.0	31.753	-10.0 57	I	35	74	28.8	7.1	31.0	-33	50	-0.3	14.7	0.0	JAN	21
FEG 1	19.1	9.5	19.0	30.778	-6.5 36,	1	26	5.1	29.3	4.9	31.0	-35	33	1.7	15.0	6.0	FEB	1
FES 11	20.1	4.3	20.0	≥ 1.258	-12. 36	1	41	81	30.3	3.6	31.0	-28	36	7.4	12.6	9.0	FEB	11
FE'3 21	? 1.8	6.1	22.5	32.370	-5.6 2?	I	39	72	30.8	3.6	32.0	-18	18	11.0	9.4	13.0	FEB	21
visk 1	21.3	5.1	22.0	25.277	6.143	1	38	14	31.3	3.1	32.0	-18	45	8.7	9.9	11.0	MAR	1
MAR 11	24.0	4.1	24.0	32.272	12.765	I	40	41	32.1	2.3	32.0	-7	13	13.6	8.5	16.0	MAR	11
MAR 21.	2 t .0	3.0	26.0	33.078	16.313	I	41	41	33.5	2.9	33.0	-10	13	16.2	7.3	17.0	MiAR	21
Apr 1.	27.9	3.1	28.0	33.i+40	18.0 3n	I	4.5	41	35.3	3.6	35.0	-1	36	20.5	5.1	22.0	APR	1
APR 11	$2{ }^{57}$?. 0	29.0	36.326	25.151	1	46	38	37.9	3.2	37.0	14	27	23.2	3.2	24.0	APR	11
Afir 21	32.1	3.0	31.0	41.434	26.U 54	1	55	78	40.6	4.1	41.0	14	23	25.3	3.4	25.0	APR	21
mar 1	34.8	2.8	35.0	43.080	27.069	I	53	41	4.3.1	3.8	43.0	18	54	27.3	3.5	27.0	MAY	1
MAY 11	27.0	2.8	36.0	43.457	29.443	I	54	41	45.6	4.3	45.0	23	18	29.3	3.4	28.0	MAY	11
MAY 21	40.2	3.1	40.0	48.458	$30 .<1 \mathrm{~A}$	1	58	39	$4 \mathrm{S}$.	3.9	49.0	23	20	31.7	4.0	31.0	MAY	21
Juiv 1	42.9	3.4	43.0	51.157	33.019	I	59	72	51.1	4.3	51.0	24	18	35.0	3.7	35.0	JUN	1
Jun 11	44.0	2.9	44.0	50.374	36.419	I	41	63	52.3	3.6	52.0	27	52	35.6	4.1	35.0	JUN	11
Juin 21	44.5	3.3	44.3	55.482	38.E ら¢	I	63	70	53.0	4.3	53.0	31	34	36.7	3.5	36.0	JUiv	21
JUL 1	45.4	3.1	44.0	55.675	38.919	I	62	18	33.7	3.4	54.0	31	79	37.7	3.8	37.0	JUL	1
Jul 11	47.0	2.9	45.0	55.575	37.013	I	64	75	55.5	4.0	55.0	31	19	39.4	3.6	39.0	JUL	11
JUL 21	46.6	$? .7$	47.10	52.171	38.035	I	63	80	54.4	4.5	54.0	29	17	39.3	3.7	39.0	JUL	21
AUS 1	45.5	3.5	45.0	54.976	37.617	1	f3	73	53.5	4.8	53.0	31	14	39.0	3.8	39.0	AUG	1
Allg 11.	44.4	2.	43.0	51.379	37.413	I	52	32	52.6	4.0	52.0	29	20	37.1	4.0	37.0	AUG	11
A.jG 21	43.6	2.9	43.0	51.979	35.914	I	el	76	52.6	4.2	53.0	26	14	35.7	3.6	36.0	AUG	21
SEP 1	41.3	2.9	41.0	50.678	34.656	I	60	30	51.0	4.0	51.0	23	21	32.9	3.8	33.0	SEP	1
SEP 11	36.8	3.6	39.3	47.640	28.5 1?	I	56	75	48.0	3.9	48.0	19	34	30.1	4.5	29.0	SEP	11
SEP 21	3 F. 7	3.8	3E.0	45.340	$25 . \cup 26$	I	57	67	4E.?	4.8	46.0	16	34	29.1	4.7	28.0	SEP	21
OCT 1	34.2	3.5	33.0	43.051	22.616	J	54	29	44.2	4.6	44.0	14	32	26.1	4.1	26.0	OCT	1
OCT 11	32.8	4.2	33.0	41.147	23.545	I	51	67	42.8	4.4	44.0	15	71	24.5	4.5	24.5	OCT	11
OCT 21	3.1 .3	3.6	31.0	39.573	20.4 35	J.	50	27	40.5	4.2	41.0	-5	35	21.9	6.3	22.0	OCT	21
Nov 1	20.2	4.8	28.0	39.880	13.735	I	46	75	36.3	4.5	37.0	-7	35	19.6	7.6	21.0	NOV	1
Nov 11	27.0	5.2	28.0	36.254	3.455	I	42	41	35.1	3.2	35.0	-16	55	17.7	10.4	20.0	Nov	11
fove 21	2.5 .0	5.6	25.0	32.820	4.031	I	45	49	32.4	4.9	32.0	-4	75	15.2	7.9	16.0	Nov	21
DEC 1	24.0	5.2	24.0	31.725	-4.0 19	I		75	32.5	3.4	32.0	-23	19	12.0	9.6	15.0	DEC	1
DEC 11	22.1	7.6	22.0	33.466	-8.n 2?	I	39	24	30.6	4.0	32.0	-25	24	11.0	12.5	12.0	DEC	11
DEC 21	21.4	6.5	22.0	32.880	3.768	I		33	30.9	3.7	32.0	-36	68	8.3	11.8	9.0	DEC	21

Table 23.-Mean temperature statistics as in table 21; based on arithmetic average of daily maximum and minimum temperatures
MEAN DAILY TEMPERATURE

STATIUA NUWFEP $10738 \circ$ PRIEST KIVER EXP FOR (CONTFOL STA)

I'EAN, STANDARD DEVIATION, AND EXTREME VALUES
1931-1977
EXCEPT AS NOTED
10-CAY AND MONTHLY EXTREME DAILY VALUES

1912-1982	AVG.	STU.	MEDIAN	1912-1982	AVG.	Sto.	MEDIAN	PERIOD	
HTGH,YR	HIGH	DEV.	HIGH	LOW, YR	LOW	DEV.	LOW	BE.G	INS
4.353	32.1	5.3	33.0	-1579	14.1	10.8	17.0	JAN	1
4353	33.0	5.4	34.0	-14 35	12.0	11.9	13.0	JAN	11
4153	33.0	5.8	35.0	-1450	11.1	11.3	13.0	JAN	21
4351	34.7	4.5	35.0	-1733	15.0	12.2	17.0	FEB	1
4581	36.0	3.9	36.0	-14 23	19.9	10.4	22.0	FEB	11
4447	36.6	3.9	37.0	457	23.3	7.3	25.0	FEB	21
$46 \quad 14$	38.0	3.4	38.0	155	23.1	8.4	24.0	MAR	1
4972	39.9	3.3	39.0	1013	26.9	6.1	29.0	MAR	11
4941	42.6	3.4	43.0	1113	30.0	6.4	32.0	MAR	21
5634	46.1	3.8	46.0	1436	34.6	4.8	35.0	APR	1
6026	49.3	4.5	49.0	2922	37.1	3.9	37.0	APR	11
fís 39	53.0	5.4	53.0	3054	39.5	3.7	39.0	$A P R$	21
5566	56.7	4.5	57.0	3454	42.5	4.0	42.0	MAY	1
5849	59.6	4.7	59.0	3519	44.2	3.8	45.0	MAY	11
7272	4.2. 3	4.3	63.0	3944	4E. 9	4.1	47.0	MAY	21
7370	63.6	4.5	63.0	4166	50.4	4.4	50.0	JUN	1
$74 \quad 74$	65.3	4.3	65.0	$44 \quad 54$	51.2	4.1	51.0	JUN	11
7673	6.7 .1	4.1	67.0	4420	52.1	3.8	51.0	JUN	21
7875	69.2	3.2	69.0	4755	55.5	3.9	56.0	JUL	1
7975	71.2	3.4	71.0	4843	58.1	3.6	58.0	JUL	11
7928	71.6	3.0	72.0	4917	58.2	3.8	58.0	JUL	21
$\begin{array}{ll}78 & \text { fl }\end{array}$	69.7	3.8	70.0	4964	58.2	3.8	58.0	AUG	1
$78 \quad 32$	69.5	3.4	69.0	$47 \quad 13$	57.4	4.7	57.0	AUG	11
$76 \quad 67$	67.5	3.6	67.0	4012	53.7	3.9	54.0	AUG	21
7438	65.1	4.3	65.0	4021	51.6	4.0	51.0	SEP	1
6975	61.9	4.1	53.0	3765	46.9	4.6	47.0	SEP	11
7267	57.9	5.1	58.0	$33 \quad 34$	46.0	5.8	45.0	SEP	21
勺3 43	54.4	4.2	54.5	3019	41.3	5.2	41.0	OCT	1
5944	51.5	3.6	52.0	2817	38.3	3.3	38.0	OCT	11
5760	47.6	4.4	47.5	935	32.9	5.8	34.0	OCT	21
3475	42.3	4.1	42.0	935	28.9	5.8	30.0	Nov	1
4662	39.5	3.4	40.0	055	25.6	7.9	27.0	NOV	1.1
5149	37.7	4.8	37.0	675	22.4	6.1	23.0	NOV	21
4641	36.6	4.2	36.0	-9 19	19.5	7.7	21.0	DEC	1
45.24	34.4	3.7	34.0	-12 19	18.0	9.9	19.0	DEC	11
4933	34.8	3.8	34.0	-2368	15.9	9.0	17.0	DEC	21

MONTH

MONTH						I
JAN	24.0	5.8	24.0	34.853	6.537	1
FEA	28.5	4.3	29.0	35.558	12.036	1
$\because A R$	34.4	3.0	34.0	41.541	26.755	I
$A P R$	43.4	2.7	43.0	52.134	38.255	1
-A A	52.3	2.6	52.0	59.358	46.015	I
JuN	58.6	2.3	58.0	63.174	54.520	I
JUL	64.6	1.8	64.0	70.475	60.013	I
AUG	63.1	2.3	63.0	68.761	57.812	1
SEP	55.3	2.9	55.0	61.738	48.226	I
OCT	44.6	2.0	44.0	49.844	38.912	I
NOV	33.0	3.1	32.0	39.734	25.8 55	I
DEC	27.6	3.1	28.0	33.625	17.822	I

43	53	36.4	3.3	37.0	-15	79	4.9	10.4	3.0
45	81	38.6	2.6	39.0	-17	33	11.8	10.8	15.5
49	72	43.1	3.0	43.0	1.55	20.9	8.1	23.0	JAN
66	39	54.0	5.0	54.0	14.36	33.5	4.5	34.0	FEB
72	72	64.1	3.6	64.0	34	54	40.8	2.8	40.0
76	73	6.9 .3	3.1	69.0	41	66	47.9	3.0	48.0
79	75	73.3	2.5	73.0	47	55	54.0	3.3	54.0
78	51	71.5	3.0	72.0	40	12	52.8	3.1	53.0
74	38	66.0	3.6	66.0	33	34	43.5	3.8	44.0
63	43	55.5	3.3	55.0	9.35	32.4	5.5	34.0	MAY
54	75	43.3	3.7	43.0	0	55	19.9	7.2	21.0
49	33	38.4	3.5	39.0	-23	68	10.9	9.1	12.0

Table 24. -Frequency distribution of daily maximum temperatures at Priest River Experimental Forest control station; based on years 1931-77 and 24 -hour period ending at 5 p.m. P.s.t.

```
MAXIMUM DAILY TEMPERATURE
```

PERCEI TAGE FREQUENCY OISTRIBUTION OF DAILY VALUES
-GIVEN TO TENTHS PERCENT, DECIMAL POINT OMITTED
STATJOF RLOEEH 107386 PRIEST KIVER EXP FOR (CDHTROL STH)

JAN	1	4	13	40
JAF:	11	13	15	21
JAN:	21	4	19	37
FEB	1	4	0	13
FEQ	11		6	9

$\begin{array}{ll}\text { FEQ } & 11 \\ \text { FER } & 21\end{array}$
$\begin{array}{ll}\text { MAR } & 1 \\ \text { MAR } & 11\end{array}$
$\begin{array}{ll}\text { MAR } & 11 \\ \text { MAR } & 21\end{array}$
$A P R$
$\begin{array}{ll}A P R & 1 \\ A P R & 11\end{array}$
$A P R$
$A P R$
$A 11$
$\begin{array}{ll}A P R & 21 \\ M A Y & 1\end{array}$
$\begin{array}{ll}\text { MAY } & 1 \\ \text { MAY } & 11\end{array}$
MAY 21
JUN 1
JUN 11
JUN ? 1
JUR ? 1
JUL 11
JUL ? 1
AUG 1
AUG 11
AUE 21
SEP
SEP 11
SEP 11
SEP 21
$\begin{array}{ll}\text { SEP } & 1 \\ \text { OCT } & 1\end{array}$
$\begin{array}{lr}\text { OCT } & 1 \\ \text { OCT } & 11\end{array}$
$\begin{array}{ll}\text { OCT } & 11 \\ \text { OCT } & 21\end{array}$
$\begin{array}{lr}\text { OCT } & 21 \\ \text { NOV } & 1\end{array}$
NOV 11
HOV 21
$\begin{array}{lr}\text { DEC } & 1 \\ \text { DEC } & 11\end{array}$
DEC 21

Table 25.-Frequency distribution of daily minimum temperatures as in table 24

Table 26. - Dry bulb temperature (${ }^{\circ} \mathrm{F}$) observed at 3 p.m. P.s.t. at fire-weather stations in Priest River Experimental Forest. Data are for complete 20 years, 1951-70, at clearcut station; for indicated numbers of years at Gisborne Lookout

ORY BULB TEMPERATURE

MEAN, Standard oeviation, and extreme values
1951-1970
10-UAY AND MONTHLY EXTREME DAILY VALUES

AVG.	STD.	MEDIAN			AVG.	STO.	MEDIAN	PERIOD	
HIGH	OEV.	HIGH	Low.	YR	Low	DEV.	LOW	BEG	
72.8	7.5	71.5	40	67	47.8	6.0	46.5	MAY	1
79.1	5.1	78.5	35	55	48.9	6.1	48.0	MAY	11
79.1	5.7	79.5	39	60	51.2	6.4	51.0	MAY	21
81.1	5.4	81.0	45	66	56.0	7.3	$56 . \mathrm{C}$	Jun	1
82.7	5.6	82.0	48	57	57.6	6.0	56.0	UUN	11
82.1	6.2	81.0	47	68	55.9	5.8	55.5	Jun	21
88. 5	3.8	88.0	50	66	62.2	8.5	62.5	ЈUL	1
91.0	4.6	92.0	59	65	68.8	7.0	65.5	JUL	11
90.4	4.5	91.0	54	54	68.9	8.5	68.5	JUL	21
90.8	5.3	91.5	54	56	67.6	7.7	67.0	Aug	1
89.8	4.8	90.5	54	68	69.1	9.7	69.5	AUG	11
87.4	7.8	86.5	52	64	60.4	7.2	59.0	AUG	21
63.8	5.4	84.0	50	62	61.1	8.8	60.5	SEP	1
E. 1.4	6.6	83.5	41	65	53.9	5.5	53.5	SEP	11
76. 4	0.3	76.0	43	59	52.7	6.9	51.0	SEP	21
71.1	6.1	73.0	39	59	47.2	5.5	46.5	OCT	1
63.8	7.3	66.5	33	51	44.7	4.1	45.0	OCT	11
57.5	7.2	57.5	27	57	40.3	6.2	40.5	OCT	21

81.9	4.1	82.5	35	55	44.5	4.0	45.0	MAY
66.3	4.2	87.0	45	66	51.0	3.5	50.0	JUN
93.2	3.3	93.5	50	66	58.8	6.0	58.5	JUL
93.6	4.2	94.0	5264	57.8	5.4	56.5	AUG	
85.7	5.0	86.5	41	65	49.3	4.0	50.0	SEP
71.7	5.2	73.0	27	57	38.8	4.7	39.0	OCT

1951-1970
10-DAY AND MCNTHLY EXTREME DAILY VALIJES

	AVG.	STO.	NEDIAN		AVG.	STO.	MEDIAN	PERIOO
HIGH, YR	HIEH	DEV.	HIGH	LOW,YR	LOW	DEV.	LOW	BEGINS
8564	76.0	4.4	76.0	3966	48.6	6.6	49.0	JUL 1
E7 70	78.7	4.9	79.0	4557	56.0	6.7	55.5	JUL 11
8659	78.2	4.8	79.0	3854	55.7	9.6	55.0	UJL 21
5361	79.3	5.3	80.0	4056	54.1	7.8	54.5	AUG 1
\&7 67	77.4	4.8	76.5	4164	55.7	9.5	55.5	AUG 11
8769	76.9	11.0	80.5	3860	50.9	8.5	52.0	Aug 21

MONTH JUL
AUG

Table 27.-Relative humidity (percent) observed at 3 p.m. P.s.t. as in table 26

RELATIVE HUMIDITY

STATION NUWEER 100205 FRIEST RIVEF EXP FOR (CLFARCUT)
10-DAY AND MONTHLY PERIOD MEANS

HONTH								I		
								I		
MAY	44.1	6.1	43.5	56.6	61	34.6	58	I	100	67
JUN	44.2	5.4	44.0	57.4	53	34.5	60	1	100	53
JUL	33.7	4.7	33.0	43.7	55	23.9	60	1	94	70
AUG	33.5	8.0	31.5	47.1	64	19.5	67	I	94	65
SEP	41.0	7.8	40.5	60.8	59	24.9	67	I	100	70
CCT	61.5	9.6	58.5	89.3	51	50.3	66	I	100	70

MEAN, STANDARD DEVIATION, AND EXTREME VALUES

89.8	6.2	92.0
90.1	4.8	90.5
80.5	13.0	86.0
82.8	14.8	87.5
89.9	7.1	93.0
96.0	3.7	93.5

10	66	17.9
8	65	19.3
11	53	17.0
5	61	14.1
7	67	17.2
19	52	28.8

$\begin{array}{ll}3.8 & 18.0 \\ 4.9 & 18.5 \\ 3.3 & 16.5 \\ 3.6 & 15.5 \\ 4.5 & 17.0 \\ 9.8 & 26.0\end{array}$

10-DAY AND MONTHLY EXTREMES

$\begin{aligned} & \text { AVG } \\ & \text { HIGH } \end{aligned}$	STD. DEV.	$\begin{aligned} & \text { MEDIAN } \\ & \text { HIGH } \end{aligned}$	LOW	YR	AVG. LOW	sTo. DEV.	MEDIAN LOW	$\begin{aligned} & \text { PRD. } \\ & \text { BEGINS } \end{aligned}$	
76.8	14.7	78.0	10	66	24.4	9.2	23.0	may	1
77.7	16.1	81.5	11	58	20.7	5.5	20.0	Mar	11
20.4	12.0	82.0	15	66	22.2	4.0	21.0	miAY	21
74.9	18.6	80.0	R	65	23.9	7.6	23.5	JuN	1
73.9	17.4	82.0	17	66	25.1	4.5	24.5	JUN	11
76.3	19.5	83.5	17	70	24.1	5.5	24.0	JUN	21
68.6	19.9	72.0	17	67	22.8	4.6	23.0	JUL	1
55.6	19.7	52.0	14	60	21.0	3.7	22.0	JUL	11
56.2	22.5	48.5	11	53	17.7	3.7	17.0	JuL	21
62.1	20.7	64.5	5	61	17.0	4.6	16.5	AUG	1
55.0	22.0	49.0	9	67	16.5	3.1	16.5	AUG	11
68.6	24.2	73.0	,	66	20.7	8.3	19.0	AUG	21
66.0	21.2	63.5	13	67	20.1	5.1	21.0	SEP	1
75.3	17.6	80.5	11	68	21.8	6.3	20.5	SEP	11
77.6	19.6	88.0	7	67	25.9	7.9	26.5	SEP	21
88.1	12.8	93.0	19	52	30.8	12.3	28.0	OCT	1
86.8	10.6	89.5	21	69	37.5	11.5	34.0	OCT	11
$9 \times .0$	7.8	93.0	28	65	45.4	13.0	45.0	OCT	21

1.951-1970

HIGH,YR

10067	
10	61
94	69
94	57
94	70
10	53
9	69
8	65
9	70
9	53
9	59
94	65
10	70
94	59
94	69
100	69
100	70
10	70

Month

RELATIVE HUMIUITY

STATIUN NUMEEA 100202 GISGORNE LOOKOUT 10-TJAY AND MONTHLY PERIOD MEANS

[^5]
piear. standard deviation. and extreme values

10-חAY AND MONTHLY EXTREME DAILY VALUES

HIGH,YR	AVG.	stu. Median		LOW, YR		AVG。 LOW	STD. MECIAN DEV. LOW		PERIOD BEGINS	
	HIGH	OEV.	HIGH							
10066	85.3	14.2	89.0	18	52	31.3	10.0	31.0	JUL	1
10065	69.6	19.5	74.0	15	60	27.8	6.7	29.0	JUL	11
10070	69.0	23.5	63.5	18	60	25.8	4.6	26.5	JUL	21
10064	73.5	20.3	70.5	10	70	26.5	10.1	26.5	AUG	1
10060	73.2	21.9	73.0	9	70	25.4	9.1	24.0	AUG	11
10064	74.9	24.4	79.0	7	70	28.8	13.8	25.5	AUG	21

MONTH
$\begin{array}{llllllllll}100 & 70 & 90.3 & 12.6 & 93.0 & 15 & 60 & 22.7 & 5.0 & 22.0 \\ 100 & 68 & 89.6 & 13.3 & 97.0 & 7 & 70 & 22.1 & 8.1 & 22.0\end{array}$

Table 28.-Frequency distribution of dry bulb temperatures $\left({ }^{\circ} \mathrm{F}\right)$ observed at 3 p.m. P.s.t.

DRY BULB TEMPERATURE
PERCEITAGE FREQUENCY fistribution of daily values -GIVEN TO TENTHS PERCENT. DECIMAL POINT OMITTEL

STATION NUMBER 100202 GISBOKNE LUOKGUT

TEMPERATURE RANGE																							
		3	5	10	1.5	29	25	311	35	40	4E	50	55	60	65	70	75	80	85	90		100	
PRU.		TO	TO	10	10	10	T0	TO	10	TO	TC	10	10	70	T0	T0	T0	T0	TO	T	T0	ANO	PRD.
BEGINS		4	9	14	19	24	23	34	39	44	49	54	59	64	69	74	79	84	89	94	99	ABOVE	EEGINS
Jett 1									16	32	53 3	111	163	116	174	168	121	37	5				JUL 1
JUL 11											20	55	105	160	160	225	180	80	15				UJL 11
Jul 21									5		32	50	41	127	195	282	200	64	5				UUL 21
A!s 1										20	36	55	70	155	215	220	155	60	15	5			AUG 1
Aljg 11										15	56	31	71.	12 R	214	255	133	65	31				AUG 11
AJG 21	112	Y:(S)							25	38	53	75	113	195	135	128	135	68	45				AUG 21
MONT:																							MONTH
Jill									7	10	35	70	100	134	177	228	169	61	8				JUL
AU:	112	Y(E)							4	<3	45	51	ถ1	155	195	210	142	64	28	$?$			AUg

Table 29.-Frequency distribution of relative humidity (percent) observed at 3 p.m. P.s.t.
relative humioity
PERCEI TAGE FREGUENCY DISTRIEUTION OF UAILY VALLES -EIVEA TO TENTHS PERCENT, DECIMAL POINT OMITTET

STATION NUMBER $100 Z 05$ PRIEST RIVER EXP FOR ICLEARCUT
1951-1970

										Hup I	17	RInge										
	"	5	119	15	20	25	36	35	40	45	50	55	60	6.5	70	75	80	85	90	95	100	
ppos.	T0	Tc	T6	TO	T0	TO	TO	10	10	ir	10	To	TO	T0	T0	T0	T0	T0	TO	T心		PRD.
WEGIts	4	5	14	19	24	29	34	39	44	49	54	59	64	69	74	79	64	89	94	99		HEGIINS
MAY 1			15	50	101	141	111	60	55	101	65	60	40	50	20	40	30	20	30		10	MAY 1
MAY 11			5	55	175	100	115	90	75	70	55	45	30	40	20	25	30	30	35		5	MAY 11
MAY 21				32	36	159	145	118	73	64	59	55	23	23	23	50	27	36	27			MAY 21
JUN 1		5	5	30	90	95	160	115	130	65	25	40	50	55	25	45	25	2.0	20			JuN 1
Jun 11				10	65	150	125	155	11.5	85	70	15	45	30	35	10	45	20	25			JUN 11
JUN 21				30	75	155	220	85	70	70	40	65	25	15	20	20	40	40	25		5	JUV 21
JUL 1				60	105	175	180	130	100	25	35	40	40	15	10	25	20	30	10			JUL 1
JUL 11			10	70	195	205	230	95	35	50	25	20	15	5	25	10		10				JUL 11
JUL 21			18	177	250	205	150	68	36	18	9	9	18	5	5	5	9	14	5			JUL 21
AUG 1		5	20	200	185	195	100	65	60	20	25	25	25	20	20	5	20	5	5			AUG 1
AUG 11		5	70	145	275	175	95	35	40	50	10	25	5	15		30	10		15			AUG 11
AJJG 21		5	45	114	145	159	114	55	64	45	41	50	41	14	36	5	14	27	27			AUG 21
SEP 1			25	105	175	155	165	95	65	40	45	15	35	5	15	20	15	15			10	SEP 1
SEP 11			10	60	115	180	130	105	60	40	50	30	15	35	45	35	25	40	25			SEP 11
SEP 21		5	10	25	85	130	130	90	125	75	45	65	25	30	15	40	15	30	60			SEP 21
OCT 1				5	55	70	130	80	110	40	75	35	55	50	50	60	15	40	95		35	OCT 1
OCT 11					20	20	80	125	AO	60	65	90	60	55	80	35	60	75	65		30	OCT 11
OCT 21						9	23	27	18	77	68	59	109	95	82	77	100	64	141		50	OCT 21
MONTH:																						MONTH
MAY			6	45	120	134	124	90	68	78	60	53	31	37	21	39	29	29	31		5	MAY
JUN		2	2	23	77	133	168	118	105	73	45	40	40	33	27	25	37	27	23		2	JUN
JUL			10	105	185	195	185	97	56	31	23	23	24	ε	13	13	10	18	5			JUL
Aug		5	45	152	200	176	103	52	55	39	26	34	24	16	19	13	15	11	16			AUG
SEP		2	15	63	125	155	142	97	83	52	47	37	25	23	25	32	18	28	28		3	SEP
OCT				2	24	32	76	76	68	60	69	61	76	68	71	58	60	60	102		39	OCT

Table 30.-Frequency distribution of three-way combinations of dry bulb temperature (${ }^{\circ} \mathrm{F}$), relative humidity (percent), and windspeed (mi/h) at 3 p.m. P.s.t.
given to tenths percent, decimal point omitten
STATIUN NUMEER 100205 PRIEST RIVER [XP FOR (CLFARCUT) $1951-1970$ MONTH MAY

MONTH AUG

			N	SP		15	M				1		ND	SP			/	AL	0			I	OTAL	NUMBER
[100											1											I		******
95-99											I											I	37*	******
90-94											I											I	105*	******
85-89											1											I	164*	******
80-84											1											I	203*	******
75-79											1											1	169*	******
70-74											I											1	126*	******
65-69											1											I	85*	******
60-64											I											I	51*	******
55-59											I											I	42*	******
50-54											1											I	17*	******
+5-49											I											I		******
40-44											1											I		******
35-39											1											1		******
30-34											I											I		******
30											1											1		******
total											1											I	000	
Number	0	0	0	0	0	0	0	0	0	0	I	0	0	0	0	0	0	0	0	0	0	I		602

Table 30.-(con.)

-GIVEN TO TENTHS PERCENT, DECIMAL POINT OMITTED
STATION NUMBER 100205 PRIEST RIVER EXP FOR (CLEARCUT) $1951-1970$

MONTH SEP

			WIN			15					I		IND			EA	/	UA	20	PH		1	total	NUMBER
[100											1											1		*****
95-99											1											1		*****
90-94											1											1	19**	*****
85-89											1											1	68**	*****
80-84											1											1	142**	*****
75-79											1											1	146**	*****
70-74											1											1	144*	*****
65-69											1											I	128**	*****
60-64											1											1	135**********	*****
55-59											I											1	120**	*****
50-54											1											1	76**	*****
45-49											1											1	21**	*****
40.44											1											I	2*	*****
35-39											1											1		*****
30-34											1											I		*****
30											1											I	*	*****
total											1											I	1000	
Number	0	0	0	0	0	0	0	0	0	0	\underline{I}	0	0	0	0	0	0	0	0	0	0	I		577

MONTH OCT

TEMPERATURE-RELATIVE HUMIDITY-WINDSPEED

GIVEN TO TEHTHS PERCENT, OECIMA PERCENTAGE FREQUE.iNY OF OCCURRENCE FOR SELECTED COMBINATIONS
STATION NUMBER 100202
GISBORNE LO
1951-1970
MOHTH JUL

MONTH Al

Table 31．－Daily maximum temperature（ ${ }^{\circ} \mathrm{F}$ ）at fire－weather stations in Priest River Experimental Forest；statistics based on 24 －hour period ending at 3 p．m．P．s．t．Data are for complete 20 years，1951－70，at clearcut station；for indicated numbers of years at Gisborne Lookout

MAXIMUM DAILY TEMPERATURE

STATION AUMERE 100265 PRIEST RIVEK EXP FCR（CLEARCITT）
10－EAY MJU MONTHLY PERIOD MEAR：S

PERION			STL．		HIGHEST	LOWEST	1
3EGINS		MEMN	nev．	MEDIA：	AVS．YR	AVE，YR	I
MAY	1	63.9	5.9	62.0	75.357	54.761	I
MAY	11	68.5	4.7	65.0	76.958	59.666	1
MAY	21	70.4	5.9	69.0	95.058	60.955	1
J小	1	73.4	5.6	72.0	83.569	65． 54	I
Jリ＊	11	74.5	5.7	72.0	135.461	66.554	I
Jus	21	75.3	¢． 0	74.11	83.570	65.969	I
JUL	1	¢0．1	4.8	79.10	90.568	70.555	I
J！L	11	34.5	＋． 9	84.5	95.0 5u	76.663	I
JUL	21	85.5	4.3	86.0	92．2． 62	78.163	I
A Jf	1	24.8	5.2	Qe．0	93.161	75.164	I
A1硈	1.	54.5	6.1	84.3	97.367	$7 \% \cdot 0 \in 8$	I
Aus	21	78．h	7.1	77.0	90.370	$6.5 .4 \in 0$	I
SEP	1	77.9	5.9	77.5	38.155	68.1 6．4	I
SEP	11	73.1	6.5	73.0	\＆2．3 56，	58.065	I
SEP＇	21	69.3	7.6	67.5	9ᄌ．${ }^{\text {a }}$ 5？	5e．2 61	I
OCT	1.	－3．6	5.7	63.0	78.952	56.460	1
OCT	11	¢¢． 7	5.7	54.0	68.852	48.651	1
OCt	2.1	52.6	5.4	52.0	61.752	43.551	I

	10－EAY MJU MOATHLY PERIOD MEA＇S					I
PERION		STL．		HITHEST	LOWEST	1
BEGINS	WEAN	nev．	MEDIA．／	AVS．YR	AVE，YR	I
MAY 1	63.9	5.9	62.0	75.357	54.761	I
MAY 11	68.5	4.7	65.0	76.950	59.666	1
NAY 21	70.4	5.9	69．0	95.058	60.955	1
गयid 1	78.4	5.6	72.0	8.3 .569	65． 54	I
Jリ以 11	74.5	5.7	72.0	85.461	66.554	I
Jun 21	75.3	5.0	74.11	83.570	65.969	I
JUl 1	¢0．1	4.8	79.10	90.568	70.555	1
Jul 11	34.5	＋．9	84.5	95.050	76.663	I
Jul 21	85.5	4.3	86.0	92．？ 62	78.163	I．
A！jg 1	24.8	5.2	日e．0	93.161	75.164	I
Allig 11	54.5	6.1	84.3	97.367	$73.0 \in 8$	I
AUG 21	78．6	7.1	77.0	90.370	$6.5 .4 \in \cap$	I
SFP 1	77.9	5.9	77.5	38.155	68.16 .4	I
SEP 11	73.1	f． 5	73.0	52.356	58.065	I
SEP 21	69.3	7.6	67.5	9x． 5 5？	54.261	I
OCT 1	03．6	5.7	63.0	78.952	56．4 60	1
OCT 11	54.7	5.7	54.0	68.052	48.651	1
OCT 21	52．6	5.4	52.0	61.752	43.551	I

Moldth

I	
I	
I	
I	$H I$

$H I G H, Y R$	
89	66
87	56
92	50
42	70
94	61
74	55
97	64
101	50
100	59
105	61
101	67
98	70
97	67
92	69
91	56
82	52
75	63
72	52

MEAN，STANDARD DEVIATION，AND EXTREME VALUES

10－nay and monthly extreme daily values

AVIS．	STU．	MEDIAN		AVG．	STD．	MEDIAN	PERIOD BEGINS	
HIGH	DEV．	HIGH	LOW，YR	LOW	DEV．	LOW		
74.4	7.4	74.0	4261	52.2	6.7	51.0	MAY	1
79.7	4.4	79.5	4467	54.8	5.9	55.0	NAY	11
80.1	5.9	80.5	4860	59.7	7.1	58.5	MAY	21
82．2	5.1	81.0	4756	62.9	6.9	E3．0	JUN	1
83.7	5.1	82.0	5670	63.9	5.8	63.5	JUN	11
83.8	6.0	82.5	5265	63.0	4.7	63.5	UUiv	21
89.5	4.2	88.5	5455	68.3	6.7	69.0	JUL	1
92.3	4.3	93.5	6065	74.7	6.3	75.0	JUL	11
92.4	4.0	92.0	6565	76.0	6.8	77.0	JUL	21
52.6	5.4	94.0	6256	75.1	6.9	77.0	AUG	1
91.4	5.0	S1．5	5659	73.8	10.1	76.0	AUG	11
89.6	6.9	89.0	5466	67.9	8.6	67.0	AUG	21
$\varepsilon \in .3$	6.0	26.0	5664	67.6	8.1	68.0	SEF	1
84.2	6.5	84.5	4965	60.4	6.2	59.5	SEP	11
78．1	8.3	76.5	4968	58.5	7.5	57.5	SEP	21
74.6	5.8	76.5	4058	51.4	7.8	51.5	OCT	1
6.6 .5	6.4	67.5	$40 \quad 51$	49.8	4.7	49.5	OCT	11
61.0	7.1	62．5	$33 \quad 57$	43.5	5.7	43.5	OCT	21

MONTH

62.9	4.4	94.0	4261	49.8	4.3	49.5	MAY	
87.4	3.8	87.0	4766	58.7	4.7	59.5	MUN	
94.7	3.2	95.0	54	55	66.9	6.1	67.5	JUL
95.4	4.1	95.5	54	66	66.1	8.4	64.5	AUG
88.0	5.3	88.5	4968	55.3	3.9	56.0	SEP	
75.1	4.8	76.5	33	57	42.2	4.5	41.5	OCT

MEAN，STARDAFI DEVIATION，AME EXTREME VALUES
STATIUN NUWHER 1.00202 GISBDRNE LOUKOUT
10－DAY AND MONTHLY PERIOD MEANS

		10－DAY AND MONTHLY PERIOD MEANS				
PERIOO	NUM．		STL．		HIGHEST	LOWEST
BEGINS	YRS	A．EAM	DFV．	MEDIAN	AVG，YR	nyberp
Jul 1	18	67.8	5.6	68．5	77.568	56．4\＃55
Jul 11	19	72.4	4.8	72.0	82.160	64.563
JいL 21	20	73.1	4.7	72.0	81.162	65.770
AUG 1	19	72.1	5.1	72.0	81.561	61.564
Aus 11	19	72.3	6.4	71.9	86.067	57．5\＃6A
AJg 21	12	69.4	7.8	68.0	80.170	51．0\％60
		S6．5a				

MONTH				I	
JUL	$71.2 *$	3.1	70.060	$66.2 \# 55$	I
AUS	$71.2 *$	4.6	75.961	$62.0+64$	I

[^6]＊value dFrivei fkom the three 10－bay means
a FRECEDINS VALUE ADJUSTED TU COMPLETE 20－YEAK PFRIOD

Table 32.-Daily minimum temperature $\left({ }^{\circ} \mathrm{F}\right)$ as in table 31

MINIMUM UAILY TEMPERATURE
\# includes estimate for days with missing oata

* VALUE DERIVEO FROM THE THREE 10 -DAY MEANS
a Precening value aujusted to complete $20-y E A R$ perion
STATION NUMPER 100205 FRIFST RIVER EXP FOK (CLEARCUT)

MONTH							
MAY	36.1	2.0	35.0	40.2	57	33.1	55
I							
JUN	42.2	2.3	41.0	46.3	69	38.6	60
JUL	43.5	1.8	43.0	47.7	55	40.8	53
AUG	41.5	2.5	41.0	46.4	65	36.5	55
SEP	36.3	2.7	35.0	40.6	59	32.9	60
DCT	31.4	2.5	31.0	35.2	51	26.6	52

53	66
60	70
63	55
60	65
60	67
51	67

4
5
5
48.
54.
55.
54.
50.
45

10-0AY ANU monthiy extrenie daily values

AVG.	STD.	MEDIAN		AVG.	STO.	MEDIAN	PERIOD BEGINS	
HIGH	DEV.	HIGH	LOW, YR	LOW	DEV.	LOW		
42.1	3.3	43.0	1654	25.9	4.0	26.0	MAY	1
44.4	4.2	44.5	2259	28.1	3.6	27.0	MAY	11
47.7	3.7	48.0	2464	30.4	4.6	30.5	MAY	21
50.6	4.4	51.0	$27 \quad 51$	3.3 .4	3.5	33.0	Jund	1
50.7	3.5	50.5	2756	32.8	3.9	32.0	JUN	11
51.6	4.8	51.0	2964	34.1	2.9	34.0	JuN	21
52.1	4.3	52.5	3052	35.0	2.9	35.0	JUL	1
53.2	5.1	53.0	3062	37.7	3.8	39.0	JUL	11
51.8	6.0	52.5	3263	35.7	3.2	34.5	Jul.	21
51.2	6.2	52.0	$\begin{array}{ll}31 & 57\end{array}$	35.6	3.8	34.5	AUG	1
50.3	4.5	51.0	3069	34.2	2.7	34.0	AUG	11
50.7	5.3	51.5	2769	32.2	4.0	31.5	AUG	21
4 E. 4	4.8	48.0	2262	29.2	4.0	28.5	SEP	1
45.7	5.2	48.0	1857	27.4	4.7	27.0	SEP	11
45.1	4.4	45.5	2170	26.6	5.0	26.0	SEP	21
42.5	5.0	42.5	1858	24.6	3.9	23.5	OCT	1
42.2	4.9	42.0	1669	22.8	3.7	22.5	OCT	11
40.3	4.4	41.5	1570	21.1	3.9	21.0	OCT	21.

:10NTH

MAY
JUN
JUL
AUG
SEP
OCT

MEAN, STAMDARD DEVIATION, AND EXTREME VALUES

> 1951-1970

10-LIAY AND MONTHLY EXTREME CAILY VALUES

		10-DAY AND MONTHLY PERIUD MEANS					I
PERION	NUM.		Stu.		HISMEST	LOWEST	I
BEGINS	YRS	rean	OEV.	MELIAN	AVG,YR	AVG, YR	I
Jul 1	18	47.8	4.5	47.0	58.368	40. 01755	I
JUL 11	19	50.7	4.6	49.5	62.160	44.268	I
JJUL 21	20	51.3	3.9	51.0	58.260	44.770	I
AUG 1	19	50.6	4.1	50.0	58.065	43.956	1
AUG 11	19	50.5	5.5	49.0	65.967	43.366	I
AUG 21	12	$\begin{aligned} & 47.5 \\ & 46.36 \end{aligned}$	5.5	47.0	55.470	37.0\#60	I
MONTH							I
JUL		50.0*	2.8		57.060	46.6\#55	I
AUG		49.5*	3.8		58.167	43.5\#64	1
		49.0al					

FIEAN, STANEARD DEVIATION, ANE EXTREME VALUES

$$
1951-1970
$$

:IONTH

MINIMUM DAILY TEMPERATURE

STATION NULGER 100202 GISEORNE LOOKOUT
10-DAY AND MONTHLY PERIUD MEANS
HIGH,YR
65
69
69
68
70
70
70
68
68
67

69
70 $\quad 67$

Table 33. -Windspeed (mi/h) observed at 3 p.m. P.s.t.; average speed and frequency distribution by direction

PFREENTAGE FREGUEGCY OF CCCURKEINCE BY DIRFCTION FOR SFLECTFD SPEED INCREMENTS -GIVEN TO TENTH:S PERCEMT, DECIMAL POINT OMITTED

STATION PIUFRER 100205 FRIEST RIVEK EXP FQR (CLEARCUT)
1951-1970

WI ND SPEED O DIRECTIION

PERCENTAGE FREQUENCY OF OCCURRENCE BY ORECTION FOR SELECTED SPEED INCREMENTS -GIVEN TO TENTHS PERCENT, DEGIMAL POINT OMITTED

STATION NUMBER 100202 GISBORNE LO
1951-1960

Finklin, Arnold I. Climate of Priest River Experimental Forest, northern Idaho. Gen. Tech. Rep. INT-159. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station; 1983. 53 p.

Detailed climatic description of Priest River Experimental Forest; applies to much of the northern Idaho panhandle. Covers year-round pattern and focuses on the fire season. Topographic and local site differences in climate are examined; also, climatic trends or fluctuations during the past 70 years. Includes numerous tables and graphs. Written particularly for forest managers and researchers.

KEYWORDS: climate, mountain climatology, fire-weather, climatic fluctuations

The Intermountain Station, headquartered in Ogden, Utah, is one of eight regional experiment stations charged with providing scientific knowledge to help resource managers meet human needs and protect forest and range ecosystems.

The Intermountain Station includes the States of Montana, Idaho, Utah, Nevada, and western Wyoming. About 231 million acres, or 85 percent, of the land area in the Station territory are classified as forest and rangeland. These lands include grasslands, deserts, shrublands, alpine areas, and well-stocked forests. They supply fiber for forest industries; minerals for energy and industrial development; and water for domestic and industrial consumption. They also provide recreation opportunities for millions of visitors each year.

Field programs and research work units of the Station are maintained in:

Boise, Idaho

Bozeman, Montana (in cooperation with Montana State University)
Logan, Utah (in cooperation with Utah State University)
Missoula, Montana (in cooperation with the University of Montana)
Moscow, Idaho (in cooperation with the University of Idaho)
Provo, Utah (in cooperlation with Brigham Young University)
Reno, Nevada (in cooperation with the University of Nevada)

[^0]: ${ }^{1}$ Month number/day number; thus $4 / 17$ is April 17.
 ${ }^{2}$ Mean date minus that at control station during same years.

[^1]: ${ }^{1}$ Average from six stations: Bonners Ferry, Heron, Metaline Falls, Newport, Porthill, and Sandpoint.
 ${ }^{2}$ Average from four stations: Avery, Coeur d'Alene, Saint Maries, and Wallace (Woodland Park).

[^2]: ${ }^{1} T=$ trace, an amount too small to measure.

[^3]: * SUM of means for the three 10 (or 11)-day perions
 \# incluoes estimates for missing days
 / INCLUDES DATA FKOM FORMER EXPERIMENTAL STATION LOOKOUT FOR 1931 AND 1932

[^4]: ${ }^{1}$ Includes corrections of confirmed errors in published climatological data.

[^5]: * value derivel from the three 10-day means
 a PRECEDING VALUE ADJUSTED TO COMPLETE 2O-YR PEHIOU

[^6]: \＃IACLUDES FSTIMATE FOP UAYS RITH MISSIfvG DATA

