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ABSTRACT 

The Kalman filter is a statistical estimator that combines. a time-series of independent estimates, 
using a prediction model that describes expected changes in the state of a system over time. An 
expensive inventory can be updated using model predictions that are adjusted with more recent, but less 
expensive and precise, ~toring data. The concepts of the Kalman filter are explained with a simple, 
hypothetical example of estimating percent forest cover over time, using remote sensin.g and field plots 
from a forest inventory. 

INTRODUCTION 

, 
The Kalman filter is a composite estimator, which combines two independent estimates at a time, 

each of which is weighted inversely proportional to its variance. Gregoire and Walters (1988) note that 
composite estimators are widely used in forestry, including sampling with partial replacement (e.g., 
Ware and Cunia 1962). Green and Strawderman (1986) and Thomas and Rennie (1987) show how a 
composite estimator may be used to combine independent estimates of stem density, basal area, or 
wood volume. 

In the Kalman filter, one of the independent estimates is a current estimate or monitoring 
measurement (e.g., remotely sensed data or midcycle update); the other is a previous estimate, or 
forest inventory, that is updated for expected changes over time using a detenninistic prediction model. 
Variance for this updated estimate includes effects of (1) errors in the previous forest inventory that are 
propagated over time, and (2) model prediction errors between the previous and current estimates. 
Errors in a composite estimate are typically less than errors in either prior estimate alone. 

EXAMPLE OF A COMPOSITE ESTIMATE 

First, consider the problem of estimating percent forest cover in Fig. 1. Make an ocular estimate of 
the percent forest in Fig. I, DOW. Then record your estimate in Table 1. 

Nine other photointerpreters independently made ocular. estimates for this same image, and their 
. results are recorded in Table 1. Assume etch ocular estimate has DO bias or sampling error, and each 
has an identical distribution of measurement errors (i.e., Fig. 1 is imperfectly censused, with nine 
independent replicates). The mean of these ocular measurements (xJ=S6.0% from Table 1) is the first 
estimate of percent forest cover in Fig. 1, with variance of the mean Var(XJ) = 3. 11 %% (variance units 
are ~2. denoted as % %) 

Next, consider a second estimate of percent forest cover in Fig. 1 using error-Cree classification of 
400 temporary plots. There are 204 forested plots, producing the estimate YJ=51.0%. Using the 
binomial distribution, the estimated sampling variance is Var(yJ)=(51.0%)(49.0%)/400=6.2S% %, 
which produces the approximate 95% confidence interval CI95S<YJ)=51.0±4.9%. 
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figure 1. Hypothetical example requiring In estimate of the percent forest cover (shaded uea in this 
image) at time t== 1. You are requested to make an ocular estimate of percent forest, and record your 
estimate in Table 1. Subsequently, 400 randomly located plots are independently classified into forest 
or nonforest. 

Table 1. Independent ocular estimates (pbotointerpretations) of percent forest in Fig. 1 by nine (or 
more) different, but unbiased and equally skilled, observers. These are pooled into a group estimate. 
Recompute the mean~ variance among interpretations, and variance of the mean, using your ocular 
estimate of percent forest cover in Fig. 1 (n== 10). 

Ocular Estimator 
Observer Estimate (x) xl Calculations (n==9) 

1 60 3600 Group mean :x J =504 %/9 
2 5S 302S %1 =56% 
3 SO 2SOO 
4 5S 3025 Variance amoog photointerpretations 
5 52 2704 -=[28448% %-(504%)219]/8 
6 SO 2SOO -28~~ 
7 6S 4225 
8 62 3844 Variance of ....,n=28 % %/9 

n=9 5S 302S Vu(x:)=3.11 %% 

Subtotal S04~ 28448%% 
Approximate 95 % confidence interval 

Yours xJ± 1.96(3.11)JI2=56.0±3.5% 

Total(n== 10) 



The estimate xl=56.0% from Table 1 can.be combined with the sample estimate from Fig. 1 
(yl=Sl.O~) to produce a new composite estimate x·l' as shown in Fig 2. xJ is weighted more heavily 
than y 1 because Var(x 1) = 3 .11 ~ % for replicated ocular measurement error is less than 
Var(yl)= 6.2S % % for sampling error from 400 point plots: 

x·] = [A} >'1] + [(1 - AI) Xl] 

= [(0.33) 51.0%] + [(0.67) 56.0%] 
= 54.4% 

A] = Var(Xl)I[Var(XI)+ Var(yJ)] 
= 3.11%% 1(3.11%% + 6.25%90) 
= 0.33 

Weight (or shrinking coefficient) If. J can be derived using maximum likelihood t minimum variance, 
or empirical Bayes theory. The expected variance of the composite estimate Var(x ./) is based on an 
elementary theorem in mathematical statistics for the variance of a linear transformation Y of 
independent random variables XQ and Xb: 

Y = (a XQ) + (b Xb) 

Var(Y} = a2 Var(XQ ) + b2 Var(X~ 

Applying tIiis theorem to the composite estimator x·l: 

:. 2 2 
Var(x 1) = [AJ Var(yJ)] + [(1 - AI) Var(.tl)] 

= [(0.1089) 6.25%%] + [(0.4489) 3.11 %%1 
= 2.08%% 

This estimator of Var(x·J} is also given by Gregoire and Walters (1988). The variance of the 
composite estimate is smaller than either of the two independent estimates (Green and Strawderman 
1986), as illustrated in Fig. 2; the approximate 95 % bounds on estimation error for the composite 
estimate x·l are ±2.8%, compared to ±3.S% for the mean ocular estimates, and ±4.9% for the sample 
estimate using 400 plots. 
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Figure 2. Probability densities for estimates of percent forest cover from mean ocular estimates 
(x}=56.0%) and 400 point plots <1J=51.0%). These are weighted inversely proportional to their 
variances, and combined into the composite estimate (z·1=54.4%). 
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CHANGES OVER TIME 

Periodic forest inventories, inventory updates~ or forest monitoring programs seek estimates of 
forest condition after changes have occurred. Fig. 3 shows the condition of forest cover at time 1=2, 
after clearcuts have changed the hypothetical example in Fig. 1 at time 1= I. Make another ocular 
estimate of percent forest cover in Fig. 3, now. Then, record your answer next to Fig. 3. 

In Fig. 3, 200 temporary plots are independently classified to estimate percent forest cover at 1=2; 
90 plots have forest cover, for an estimate Y2=45.0%, with Var(y2)=(45.0)(55.0)1200=12.38%%, and 
CI9j~ (y 2) =45.0 ± 6.9 %. 

Another estimate of percent forest x2 at time 1=2 can be made from prior t:Stimate x·/=54.4%, 
given an estimated rate of change. It is predicted, from historical trends or a deterministic model, that 
5 % of all forest cover in Fig. I is cleareut between 1= I and 1=2; therefore, the expected pereent 
forest at 1=2 is x2=0.95(x·/)=0.95(54.4%)=51.7%. 

If this linear transformation x2 of x· J is a perfect prediction model, variance of the propagated 
estimation error at 1=2 is simply Var(x2)=(O.9S)2var(x·l)=(0.90)2.08%S=1.88%%. However, 
models are imperfect; prediction errors, denoted w, occur, and linear transformation x2 = o. 95x ·1 + w is 
• more realistic prediction model. If prediction error is unbiased, i.e., the expected value E[w] is zero, 
then the updated estimate x2 is unaffected. 

Clearcuts Clearcuts 

Figure 3. Between times 1= 1 and 1=2, clearcuts reduce forest cover. In a monitoring system, 200 
point plots are used at 1=2 to independently estimate percent forest cover. 



If prediction errors ware independent of mors.for x-J' then Var(x2>-(0.9S)2Var(x·J)+Var(w). If 
Var(w) is assumed to be IJ)O~~. then Var(x2)-1.88%~+1.00%%-2.88%%, which yields an 
updated estimate x2 with CI9SS(x2)-51.7±3.3%. 

The Kalman filter is merely a different linear transformation (x-2) of the estimates y 2 and x2' with 
weights (A2) inversely proportional to their variances (Fig. 4): 

A2 == Var(x2)/[Var(X2)+ Var(y2)] 
== 2.88%% 1(2.88%% + 12.38~%) 
== 0.19 

%-2 == [A2 Y2] + [(I - A2) x2] 
-== [(0.19) 45.0%) + [(0.81) 51.7%] 
== 50.4% 

Var(x-2> = [A2
2 Var(yV] + [(1 - A2)2 Var(x2)] 

== [(0.0361) 12.38~ %] + [(0.6561) 2.88% %] 
= 2.34%% 

Approximate 95% bounds on estimation errors for the Kalman composite estimate are ±3.0%, 
compared to ±6.9% for the sample estimate Y2' and ±3.3% for model-updated estimate x2. 
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Jiigure 4. Probability densities for estimates of percent forest cover at time t-2, made from a prior 
estimate at time t-l, given model x2-CO.9S)x-J-S1.7% (S% of the forest is expected to be clearcut 
between t-l and t-2). Given a perfect prediction model, only the estimation error at t= 1 is 
propagated to t-2. More realistically, the model is imperfect, and an unbiased prediction error (w) 
also occurs. An independent estimate Y2 is available from the 200 plots in Fig. 3. The Kalman filter 
_ combines these two independent estimates into a composite estimate (x· 2)' with weights inversely 
proportional to their variances. 
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TIME-SERIES OF MONITORING DATA 

The Kalman filter is usually applied to a time series of monitoring measurements. With each new 
monitoring measurement, a composite estimate is made, which serves as new initial conditions for the 
next deterministic prediction (e.g., Fig. 5, year 4). Monitoring measurements can adjust predictions 
from a simple linear model for trends that are truly nonlinear, but are not well quantified. Precise data 
from the past can improve current estimates using less precise, but more recent, monitoring data. The 
Kalman filter can combine monitoring data from many sources, e.g., remote sensing or severance tax 
records. 
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Figure 5. Kalman estimates and approximate 95 % confidence intervals. Forest inventories were 
conducted in years 0 and 10j monitoring data were gathered in years 4 and 7. A time series of 
relatively imprecise (i.e., inexpensive) monitoring data can prolong utility of a previous, 
more expensive forest inventory. 

TUTORIAL 

To better understand the basic functions of the Kalman estimator, recompute the estimates above, 
using your ocular estimate of percent forest in Fig. I, which you recorded in Table 1, as follows: 

1. Compute a new mean of the ocular estimates Xl' and its variance of the mean Var(xI)' using 
n= 10 in Table 1. 

2. Recompute x*I' which combines this new Xl with the sample estimate from the 400 point plots: 
y}=51.0%, Var(yj) =6.25 % %. 

3. Apply the prediction model x2=(0.95)x*j' and the estimator for Var(x2)' where Var(w) is given 
as 1.00%%. 

4. Combine this updated estimate (x2) with the sample estimate at 1=2 [Y2=45.0%, 
Var(y2)=12.38~%] to computex·2 • 



The resulting composite estimate (.1-2) is also the Kalman filter estimate. Compute an estimate of 
percent forest at 1==3, given that 470 plots were forested in a sample of 1000 point plots at 1==3, and 
using the same model for change (i.e., 5~ of forest cover is cleareut between 1==2 and 1==3, with no 
regeneration). Repeat 1 to 4 above using only your ocular estimate (.I J) of Fig. 1, with 
Var(x)==28~ ~ from Table 1, and vary the estimate of model prediction error dispersion, e.g., 
Var(w)==5~ ~ or 10~~. Assume ocular estimates are biased, and the true percent forest (x) is 
related to your ocular estimate (.10> by the known linear model x)==0.85(xO>+2~; recompute the 
composite estimate X-I using only your ocular estimate (xO> for Fig. 1. Assume the model that predicts 
.I) from your.ro is not precisely mown, but is estimated by linear regression using a finite sample of 
reference sites (n== 100) from a calibration experiment, in which residual mean square error is 30~ %, 
mean of the 100 ocular estimates Xo is 50.5 ~, and sum of (xcr50.5 %)2 in the experiment is 84000 % %; 
recompute composite estimate .I -I using your calibrated ocular estimate x) of Xo- The true percent 
forest (usually unknown) is 54.68 ~ at 1== 1 (fig. 1), not including shadows, 49.65 ~ at 1==2 (Fig. 3), 
and 45.08 ~ at 1==3. 

VERIFICA nON 

It is possible that two independent estimates disagree, or -diverge., in that neither estimate is likely 
given the other (Fig. 6). Contradictory estimates can be combined, but the result can be biased. 
Contradictjpns are probably caused by problems in estimating the error distribution of (1) the current 
monitoring measurement, or (2) the past estimate that is updated by a deterministic prediction model. 

Concerning (2) above, it is very difficult to estimate the variance of model prediction errors 
Var(w); the estimate Var(w)== 1.00% ~ in the hypothetical example above is quite arbitrary. Accurate 
estimates of Var(w) would require known differences between model predictions and the true, but 
unknown, state of the system. As an alternative, adaptive filters modify initial, but inaccurate, 
estimates of Var(w) until disagreements are within acceptable bounds (Fig. 6), often using a time series 
of residuals ]I-XI (Sorenson 1985). Some Bayesian techniques assume model prediction errors are 
biased, and choose a weight or shrinking coefficient that minimizes a risk function. 

It is also possible that bias exists in the measurement model. For example, different 
photointerpreters are rarely unbiased, and never have identical error distributions. Calibration 
experiments for each interpreter are needed to more realistically model such measurement errors. 

The composite estimator assumes the two prior estimates are independent; however, their errors 
might be correlated. If your estimate of percent forest in Fig. 3 was influenced by any estimate of Fig. 
1, then your measurement errors are correlated. The Kalman filter can treat correlated errors, but 
covariance estimates are required. Temporal or other patterns in standardized residuals from the 
Kalman filter can be used to detect such problems. 

Negative variance estimates and asymmetrical covariance matrices can occur with the Kalman 
filter, especially when multivariate state vectors x, are estimated and there are large differences 
between covariance matrices for multivariate x, and ]1' Solutions to these numerical problems abound in 
the engineering literature, with the -square root- filter being frequently employed (Maybeck 1979). 
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YJgUre 6. '·Predicted probability densities for two independent estimates (measurement y, and model 
prediction xJ that disagree; the residual difference between the two estimates is unlikely. This is 
probably caused by an unanticipated bias in the estimated error distribution for the measurement or 
model update. Adaptive filters assume that the estimated variance of model prediction errors Var(w) is 
inaccurate, and Var(w) is changed until the disagreement is within acceptable bounds. 

CONCLUSIONS 

The Kalman filter can be used to combine a time series of forest inventories, updates, or 
monitoring estimates using a model of expected change in forest condition over time. Many 
independent sources of data and knowledge can be combined, as discussed by Czaplewski et al. (1988). 
This can afford substantial efficiencies, and more timely estimates, compared to anyone source of 
information by itself. 

The Kalman filter is not complicated, but its application can be challenging. Accurate models for 
measurement and prediction errors are needed. Model formulation, parameter estimates, and 
assumptions must be verified; if residuals fail verification tests, then sound technical judgment is 
required to diagnose and cure any problems. However, solution of such problems can improve 
analysts' understanding of forest dynamics and the measurement processes. 
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