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ABSTRACI' 

Global and regional assessaents require tiael, iaforaation on landscape level status (e.g., 
areal extent of different e008ysteas) and processea (e.8., changes in land use and land cover). 
To aeasure and understand these processes at the regional level, and aodel their impacts, 
reaote sensing is often necessary. Howeyer, proceasing aaasive voluaes of reactely sensing 
data can be infeasible if high resolution data are required for yery lar,e regions. Remote 
sensing of saaple plots, rather than a census of the eatire area, can solye certain probleas. 
Statistical aspects of reacte sensing for large plots are deacribed, concentrating on aethods 
needed to produce saaple estiaates, eoabine tias series of ancillary eatiaates froa other 
sources, calibrate for ai.classification bias, and co.biDe reactely sensed data wi~b acdel 
predictions. These aethods .ight iaprove apatial and teaporal accuracy, and teat our 
understanding of processes that are captured in landscape level aodela. 

KEY WORDS: Kalaan filter, composite estiaator, clasaiflcation error, calibration, landscape 
aodels, landscape aodela, spatial autocorrelation, spatial heterogeneity. 

1. INTRODUCTION 

A simple example is used in the following 
discussion, where status is defined as the 
proportion forested area, and ,round-based field 
work is used to deteraine if a point is truly 
forested. This hypothetical exaaple uses the 
sampling frame and certain design features 
proposed by the U.S. Environaental Protection 
Agency as part of its Environaental Monitoring 
and Assessaent Prograa (£MAP). This is a 
cooperative program .. ong several agencies of the 
United States Government. including the USDA 
Forest Service. The £MAP Baapling fraae is 
composed of a triangular grid. Each 640 km2 • 
hexagon on this grid contains a 40 kaz hexagon 
(i.e., a 1/16 s&aple by area) that is observed 
using Landsat data and high altitude aerial 
photography. However, the statistical models 
readily apply to sampling frames used in other 
prograas, such as that proposed by the Food and 
Agricultural Organization of the United Nations 
for aonitoring and assessment of the world's 
tropical forests, or that proposed by Czaplewski 
et al. (1987) for updating forest inventory 
estieates aade by the USDA Forest Service. 

Underlining statistical models for estiaated 
status of the stratum and each sample unit are 
presented in Section 2. Section 3 gives a 
calibration model for aeasurement error that 
occurs when true status can not be perfectly 
classified with reactely sensing. Section 4 
presents an illustration of the statistical 
coaposite estiaator, which coabines estiaates 
from different sources. In Section 5', the 
composite estiaator is used to co.bine 
calibrated, remotely sensed estimates froa aany 
saaple units into an estiaate of stratua status. 
The Kalaan filter, which is a acre general 
composite estieator, is introduced in Section 6. 
In Section 7, the Kalaan filter is used to update 
estimates of status for each saaple unit, and 
combine them into an estimate of status for the 
stratum. Section 8 uses the Kalean filter to 
coabine ancillary estimates for aggregations of 
sample units. The cycle of landscape aonitoring 
and process aodeling is discussed in Section 9. 

2. SAMPLE FRAME 

Consider a saapling fraae composed of a grid ot 
large saaple units that are well suited for 
monitoring using remote sensing. The frame is 
confined to a contiguous, homogeneous geographic 
area, i.e., a stratum. Estimates for status of 
multiple strata could be sumaed for regional or 
global assessments if definitions for true status 
are shared among strata. 

2.1 Exaaple saapling fraae 

Assume a large, homogeneous, geographically 
contiguous stratum is comprised of a known number 
of cells (n), e.g., 640 tmZ hexagons. A stratum 
might be the coastal plain in the southeastern 
United States, which is 320,000 kaz in size; the 
number of cells n would be (320,000/640)=500. 
Each 640 km2 cell is sampled with a single 40 tm2 

sample unit, which is centered on the 640 kmz 
cell. Each 40 km2 saaple unit is treated as a 
permanent plot, and each is periodically observed 
over time using remote sensing. 

2.2 Statistical aodel for status 

The status of the stratum (e.g., proportion 
forest) is denoted as unknown nonrandom variable 
x. Since the stratum is assumed spatially 
homogeneous, status of each sample unit in the 
stratum is assumed equal to the stratum status x. 
Deviation of the observed status ot saaple unit i 
from the stratum status is the unknown random 
variable ~i. The statistical model for estimated 
status ot sample unit i is 

Xi = X + "i I for i = t 1, 2, ••• , n} (1) 

Xi is assuaed an unbiased estimate ot X, 1. e. , 
E{"i 1 = o. Variance of 1(i, denoted var( Iii), is 
assumed heterogeneous among the n s&aple units in 
the stratum, Le. t var( Wi) does not necessarily 
equal the var( 1(j) for i not equal to j. 
Deviations aaong B&aple units are not assu.ed 
independent, i.e., E(1(i1(J] might be nonzero. No 
other distributional assumptions are .ade. 
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3. MISCLASSIFICATION IN REMOTE SENSING 

A portion of deviation Wi will be caused by 
errors in .easuring the status (e.g., proportion 
forested) of s&aple unit i. 

3.1 Miaclaasificatioa error .adel 

Let a .easure.ant or calibration .adel for the 
unknown true status Xi of s&llple unit i be 

Xi = lit Yl + 110 (1-Y", (2) 

where Yl is the iaperfect reltOtely sensed 
esti.ate of proportion forest in aaaple unit i, 
and Br is the known conditional probability that 
a point is truly forest given that it is 
classified as forest by the re.ote sensing 
process. Si.ilarly, (I-Yl) is the re.otely 
sensed proportion .easureaent of other cover, and 
80 is the conditional probability that a point is 
truly forest given it is classified as other 
cover by the re.ate sensing process. When 
classification accuracy of the re.ate sensing 
process is high, Br will nearly equal I. and 110 
will nearly equal O. 

3.2 Misclaa.ification bias 

The re.ately sensed esti.ate Y1 is a biased 
estimate of true status Xi of sample unit i if 
classification errors occur. Solving (2) for y" 

Yi = (X, - 80) I (Ih -110). (3) 

The reaotely sensed estiaate Yl in equation (3) 
will not equal the true status Xl unless Hf 
equals 1 and 110 equals 0, i.e., perfect 
classification accuracy. 

3.3 Estimation of calibration model 

In practice, the values of Ih and 80 are not 
perfectly known. Rather, lit and 110 are assumed 
the same for all s&aple units in the stratum, and 
their values are estiaated using a finite s&aple 
of reference points for which the re.otely sensed 
and true status are known. For exaaple, 
reference points might be available for M 
systeaatically located 0.4 ha forest inventory 
plots, which are measured in the field by USDA 
Forest Service crews, where the field 
classification is considered t.o be without error. 
Under certain conditions, the location of these 
field plots can be accurately registered to 
remotely sensed images, so that both remotely 
sensed and true classifications are available for 
a saall s&aple of point plots. This would 
provide the necessary sample of reference points 
to make estiaates (~ and ~) of the true 
conditional probabilities (Hf and 110). 

Consider the statistical s&apling aodel: 

l!r = lit + Jf, 110 = 80 + Jo, (4) 

where Jf and Jo are randoa variables that equal 
the differences between the true and estiaated 
conditional probabilities. l!r aight be estimated 
froa the Mr 0.4 ha Forest Service plots 
classified as forest using reaote sensing 
equation (5): 

l!r = [(Hf)! + (Hfh + ••• + {Hfhff]/Mt, (5 ) 

where (/h), = 1 if 0.4 ha Forest Service plot i 
is truly forest given it is classified as forest 
using the reacte sensing procedure, and (Hr)i = 0 
otherwise. Siailarly, 110 might be estimated from 
the Mb 0.4 ha Forest Service plots that are 
classified as other cover using the remote 
sensing procedure, 

!!o = [(lIoh + (lloh + ••• + (8O)Ho]/~, (6 ) 

where (110), = 1 if 0.4 ha plot i iB truly forest 
given it is classified as other cover using 
reaote sensing, and (110)1 = 0 otherwise. 

The following is an esti.ate (Xt) of the status 
bf sample unit i, using the estimated conditional 
probabilities (Hf and hb) of correct and 
incorrect remotely sensed classifications from 
(5) and (6), and the known re.otely sensed status 
l'i CTenenbein 1972): 

Xi = llt Y1 + 110 (1-Yd. (7) 

3.4 Variance of calibrated estimate 

From equations (2), (4), and (7), the unbiased 
estiaate Xi of the true status Xi of saaple unit 
i, given the i.perfect remotely sensed 
aeasure.ent y, of the Bame s&aple unit, is 

x' = (Hf + Jr) Yi + (110 + Jo) (1- Yi ) , 

= [ Hf Y1 + 110 (1- Yd] + [ Jf Y1 + Jo (1- Yd ] , 

= Xi + [Jf Yt + Jo (1- y, )] • (8) 

The estiaate Xi of the status of sample unit i in 
(8) contains uncertainty propagated froa the 
imperfect model for classification error. Since 
the esti.ated conditional probabilities (Hf,Jf) 
are assumed unbiased, E[J,] = E[Jo] = 0, and 
.easure.ent Yl is a known nonrandom constant, 
then the variance of the esti.ate in (8) is 

var(Xd = [Jf Yi + Jo (1-Yt}]Z, 

= var(Jlr) y,2 + var(H» (1-Yd 2• (9) 

If it is assuaed that there are no registration 
errors between field points and the reacte 
sensing iaagery. then the randoa errors Jf and Jo 
are caused' solely by saapling error. The 
sampling variances var(/lt) and var(~) can be 
eBti.ated froa the siaple randoaized sample of 
N=~+Ab plots using the bino.ial distribution: 

var(llt) = /Jl (l-lIt) / /lit. (10) 

var(H» = 110 (1-110) / "'. (11) 



From equations (9), (10), and (II), the variance 
of the estisated statu8 of sa.ple unit i is 

var(Xi} = ------------- --------------- (12) 

The esti.ated variance var(li) in equation (12) 
is nearly zero when there is near perfect 
classification accuracy (~ -) 1 and ~ -)0), or 
when there are a large nusber of plots (At and 
AL) used to esti.ate the conditional 
.isclassification probabilities ~ and jb. 

3.5 Betero,eneity caused b, calibration 

The variance var(li) of estisated status Xi for 
each sa.ple unit i in (12) differs aaong saaple 
units because the reaotely sensed aeasuresent Yi 
will differ &8ong sasple units. Measure.ent 
error can produce heterogeneous variance aaong 
sample units. This is one sotivation for 
composite estimation in Section 5. 

3.6 Lack of iDdependence caused by calibratioa 

Propagated errors fro. the stratus level 
calibration aodel will cause a lack of 
independence a.ong the estimated status of s&8ple 
units within that stratus. From equation (8), 
the covariance between the unbiased estimates Xi 
and lj of status of sasple units i and j is -

COV(li ,IJ) = E[{ Jf Yi +Jo (1- Yi )}( Jf Yj +Jo (1- Yj)}]. 

E[Jf2] = var(~) in (10), and E[Jo2] = var(lIo) in 
(11) • Since Jf and Jo are independently 
estimated from different plots, E[Jf Jo] = 0, and 

cov(,Ki,IJ) = var(~}YiYj + var(l:!o}(I-Yd(1-Yj). 

Errors propagated from the stratum level 
calibration model will cause dependence among 
estisated status of sample units within that 
stratum. This covariance will be positive, and 
will differ among sample units because the 
remotely sensed estimates Yi and Yj differ. This 
is one sotivation for Section 5.4, which 
considers dependent sample units. 

4. COMPOSITE ESTIMATORS 

Composite esti.ators are often used in forestry 
(Gregoire and Walters 1988), including saspling 
with partial replacement. A cosposite estisator 
(Fig. 1) co.bines two estimates, each of which is 
weighted inversely proportional to its variance 
(or in the sultivariate case, its covariance 
.atrix). The weights can be derived using 
maximuB likelihood, minimum variance, or Bayesian 
theory. If all assumptions are reasonable, error 
in a cosposite estisate is less than error in 
either prior estisate. 

5. ESTIMATED STRATUM STATUS 

If the variances var( Wi) for the calibrated 
estimates of sasple unit status were homogeneous 
for the entire stratum, then the mean of the n 
sample units would be the sinisuID variance 
unbiased estisate of the stratus status. If 
var( Wi) is heterogeneous, the sasple sean would 

Two independent 
estimates 

1 

Composite 
estimate 

ttl. 1 Probability densities for two independent 
e8tiaates. These are weighted inversely 
proportional to their variances, and coabined 
into a sio.le, .ore precise, coaposite estiaate. 

resain unbiased, but would not be. the sinisus 
variance estisate. As an alternative, the 
cosposite estisator (Maybeck 1979) could weight 
the estiaated status Xi of each ssaple unit 
inversely proportional to its variance. 

5.1 Bat1_ted strata statu, two _Ie UBi ts 

Estisates of stratus status fros two saaple units 
(Xl, 12) can be cosbined using the cosposite 
estisator into an estisate X.z of stratus status 
X. The cosposite estisator uses weights, (1-G.z) 
and £a, that are inversely proportional to the 
variances of esUsates Xl and lz: 

(13) 

(14 ) 

Estisated variances var(') are used rather than 
their true, but unknown variances. In this case, 
estisate l.z in (13) would not be optisal with 
respect to sinimum variance (Maybeck 1979). 
However, estisate X,2 will be nearly opti.al if 
var(Xl) and var(X2) are accurate estiaates, and 
assusing estisates 11 and lz are independent. 
Even if estimate 1.2 is suboptisal, X,2 is 
unbiased; fros equations (1) and (13), 

X. 2 = (l-Gz)( X + 1t't) + Gz (X + 1fIl), 

= X+ (l-Gz)1t't + Gzlfl. (15) 

Since randos deviations 1t't and fI2 have expected 
values of zero in (1), and Gz is a nonrandos 
constant, then E[I.2] = X in (15), and estisate 
AJz is unbiased. Variance of the cosposite 
estisate using the first two sasple units is 

var(lez) = (l-Oz)Z var(Xd + (lk)2 var(Xz). (16) 

5.2 Efficiency of the cosposite eatiaate 

The statistical efficiency of the cosposite 
estimator is compared to the efficiency of the 
sean of estisates Xl and 12. Substituting lk 
from equation (14) into equation (16), variance 
of the cosposite esti.ate is given in (17) 



var(Xz )Zvar(Xl )+var(Xl )Zvar(.l2) 
var(.ln) = 

[var(.ll) + var(lz)]Z 

vartXl) var(X2) 
= ------------------- (17) 

[var(Xl) + var(lz)], 

= Ch var(XI). (18) 

The .ean (.ll+~)/2, ia equivalent to equation 
(13) with Qz = 1/2. The !lean is unbiased, as 
shown in (15). Variance of the aean i8 

(l/2)2var(XI) . + (1/2)2 var (lz) = 
var(Xl} var(Xz) [var(XI) - var(Xz)]Z 

------------------- + ---------------------
[var(Xl) + var(X2)] 4 (var(Xl) + var(.l2)]. 

(19) 

Under heterogeneity, var(Xl) does not equal 
var(Xz), and the variance of the aean in (19) .is 
larger than the variance of the coaposite 
estimate in (17). Therefore, the coaposite 
estiaate is aore efficient than the aean. Under 
hoaogeneity, var(Xl) equals var(Xz), and the 
variance of the mean in (19) is identical to the 
variance of the composite estiaate in (17). 

5.3 Istiaated stratua status, all aaaple units 

The composite estiaate of stratua status in (13) 
uses only the saaple units from two cells. 
However, there are n units saapled in the 
stratua, which can be incorporated by 
sequentially applying the coaposite estiaator. 
The composite estimate from the first two cells 
1'2 in (13) is combined with the estiaate froa 
the third saaple unit Xl using the variance 
var(X.z) of the coaposite in equation (16): 

X,3 = (1- Gl ) .In + Gl X3 , ( 20 ) 

Gl = var(Xtz) / [var(Xtz) + var(X3)], (21) 

var(Xu) = (1-(,3)2 var(Xu) + (GJ)Z var(X3). (22) 

Then, composite estimate 1'.3 is coabined with the 
estiaate from the fourth sample unit. This is 
repeated until estiaates from all n cells are 
coabined into a single estiaate for status of the 
entire stratua. The sequence is inconsequential. 

As in equation (15), the final coaposite estiaate 
is unbiased. As in (17) and (19), the coaposite 
estiaate using all n cells has smaller variance 
than the aean, and the coaposite estiaate is 
identical to the aean under homogeneity. 

5.4 Lack of independence ..ong aaaple 1IDita 

Sequential application of the composite estiaator 
will produce a .inimua variance estiaate if all 
random deviations ~i are autually independent. 
However, spatial autocorrelation and other 
factors (Section 3.6) can cause dependence among 
deviations. Consider two saaple unit estimates 
<Xl,X2) that are combined to produce an estimate 
of stratua status, i.e., equation (13). If 

estiaates Xl and Xz are dependent, variance of 
the coabin~ estiaate X.z in equation (13) is 

var(Xn) = (l-Qz)Z var(.I!) + (Qz}Z var(X2) 

+ 2 (l-Qz)( Ch) cov(ll ,X2), (23) 

where COV(Xl,.l2) is the covariance between saaple 
unit estiaates Xl and Ai. If these two estiaates 
are coabined using the coaposite estiaator, as in 
equations (13). (14), and (16), then the 
coaposite estiaate is unbiased, as shown in 
equation (15). even if the errors are correlated. 

Variance of the aean will be larger than the 
variance of the coaposite estiaate when esti.ates 
~l and X2 are not independent (Section 5.5). 
unless there is a strong negative covariance 
between estiaates 11 and X2 such that 
var(XI)+var(Xz) is less than -2COV(Xl,A). 
However, COV(Xl.~) is frequently positive. 
Spatial patterns in landscapea tend to produce 
positive covariances between proxiaate saaple 
units, as will propagated errors for stratum 
level calibration aodels (Section 3.6) and 
prediction aodels (Section 7.2). 

The coaposite estiaator can be sequentially 
applied, as described in (20) through (22). 
However, the final coaposite estiaate will not be 
a aini8O. variance estiaate. A acre general 
for.ulation of the coaposite estiaator (Maybeck 
1979) will have ainiaua variance with correlated 
errors using the following weight in (13): 

var(Xl) + COV(XI ,.l2) 
G2 = -------------------------------- (24) 

var(Xl) + var(X2) + 2 COV(Xl,JZ). 

However, this is unsatisfactory for sequential 
coaposite estiaation with all n estiaates' the 
final estiaate depends upon the sequence in which 
the n estiaates are co.bined. Section 5.5 
presents a possible solution, using a vector 
weight analogous to the scalar weight in (24). 

5.5 Vector weighting in the ~.ite estiaator. 

Let 1= (Xl :.12 : ••• :Xn)' be the (n x 1) vector of 
estiaates froa n sample units; If=( 1Jl: Ifl: ... : JIb)' 
be the (n x 1) vector of deviations of n saaple 
units froa the stratum status X; ~ be the (n x n) 
estiaated covariance aatrix for saaple unit 
deviations, i[1f If'] = ~, where iith eleaent of ~ 
is nr(X1) and the ijth eleaent is £Q.!tKi ,XJ); 
and 1 be a (n x 1) vector of ones. Vector 
representation of equation (1) is 

I = 1 X + If. (25) 

For n=2, the unbiased coaposite estimator in (13) 
and (16) can be expressed in aatrix froa as 

Xu = G' I, (26) 

var(Xt2 ) = G' Q G, (27) 

where the (2 x 1) vector G = [(1-02):ell]' 
contains the weight applied to each estiaate Xi 



in I. Weights in (24) produce aini.ua variance 
estiaates given heterogeneous, correlated errors 
and D = 2, and can be expressed in aatrix fora as 

Gc = (1 l' - J) C 1 / [I' (1 I' - I) ~ 1 J. 

(11' -. I) ~ 1 
= -------------- (28) 

(D-I) I' ~ I, 

where 1 ia tbe (n x n) identity aatrix. Baaed on 
ad boc rationale for n ) 2, the weights in 
equation (28) can be used in estiaation equation 
(26), where G = Ge, for coabining estiaatea froa 
.any _pIe ani ts (n ) 2) into an unbiased 
estiaate 01 the stratua status. If the .aa~Ie 
units are independent and have bo.ogeneous 
variance, then til, g = I til, and (28) becoaes 

(1t' - I) til 1 1 
Gc = ----~---------- = ------- = (29) 

(B-1) I' til 1 (n-1) n n. 

The aean 01 the sample units can be expressed as 
aatrix equation (26), where the (n x 1) weighting 
vector is 

a. = 1 / D. (30) 

It the saaple units are independent with 
bo.ogeneous variance, then the coaposite estiaate 
in (26) and (28) is identical to the aean because 
Ge fros (29) is identical to a. froa (30). 

5.6 Etficiencr of vector co.posite estiaator 

When errors are heterogeneous and dependent, the 
coaposite estisator in (26) and (28) is expected 
to be sore efficient than the .ean of the sample 
units. Fros (27) and (28), variance var(Xc) of 
the coaposite estisate Xc of stratua status X is 

var(Xc) = Gc' C Gc. (31) 

The weighting vector a. for the aean in equation 
(30) aay be rewritten as 

1 I' ~ 1 1 l' ~ 1 - ~ 1 + ~ 1 
a. = -------- = --------------------

n l' ~ 1 D l' ~ 1 

(1 I' - I) ~ 1 ~ 1 
= -------------- + -------- (32) 

o I' ~ 1 0 I' ~ I, 

Froa (27), (28), and (31), variance var(~) of 
the aean estiaate ~ of stratua status is 

Gc' C Gc (n-1)2 I' ~' C ~ 1 
var(X. ) = --------------- + -----------

02 02 (n-1)2 

var(Jc) (n-1)2 I' ~' C ~ 1 
= --------------- + ----------- (33) 

02 (n-1)2 

Since (n-1)2/o2 in (33) will nearly equal to one 
tor typical saaple sizes 0, variance var (,Xc) of 
the coaposite estiaate in (31) will be saaller 
than variance var(X.} of the aean estiaate in 
(33), unless there are large negative covariances 
aaong saaple units in covariance aatrix C such 
that the scalar (l'~'QQl) in (33) is negative. 

6. KALMAN FILTER 

Miscl ... itication in resote sensing will bias 
estiaated status of individual suple units. A 
calibration sodel can correct for this bias, but 
the calibration sodel will introduce uncertainty 
into our reaotely sensed estiaate of the status 
ot each _pIe unit (Section 3). Additional 
uncertainty i. introduced by changes in land use, 
land aanageaent, and vegetation succession in 
each saaple unit. If a deter.inistic sodel could 
predict these changes after the reaotely sensed 
iaagery is acquired, then this BOdel can estisate 
status of each s&aple unit over tiae. 

Predictions of the deterainistic BOdel can be 
incorporated into statistical esti.ates of 
stratua status using the KaI.an filter (e.g., 
Gregoire and Walters 1988). Dixon and Howitt 
(1979) describe how the Kalaan filter can be 
applied to .&apling with partial replacement in 
continuous forest inventories. Czaplewski (1990) 
presents a siaple tutorial exaaple of estiaating 
forest cover over tiae using the Kalaan filter. 

The Kalaan filter is portrayed in Fig. 2. One 
unbiased estiaate is aade at tiae t (e.g., a 
calibrated reaotely sensed aeasureaent). The 
other unbiased estiaate (e.g., a previous, 
calibrated reaotely sensed aeasureaent) is aade 
at tiae t-1, but is updated for expected changes 
between tiaes t and t-1 using the deterainistic 
.odel. Variance for the updated estiaate 
includes effects of errors in the previous 
estiaate that are propagated over tiae, and 
prediction errors froa the deterainistic aodel. 

Perfect 
prediction model 
~ 
:0 as 
.0 e 
a..)---_-4 

Composite 
estimate 

Other estimate 

Imperfect 
prediction model 

Model 
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~ 
:0 
~ e 
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Fil. 2 Probability density for a Kalaan estiaate 
that is a coaposite of aeasuresent data at tise t 
and a prior estiaate at tise t-1, which is 
updated using a prediction aodel. Given a 
perfect prediction aodel, only estiaation error 
at t-1 is propagated to time t. More 
realistically, the prediction aodel is iaperfect, 
and a prediction error also occurs. The Kalman 
filter combines .aasureaents and aodel 
predictions into a co.posite estiaate, weighted 
inversely proportional to their variances. 
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The Kalaan filter is usually applied to a tiae 
series of measureaents (Fig. 3). With each new 
aeasureaent, a coaposite estiaate is aade, whict 
serves as new initial conditions for the next 
prediction fro. the deterainistic aodel (e.g., 
Fig. 3. year 4). 
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ri,. 3 Kalaan estiaates and confidence intervals 
for percent forest. In this exaaple froa 
Czaplewski, et a1. (1988), intensive forest 
inventories were conducted in years 0 and 10; 
lower precision aonitoring data were ,athered in 
years 4 and 7. 

The Kalaan filter is a multivariate estiaator 
(Maybeck 1979). It can siaultaneously eati .. te 
aultiple state variables, such as proportions of 
different vegetation cover types. Measured rates 
of change can be statistically coabined with 
rates of change predicted fro. the deterainistic 
aodel. The Kalaan filter can model correlated 
errors aaong the state variables and rate 
coefficients, correlated prediction errors from 
the deterainistic .odel, and randoa errors in 
aeasurement data. 

6.1 Verification of the Kalaan filter 

Two independent estiaates disagree or "diverge" 
in that neither estiaate is likely given the 
other (Fig. 4). Contradictory estimates can be 
coabined, but the resulting composite estiaate 
can be biased. Discrepancies are can be caused 
by biased estiaates of the error distribution 
(either location or spread) of the aeasureaent at 
time t, or the estlaate at time t-l that is 
updated to tiae t using the deterainistic 
prediction aodel. 

It is possible that bias exists in the current 
aeasureaent. For exaaple, calibration equations 
are needed to correct for aisclassification bias, 
as discussed in Section 3. Also, bias aight 
exist in the estiaated variance of errors froa 
the prediction aodel; direct estiaates of 
prediction variance require known differences 
between model predictions and the true status of 
the systea. As an alternative, adaptive filters 
aodify initial variance estiaates until 
disagreeaents are within acceptable bounds (Fig. 
4), often using a tiae series of residuals 
(Sorenson 1985). As accuracy of aodel 
predictions increases, the weight placed on aodel 
predictions will increase, and as will accuracy 
of the Kalman filter. 

Estimate from 
prediction model 
disagrees with 
measurement 

Composite 
----- estimate 

IncreaSing estimate 
of prediction error 

improves 
agreement 

Smaller 
prediction error 

Other 
estimate 
Model 

Larger 
prediction error 

Pig. 4 Expected probability densities for two 
estiaates that disagree. Adaptive filters assuae 
the estiaated variance of aodel prediction error 
is inaccurate, and change this estiaate until the 
disagreeaent is within acceptable bounds. 

7. KALMAN FILTER APPLIED TO SAMPLE UNITS 

Consider the following hypothetical exaaple, in 
which a 1/4 subsaaple of the saaple units in the 
stratua are observed using reaote sensing with 
iaagery acquired at tiae t in an interpenetrating 
design. (Siailar exaaples could be based on 
other intensities, such as 1/7, 1/9, 1/12, etc.) 
The biased estiaate of the status of each saaple 
unit in the 1/4 subsaaple is corrected uaing a 
stratua level calibration estiaator, as in 
Section 3. An estimate of stratua status at time 
t is aade with the 1/4 subsaaple using coaposite 
estimation (Section 5). A different 1/4 
subsaaple of saaple units is observed using 
remote sensing and iaagery acquired at tiae t+l. 
An estiaate of stratua status at time t+1 aight 
be sade using only this second subsample, as 
described in Sections 3 and 5. 

The estiaate for tiae t+1 might be iaproved using 
the saaple units in the first 1/4 subsaaple, 
which were observed at time t. However, changes 
between tiaes t+1 and t have probably occurred in 
the status of each sample unit in the first 1/4 
subsaaple. If a model were available to predict 
these changes, then estiaates fros the 1/4 
subsaaple observed at tiae t aight be coabined 
with the 1/4 observed at tiae t+l into an 
estiaate of the stratua status at time t+l, using 
the co.posite estiaator presented in Section 5. 

7.1 Updatlag estiaate. for ODe .-.pIe UDit 

Predicted true status Xt+1 (e.g., proportion 
forest) of one saaple unit at tiae t+l is 

At+ 1 = /!f .It + 1J, (l-.ld. (34) 

It is the estiaated status of the .aaple unit at 
tiae t, /!f is the estimated conditional 
transition probability that a point is truly 

. forest at tiMe ttl, given it is was forest at 
tiae t, and 1b is the estisated conditional 
transition probability that a point at tiae t+l 
is truly forest, given it was other cover at tiae 
t. Transition probabilities /!f and fb are 
predicted froa the deterainistic aodel. The 
predicted status It+1 of the one saaple unit at 



time t+l in equation (34), given its esti.ated 
status Xt at ti.e t, is analogous to the 
calibrated esti.ate in equation (7), given an 
iBperfect (biased) re.otely sensed estiaate. 

If the deterainistic .odel is perfect, variance 
var(Xt+1) of estiaated status Xt+l of the one 
saaple unit at tiae t+1 is 

var(lt+l) = var(Xd ~z + var(J't) A,z, (35) 

as portrayed in Fig. 2. Nore realistically, the 
deterainistic acdel is iaperfect, and there 1s 
additional error (ot) in predicting change 
between tiae t and t+l. Assuaing additive, 
independent prediction errors, variance of the 
updated estiaate for the one ssaple unit i. 

as portraf~r.n~r~ ~·ig.~. ~e fundaaental probl!a 
will 00 ~ .. ;ti~ .... ing the varl&nce of the predictlon 
errors vare ik)' , ~tween tiBes t+l and t. This is 
discussed in Section 7.3. 

7.2 Stratu. eatiaatea tor each ti .. period 

The stratua level prediction Bodel (i.e., 
transition probabilities ~ and lb) in equations 
(34) and (36) could update the estiaated status 
of each saaple unit in the 1/4 subsaaple observed 
at tiae t. These estiaates might be directly 
combined with those froa the other 1/4 subsaaple 
observed at tiae t+1, using the coaposite .ethod 
presented in Section 5. The resulting stratua 
estiaate at tiae t+1 would include aeasureaents 
froa 1/2 of the sample units. 

At tiae t+2, the estimated status of each ssaple 
unit in the 1/4 subsa.ple observed at time t+l, 
~nd the 1/4 subsaaple observed at time t and 
updated to tiae t+l using equations (34) and 
(36), could be updated to time t+2 using 

Xt+2 = ~ Xt+1 + l!o (I-Xt+1), (37) 

var(lt+ 2 )=~2var(Xt+ 1 )+1b 2 var(Xt + 1 )+var( lit + l). 

(38) 

These updated estiaates fro" the 1/4 subsaapies 
observed at tiaes t+l and t might be directly 
coabined with those froa the 1/4 subaa.ple 
observed at tiae t+2, using the coaposite .. thod 
in Section 5. The resulting stratua estiaate at 
tiae t+2 would include aeasurements froa 3/4 of 
the sa.ple units. 

The saae aethod aight be applied at tiae t+3 to 
estiaate stratua status using all saaple units. 
Most weight in the coaposite estiaator would be 
placed on the 1/4 subsaaple observed at tiae t+3 
because a prediction aodel is not needed to 
update estiaated status of saaple units within 
this subsaaple, and there would be no prediction 
errors' least weight would be placed on the 
subsaa~le observed at time t because their status 
has not been directly observed for 4 tiae 
periods, and variance froa prediction errors i~ 
updating estisated the status of the saaple unIts 
would be greatest for this 1/4 subsasple. 

7.3 Variance of prediction errors 

Variance of prediction errors froa the 
deterainistic .adel , i.e., var(lIt) = var(lIt+1) = 
vare U). are needed in (36) and (38) to update 
status estiaates for sa.ple units, which are 
COIIbined into an estiaate for the stratus. The 
variance of aaapling errors froa transition 
probabilities estiaated using peraanent ground 
plots (froa other agencies or aore detailed field 
sa.pling within the saae aonitoring Byatea) aight 
serve as initial estiaates of prediction error 
variance. Initial estiaatea of prediction error 
variance for a process level landacape aodel 
aight be aade with data used to fit the aodel. 
These initial eatiaates are likely biased (i.e" 
too aaall) because the deterainistic aodel is 
extrapolated over tiae or space. Stratua 
estiaates froa Section 7.2 can be coapared to 
independent Btratua estiaates froa other 
monit.oring systeas, and the adaptive methods 
discussed in Section 6.1 used to refine estiaates 
of prediction error. 

D~ect estiaat88 of prediction error variance 
fros the deterainistic sodel would be available 
through reacte sensing of peraanent saaple units. 
For exa.ple, new iaagery is acquired at tiae t+4 
for the sa.e 1/4 saaple observed at tise t. 
Misclassification bias in the estimated status of 
each saaple unit at tiae t+4 is corrected using 
the calibration aodel in Section 3. A second 
estimate of the status of each saaple unit in the 
1/4 subsaaple at tiae t+4 is available froa the 
deterainistic prediction .odel, using the 
observed status at tiae t as initial conditions 
(Section 7.2). A sample estiaate for variance of 
prediction errors between tiaes t and t+4 can be 
made using the known differences between these 
two estimates at time t+4 for each saaple unit. 
The reaotely sensed estimate of these saaple 
units at tiae t+4 would then be used as new 
initial conditions in the detersinistic BOdel to 
predict status at tiae t+5 and later. 

This requires aatrix representation of the 
statistical model, as in equation (25). The 
satrix solution for estiaating var(U) would be 
coaplicated by covariances aaong prediction 
errors, use of the sase calibration aodel at 
times t and t+4, or spatial autocorrelations. 
Approxiaations aight be needed, but verification 
procedures introduced in Section 6.1 could 
protect against unreliable approxiaations. 

8. KALMAN FILTER APPLIED TO CELLS 

Each 40 ka2 saaple unit aay be considered a 
saaple of the surrounding 640 ka2 cell, with a 
saaple size of one. Estiaates for aggregations 
of cells sight utilize co.posite estiBation . 
(Section 5), treating the estiaate for a 40 ka2 

saaple unit as an estiaate of the entire 640 ~2 
cell. This can reduce proliferation of 
stratification criteria fros the calibration 
aodels and detersinistic prediction .odels. and 
use of ancillary estisates froa independent 
sources. 

8.1 Coabinioc ladepeDdent ancillar~ eati .. tea 

Ancillary statistical estimates froa independent 
sources can iaprove efficiency and teaporal 
detail using coaposite estiaation. For exasple, 
the USDA Forest Service and the USDA Soil 
Conservation Service both produce areal estiaates 
of the extent of forestlands for geographic areas 
that aight include one-hundred or aore 640 ka2 



cells. These independent esti.ates provide a 
source of useful data for landscape level 
.onitoring. However, the esti.ates fro. the two 
syste.s are .&de with different definitions of 
forest, in different years, and can be 
contradictory. Differences in schedules aaong 
independent .onitoring syste.s can be I 

acco.aodated by annual esti.ates (Section 7); 
different classification syste.s can be 
acco..adated by calibration. 

Calibration for .isclassification error in re.at~ 
sensing requires plots for which reference and 
re.otely sensed classifications are known 
(Section 3). Calibration for "misclaasUication" 
error caused by differences in clasaitlcation 
syste.s requires plots which are independently 
classified by two independent .onitorinl sJSteas. 
If s.-ple units fro. other .anitoring sy.teas are 
accurately registered to the 40 k.2 saaple unita, 
then .ultivariate calibration .adels can e8tiaate 
the quantitative statistical relationship between 
areal esti.ates fro. another agency, and areal 
esti.ates fro. the landscape .anitoring syste •• 
These esti.ates that are ~'": .. 1.:i;brated" for 
differences in detinU·{; :: '·::Sight. be further 
calibrt..ted using the caF, .... ation .odel for re.ate 
sensing errors. 

This would allow several agencies to share areal 
esti.ates applicable to aggregations of s.-ple 
units, while .aintaining their own classification 
syste.s. These shared estimates .ight be .&de at 
the level of individual 640 km2 cells using s.al1 
area estimation, which takes the for. of a 
composite esti.ator. Shared statistical 
estimates might improve the efficiency and 
compatibility of participating monitoring 
systems, without .ajor disruptions to anyone 
existing syste.. However, statistical 
calibration is not a panacea. Calibration will 
propagate statistical errors (Section 3.4), but 
these can be are .inimized by .aking the 
independent classification systems as co.patible 
as possible. 

8.2 The cell as a stratu. with s.-ple alze one 

A stratu. is a contiguous, ho.ogeneous geographic 
area. However, calibration models superi.pose 
additional stratification criteria, such as 
Landsat scene boundaries, or sets of s~ple units 
photo interpreted by one individual. These 
differences are needed to correct for different 
misclassitication probabilities, and these 
criteria can change over ti.e. When ancillary 
data fro. other 8Onitoring systems are co.bined, 
a stratu. is further subdivided by the geographic 
criteria used by each other syste. It is likely 
the nu.ber of strata will eventually approach the 
nu.ber of s&8ple units. 

The esti.ated status of a 640 km2 cell aight be 
considered a co.bination of the esti.ated status 
of the one 40 kaz s.-ple unit it that cell, and 
ancillary estiaates from other agencies, which 
apply to aggregations of cells (Section 8.1). 
Esti8&tion error associated with each 40 k.2 

sample unit includes propagated and correlated 
errors from a regional calibration .odel (Section 
5), propagated and correlated prediction errors 
from a regional deterministic prediction .ooel 
(Section 7), and s~.pling error from use of one 
40 k.2 sample unit in the cell. S.-pling error 
might be estimated using aggregations of 40 km2 

plots and assuming independence and ho.ageneity, 
or geostatistical methods, such as Kriging and 
spatial correlograms. 

9. LANDSCAPE DETECTION AND EVALUATION MONITORING 

One objective .ight be .onitoring "environmental 
health." "Detection" .anitoring .ight use 
quantitative indicators of response and exposure 
to classify each 40 k.2 s.-ple unit as "healthy" 
or "unhealthY". Unhealthy s.-ple units could be 
further subclassified as to probable cause during 
"evaluation .onitoring". S.-ple units classified 
based on their health can be used to .ake areal' 
esti8&tes of environmental health for regional 
assess.ents. Therefore, there is interest in 
individual s.-ple units that .ight not be 
necessary if statistical esti.ates of regional 
status were the sole objective. 

This is analogous to a psychologist's judg.ent 
(i.e., detection) whether a patient in a random 
sample (i.e., a s.-pling unit) is .entally ill 
(i.e., unhealthy) based on blood che.istry and 
psychological profile tests (i.e., response 
indicators), and history of che.ical abuse or 
fuHy .ental health proble.s (.1. e., exposure 
indicators); diagnosing probable cause(s) for the 
patient's condition (i.e., evaluation); and 
.aking an esti.ate of the suspected prevalence of 
various types of .ental illnesses in the 
population (i.e., &Ssess.ent) using a large 
sa.ple of patients. 

Quantitative indicators are needed to identify 
unhealthy s.-ple units. Causal hypotheses .ight 
be suggested by exploratory statistical aethods, 
such as scatter plots or principal co.ponents 
analyses, or geostatistical methods that .ight 
show si.ilar spatial associations in unhealthy 
sites and indicator values. Hypotheses .ight be 
more difficult to for.ulate if landscape 
processes are nonlinear, with time lags and 
feedback .echanis.s that obscure direct cause and 
effect relationships. Process oriented 
deter.inistic models contain a collection of 
individual hypotheses regarding landscape 
structure and function. If exposure indicators 
associated with individual sample units are 
included aaong driving variables for a landscape 
level .odel, and the .odel can predict response 
indicators that are measured on sample units, 
t~en aggregate hypotheses in the deterministic 
.odel can be scientifically tested. 

The residual difference between' model predictions 
and direct observations represents .odel 
prediction error, i.e., lack of agree.ent in 
predicting .easurements of landscape structure 
and function. A .odel and direct measureaents 
are i.perfect caricatures of a syste., and 
prediction errors are expected. However, 
residuals are expected to be rando. if the BOdel 
and .easureaents are reliable. If spatial or 
te.poral patterns exist in the residuals, then 
important processes are not included in the 
.odel, or there are unrecognized proble •• with 
the .easure.ent process. 

Such an unexpected situation should trigger a 
search for hypotheses that .ight explain the 
apparent nonrando. patterns. If the prediction 
model, rather than measurements, is judged to be 
the proble., alternative hypotheses might be 
incorporated in the prediction model, and tested 
with independent .onitoring data. Therefore, 
analysis of data fro. a landscape monitoring 

. system, and predictions from a landscape .adel, 
can be a crucial step in the cycle of hypotheses 
development, hypothesis testing, and hypotheses 
refinement to help understand the condition and 
functioning of landscapes. 

, ,('-



10. DISCUSSION 

The true atatus of spatially fixed sa.ple units 
or cella are expected to have heterogeneous 
variance and lack independence, caused by 
landacape level processes such as regional land 
use practices, cli.atic patterns, and 
physiographic gradients. Therefore, no new 
co.plieations are introduced by heterogeneous and 
dependent errors propagated fro. regional 
calibration and deterainistic prediction .adels 
applied to 40 ka2 saaple units, or aaall area 
estiaation techniques for ancillary data applied 
to 640 k82 cells. 

It is frequently assuaed that s.-plingerrors 
associated with a systeaatic s.-ple of plot. in 
space are' independent and identically 
distributed. These unrealistic assuaptions will 
not bias estiaates of stratum status, but there 
would be loss of efficiency, and bias in the 
estimated covariance aatrix for stratua stratus 
esti.ates. Biased estiaates of the covariance 
iaatrix aigbt adversely affect important t..1r:': o~. 
hypotbesis, and stepw~se regre"Bion~::;,;'~··:.:!al 
models. Therefore, hei;.~i:'ogeneity and b;;;'i"f':f 
independence .-ong should be expressed in t~e 
statistical .adels. 

Additional statistical details need developaent 
before tbe hypotbetical example in this paper 
could be impleaented. This exaaple is 
univariate, wbere status is defined as proportion 
of forest. Nore detailed categories would be 
required in a true landscape aonitoring systea, 
and the estimators in this paper would have to be 
developed for the aultivariate case. Estiaating 
aodel prediction error with remeasure.ents of 
permanent plots would require multivariate roots 
of polynoaial aatrix equations. Coabining . 
ancillary data froa other aonitoring sources 
would require multivariate, small area estiaation 
techniques to estiaate status of individual 
cells. It is assumed that the stratua is 
hOMogeneous, but multivariate spatial trends in 
status aigbt be expected. Multivariate 
geostatistical aethods used to estimate spatial 
trends and heterogeneous variance a.ong sa.ple 
units aust deal with propagated heterogeneity and 
dependence from multivariate calibration and 
deterministic prediction aodels. Multivariate 
logit transformations, or the multivariate 
Dirichlet distribution might be needed to better 
deal with skewed error distributions for 
proportion estiaates that approach zero. 

The ~rocedures outlined in this paper might have 
conceptual appeal to soae, but they have never 
been put into operation within a broad scale, 
landscape level, environmental aonitoring systea. 
More work is needed to verify their applicability 
and feasibility. Alternatives, such as an 
interpenetrating design without the model based 
Kal.an filter aight be less risky, but could be 
less efficient, and aight be incapable of testing 
deterministic models to improve understanding of 
syste. dynamics. Contingency plans should be 
made in case a design based or .odel based 
approach is found unacceptable. 
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