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ABSTRACT

Global and regional assessments require timely information on landscape level status (e.g.,
areal extent of different ecosystems) and processes (e.g., changes in land use and land cover).
To measure and understand these processes at the regional level, and model their impacts,
remote sensing is often necessary. However, processing massive volumes of remotely sensing
data can be infeasible if high resolution data are required for very large regions. Remote
sensing of sample plots, rather than a census of the entire area, can solve certain probleas.
Statistical aspects of remote sensing for large plots are described, concentrating on methods
needed to produce sample estimates, combine time series of ancillary estimates from other
sources, calibrate for misclassification bias, and combine remotely sensed data with model
predictions. These methods might improve spatial and tesporal accuracy, and test our
understanding of processes that are captured in landscape level models.
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1. INTRODUCTION

A simple example is used in the following
discussion, where status is defined as the
proportion forested area, and ground-based field
work is used to determine if a point is truly
forested. This hypothetical example uses the
sampling frame and certain design features
proposed by the U.S. Environmental Protection
Agency as part of its Environmental Monitoring
and Assessment Program (EMAP). This is a
cooperative program among several agencies of the
United States Government, including the USDA
Forest Service. The EMAP sampling frame is
composed of a triangular grid. Each 640 km?
hexagon on this grid contains a 40 ka? hexagon
(i.e., a 1/16 sample by area) that is observed
using Landsat data and high altitude aerial
photography. However, the statistical models
readily apply to sampling frames used in other
programs, such as that proposed by the Food and
Agricultural Organization of the United Nations
for monitoring and assessment of the world's
tropical forests, or that proposed by Czaplewski
et al. (1987) for updating forest inventory
estimates made by the USDA Forest Service.

Underlining statistical models for estimated
status of the stratum and each sample unit are
presented in Section 2. Section 3 gives a
calibration model for measurement error that
occurs when true status can not be perfectly
classified with remotely sensing. Section 4
presents an illustration of the statistical
composite estimator, which combines estimates
from different sources. In Section 5, the
composite estimator is used to combine
calibrated, remotely sensed estimates from many
sample units into an estimate of stratum status.
The Kalman filter, which is a more general
composite estimator, is introduced in Section 6.
In Section 7, the Kalman filter is used to update
estimates of status for each sample unit, and
combine them into an estimate of status for the
stratum. Section 8 uses the Kalman filter to
combine ancillary estimates for aggregations of
sample units. The cycle of landscape monitoring
and process modeling is discussed in Section 9.

2. SAMPLE FRAME

Consider a sampling frame composed of a grid of
large sample units that are well suited for
monitoring using remote sensing. The frame is
confined to a contiguous, homogeneous geographic
area, i.e., a stratum. Estimates for status of
multiple strata could be summed for regional or
global assessments if definitions for true status
are shared among strata.

2.1 Example sampling frame

Assume a large, homogeneous, geographically
contiguous stratum is comprised of a known number
of cells (n), e.g., 640 km? hexagons. A stratum
might be the coastal plain in the southeastern
United States, which is 320,000 km? in size; the
number of cells n would be (320,000/640)=500.
Each 640 km? cell is sampled with a single 40 km?
sample unit, which is centered on the 640 km?
cell. Each 40 km? sample unit is treated as a
permanent plot, and each is periodically observed
over time using remote sensing.

2.2 Statistical model for status

The status of the stratum (e.g., proportion
forest) is denoted as unknown nonrandom variable
X. Since the stratum is assumed spatially
homogeneous, status of each sample unit in the
stratum is assumed equal to the stratum status 1.
Deviation of the observed status of sample unit i
from the stratum status is the unknown random
variable Wi. The statistical model for estimated
status of sample unit i is

Xi =X+ W, for i ={1, 2, ... , n} (1)

Xi is assumed an unbiased estimate of 1, i.e.,
E[{¥i] = 0. Variance of Wi, denoted var{M}, is
assumed heterogeneous among the n sample units in
the stratum, i.e., var(¥i) does not necessarily
equal the var(#;) for i not equal to J.
Deviations among sample units are not assumed
independent, i.e., E[Mi¥;] might be nonzero. No
other distributional assumptions are made.
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3. MISCLASSIFICATION IN REMOTE SENSING
A portion of deviation K will be caused by
errors in measuring the status (e.g., proportion
forested) of sample unit i.
3.1 Misclassification error model

Let a measurement or calibration model for the
unknown true status Xi of sample unit I be

Yi=HY+E (1-h), (2)°

where Yi is the imperfect remotely sensed
estimate of proportion forest in sample unit i,
and He is the known conditional probability that
a point is truly forest given that it is
classified as forest by the remote sensing
process. Similarly, (1-Yi) is the remotely
sensed proportion measurement of other cover, and
Ho is the conditional probability that a point is
truly forest given it is classified as other
cover by the remote sensing process. When
classification accuracy of the remote sensing
process is high, He will nearly equal 1, and &
will nearly equal 0.

v 3.2 Misclassification bias

The remotely sensed estimate Yi is a biased
estimate of true status Xi of sample unit i if
classification errors occur. Solving (2) for Vi,

Yi = (Xs - Ho) / (He -Ho). , (3)

The remotely sensed estimate Yi in equation (3)
will not equal the true status Xi unless He
equals 1 and b equals 0, i.e., perfect
classification accuracy.-

3.3 Estimation of calibration model

In practice, the values of Ht and H are not
perfectly known. Rather, Hr and H are assumed
the same for all sample units in the stratum, and
their values are estimated using a finite sample
of reference points for which the remotely sensed
and true status are known. For example,
reference points might be available for M
systematically located 0.4 ha forest inventory
plots, which are measured in the field by USDA
Forest Service crews, where the field
classification is considered to be without error.
Under certain conditions, the location of these
field plots can be accurately registered to
remotely sensed images, so that both remotely
sensed and true classifications are available for
a small sample of point plots. This would
provide the necessary sample of reference points
to make estimates (He and /) of the true
conditional probabilities (Hr and /).

Consider the statistical sampling model:
He = He + Je, Ho = Kb + Jo, (4)

where Jr and Jo are random variables that equal
the differences between the true and estimated
conditional probabilities. Mt might be estimated
from the M 0.4 ha Forest Service plots
classified as forest using remote sensing
equation (5):

He = [(He)o + (He)z + oo + (Hednel/Me, (5)

where (Me)i1 = 1 if 0.4 ha Forest Service plot i
is truly forest given it is classified as forest
using the remote sensing procedure, and (He)i = 0
otherwise. Similarly, # might be estimated from
the M 0.4 ha Forest Service plots that are
classified as other cover using the remote
sensing procedure,

Ho = ()1 + (b)2 + .. + (Ko)iol/M, (6)

where (Ho)s = 1 if 0.4 ha plot i is truly forest
given it is classified as other cover using
remote sensing, and (K )i = 0 otherwise.

The following is an estimate (Xi) of the status
of sample unit i, using the estimated conditional
probabilities (H and H) of correct and
incorrect remotely sensed classifications from
(5) and (6), and the known remotely sensed status
i (Tenenbein 1972):

Xi=H Y1+ B (1-Yi1). (7)

3.4 Variance of calibrated estimate

From equations (2), (4), and (7), the unbiased
estimate Xi of the true status Xi of sample unit
i, given the imperfect remotely sensed
measurement Yi of the same sample unit, is

X (He + Jt) Vi + (Ko + Jo) (1-11),

[He Yi + Ho (1-Y1)] + [Jr Y1 + Jo (1-Vi)],

"

X +[Je 1 + o (2-15)]. (8)

The estimate Xi of the status of sample unit i in
(8) contains uncertainty propagated from the
imperfect model for classification error. Since
the estimated conditional probabilities (Hr,Jr)
are assumed unbiased, E[Jr] = E[Jo] = 0, and
measurement Yi is a known nonrandom constant,
then the variance of the estimate in (8) is

var(Xi) = [Jr 1 + Jo (1-11)]2,

E[Je2] Yi? + E[Je?] (1-1i)?,

var(He) Y12 + var(f) (1-)i)2. (9)

If it is assumed that there are no registration
errors between field points and the remote
sensing imagery, then the random errors Jr and Jo
are caused solely by sampling error. The
sampling variances var(Hr) and var(/ ) can be
estimated from the simple randomized sample of
M=Me+M> plots using the binomial distribution:

var(He) = He (1-8t) / *%, (10)

var(bo) = fo (1-f) / M. (11)



From equations (9), (10), and (11), the variance
of the estimated status of sample unit i is

H (1-fe) 112 + Ko (1-fb) (1-11)2
var(Xi) = (12)
Me o .

The estimated variance var(Xi) in equation (12)
is nearly zero when there is near perfect
classification accuracy (8 -> 1 and & ->0), or
when there are a large number of plots (M and
M) used to estimate the conditional
misclagsification probabilities Hr and fb.

3.5 Heterogeneity caused by calibration

The variance var(Xi) of estimated status fi for
each sample unit i in (12) differs among sample
units because the remotely sensed measurement Vi
will differ among sample units. Measurement
error can produce heterogeneous variance among
sample units, This is one motivation for
composite estimation in Section 5.

3.6 Lack of independence caused by calibratiom

Propagated errors from the stratum level
calibration model will cause a lack of
independence among the estimated status of sample
units within that stratum. From equation (8),
the covariance between the unbiased estimates Xi
and X; of status of sample units j and j is

cov(Xi,X3) = E[{Je i+Jo(1-Yi ) H{Je Ys4Jo(1-Y3)}].

E[Js2] = var(He) in (10), and E[Jo2] = var(fb) in
(11). Since Jr and Jo are independently
estimated from different plots, E[Je Jo] = 0, and

cov(Xi,X3) = var(He)ViYs + var(&h)(1-Yi)(1-13).

Errors propagated from the stratum level
calibration model will cause dependence among
estimated status of sample units within that
stratum. This covariance will be positive, and
will differ among sample units because the
remotely sensed estimates Yi and Yj differ. This
is one motivation for Section 5.4, which
considers dependent sample units.

4, COMPOSITE ESTIMATORS

Composite estimators are often used in forestry
(Gregoire and Walters 1988), including sampling
with partial replacement. A composite estimator
(Fig. 1) combines two estimates, each of which is
weighted inversely proportional to its variance
{or in the multivariate case, its covariance
matrix). The weights can be derived using
maximum likelihood, minimum variance, or Bayesian
theory. If all assumptions are reasonable, error
in a composite estimate is less than error in
either prior estimate.

5. ESTIMATED STRATUM STATUS

If the variances var{Wi) for the calibrated
estimates of sample unit status were homogeneous
for the entire stratum, then the mean of the n
sample units would be the minimum variance
unbiased estimate of the stratum status. If
var(#i) is heterogeneous, the sample mean would

Composite
estimate

Two independent
estimates

Probability

Fig. 1 Probability densities for two independent
estimates. These are weighted inversely
proportional to their variances, and combined
into a single, more precise, composite estimate.

remain unbiased, but would not be the minimum
variance estimate. As an alternative, the
composite estimator (Maybeck 1979) could weight
the estimated status Xi of each sample unit
inversely proportional to its variance.

5.1 Estimated stratum status, two sample units

Estimates of stratum status from two sample units
(X1, &2) can be combined using the composite
estimator into an estimate 132 of stratum status
X. The composite estimator uses weights, (1-Gz2)
and G2, that are inversely proportional to the
variances of estimates X1 and Xz:

iz = (1-@)N + 2 X2, (13)
Gz = var(X1) / [var(X1) + var(f2)]. (14)

Estimated variances var{(:) are used rather than
their true, but unknown variances. In this case,
estimate Xe2 in (13) would not be optimal with
respect to minimum variance (Maybeck 1979).
However, estimate Xs2 will be nearly optimal if
var(f1) and var(Xz) are accurate estimates, and
assuming estimates X1 and Xz are independent.
Even if estimate X3z is suboptimal, Xs2 is
unbiased; from equations (1) and (13),

(1-@) (X + ) + (X + n),

p.(H]

X+ (1-;2)W + G2 b2, (15)

Since random deviations M and #2 have expected
values of zero in (1), and G2 is a nonrandom
constant, then E[Xe2] = X in (15), and estimate
Xs2 is unbiased. Variance of the composite
eastimate using the first two sample units is

var(Xsz) = (1-G)? var(X1) + (G2)2 var(Xz). (16)

5.2 Efficiency of the composite estimate

The statistical efficiency of the composite
estimator is compared to the efficiency of the
mean of estimates X1 and X2. Substituting G
from equation (14) into equation (16), variance
of the composite estimate is given in (17)



var(Xz )2var(X1 )+var{X1)2var{Xz)

var(JXs2)
[var(X1) + var(X2)])2 ’

var(X1) var(Xz)
= (17)
[var(X1) + var(X2)],

G2 var(i1). (18)

The mean (Xi14)2)/2, is equivalent to equation
(13) with & = 1/2. The mean is unbiased, as
shown in (15). Variance of the mean is

(1/2)2var(L1) + (1/2)2var(X2) =
fvar(X1) - var(X2)]?

+ (19)
4 [var(f1) + var{X2)].

var(Xi) var(Xz)

[var(f1) + var(Xz2)]

Under heterogeneity, var(Xi) does not equal
var(Xz), and the variance of the mean in (19) .is
larger than the variance of the composite
estimate in (17). Therefore, the composite
estimate is more efficient than the mean. Under
homogeneity, var(Xf1) equals var(Xz), and the
variance of the mean in (19) is identical to the
variance of the composite estimate in (17).

5.3 Estimated stratum status, all sample units

The composite estimate of stratum status in (13)
uses only the sample units from two cells.
However, there are n units sampled in the
stratum, which can be incorporated by
sequentially applying the composite estimator.
The composite estimate from the first two cells
X#z in (13) is combined with the estimate from
the third sample unit X3 using the variance
var(Xs2) of the composite in equation (16):

X3 = (1-GB ez + G3 )3, (20)
Gs = var(X2) / [var(Xsz) + var(X3)], o (21)
var(X13) = (1-G3)2 var(Xez) + (G3)2 var(Xa). (22)

Then, composite estimate X#3 is combined with the
estimate from the fourth sample unit. This is
repeated until estimates from all n cells are
combined into a single estimate for status of the
entire stratum. The sequence is inconsequential.

As in equation (15), the final composite estimate
is unbiased. As in (17) and (19), the composite
estimate using all n cells has smaller variance
than the mean, and the composite estimate is
identical to the mean under homogeneity.

5.4 Lack of independence among sample units

Sequential application of the composite estimator
will produce a minimum variance estimate if all
random deviations WM are mutually independent.
However, spatial autocorrelation and other
factors (Section 3.6) can cause dependence among
deviations. Consider two sample unit estimates
(41,X2) that are combined to produce an estimate
of stratum status, i.e., equation (13). If

estimates X1 and X2 are dependent, variance of
the combined estimate Xs2 in equation (13) is

var(X1z) = (1-G2)2 var(f1) + (@)% var(Xz)

+ 2 (1-@)(6) cov(lr,X2), (23)

where cov(J1,X2) is the covariance between sample’
unit estimates X1 and X2. If these two estimates
are combined using the composite estimator, as in
equations (13), (14), and (16), then the
composite estimate is unbiased, as shown in
equation (15), even if the errors are correlated.

Variance of the mean will be larger than the
variance of the composite estimate when estimates
X1 and 22 are not independent (Sectiom 5.5),
unless there is a strong negative covariance
between estimates X1 and X2 such that

var(f1 )+var()z) is less than -2cov(fi,X2).
However, cov(X1,Xz2) is frequently positive.
Spatial patterns in landscapes tend to produce
positive covariances between proximate sample
units, as will propagated errors for stratum
level calibration models (Section 3.6) and
prediction models (Section 7.2).

The composite estimator can be sequentially
applied, as described in (20) through (22).
However, the final composite estimate will not be
a minimum variance estimate. A more general
formulation of the composite estimator (Maybeck
1979) will have minimum variance with correlated
errors using the following weight in (13):

var(f1) + cov(f,X2)
G = (24)
var(X1) + var(X2) + 2 cov(fn,Xz).

However, this is unsatisfactory for sequential
composite estimation with all n estimates; the
final estimate depends upon the sequence in which
the n estimates are combined. Section 5.5
presents a possible solution, using a vector
weight analogous to the scalar weight in (24).

5.5 Vector weighting in the composite estimator

Let X=(X1}4X2!...1Xn)’ be the (n x 1) vector of
estimates from n sample units; W=(M!M!...!b)’
be the (n x 1) vector of deviations of n sample
units from the stratum status X; C be the (n x n)
estimated covariance matrix for sample unit
deviations, E[W W’] = C, where iith element of C
igs var(Xi) and the ijth element is cov(JXi,X;);
and 1 be a (n x 1) vector of ones. Vector
representation of equation (1) is

E=1X+W. (25)

For =2, the unbiased composite estimator in (13)
and (16) can be expressed in matrix from as

Xe2 = G’ X, (26)

var(Xs2) = G’ C G, (27)

where the (2 x 1) vector G = [(1-&)|&)’
contains the weight applied to each estimate Xi



in X. Weights in (24) produce minimum variance
estimates given heterogeneous, correlated errors
and n = 2, and can be expressed in matrix form as

Gc=(11"-1)g1/701' 11" -1)C11],

P (28)
(n-1) 1’ C1,

where 1 is the (n x n) identity matrix. Based on
ad hoc rationale for n > 2, the weights in
equation (28) can be used in estimation equation
(26), where @ = Gc, for combining estimates from
many sample units (n > 2) into an unbiased
estimate of the stratum status. If the sample
units are independent and have homogeneous
variance, then g2, C = I 2, and (28) becomes

1Y -ne<1 (D1 1
G = - s o-- (29)

(n-1) 1’ 82 1 (n-1) n n.

The mean of the sample units can be expressed as
matrix equation (26), where the (n x 1) weighting
vector is

Ga=1/n (30)

If the sample units are independent with
homogeneous variance, then the composite estimate
in (26) and (28) is identical to the mean because
Gc from (29) is identical to Ga from (30).

5.6 Efficiency of vector composite estimator

When errors are heterogeneous and dependent, the
composite estimator in (26) and (28) is expected
to be more efficient than the mean of the sample

units. From (27) and (28), variance var(Xc) of
the composite estimate Xc of stratum status X is

Vat‘(_:!c) £ G’ C Ge. (31)

The weighting vector Ga for the mean in equation
(30) may be rewritten as

11'c1 11'"¢C1-¢Cl1+C1

G = =
nl1'C1 nt'C1 ’
(11'~-1)c1 c1
= + (32)
nl1l’¢c1 nl1’C1,

From (27), (28), and (31), variance var(Xa) of
the mean estimate Ja of stratum status is

Ge' C Gc (m~1)2 1’¢c’'c¢c1

var(la) = +
m ” (n-1)2 ,
var(Xc) (n-1)2 1’¢c’'cc1

= + (33)
m r? (n-1)2 .

Since (m-1)2/m® in (33) will nearly equal to one
for typical sample sizes n, variance var(ic) of
the composite estimate in (31) will be smaller
than variance var(la) of the mean estimate in
{(33), unless there are large negative covariances
among sample units in covariance matrix C such
that the scalar (1°C'CCl) in (33) is negative.

6. KALMAN FILTER

Misclassification in remote sensing will bias
estimated status of individual sample units. A
calibration model can correct for this bias, but
the calibration model will introduce uncertainty
into our remotely sensed estimate of the status
of each sample unit (Section 3). Additional
uncertainty is introduced by changes in land use,
land management, and vegetation succession in
each sample unit. If a deterministic model could
predict these changes after the remotely sensed
imagery is acquired, then this model can estimate
status of each sample unit over time.

Predictions of the deterministic model can be
incorporated into statistical estimates of
stratum status using the Kalman filter (e.g.,
Gregoire and Walters 1988). Dixon and Howitt
(1979) describe how the Kalman filter can be
applied to sampling with partial replacement in
continuous forest inventories. Cgzaplewski (1990)
presents a simple tutorial example of estimating
forest cover over time using the Kalman filter.

The Kalman filter is portrayed in Fig. 2. One
unbiased estimate is made at time t (e.g., a
calibrated remotely sensed measurement). The
other unbiased estimate (e.g., a previous,
calibrated remotely sensed measurement) is made
at time t-1, but is updated for expected changes
between times t and t-1 using the deterministic
model. Variance for the updated estimate
includes effects of errors in the previous
estimate that are propagated over time, and
prediction errors from the deterministic model.
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prediction model prediction model
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Fig. 2 Probability density for a Kalman estimate
that is a composite of measurement data at time ¢
and a prior estimate at time t-1, which is
updated using a prediction model. Given a
perfect prediction model, only estimation error
at t-1 is propagated to time t. More
realistically, the prediction model is imperfect,
and a prediction error also occurs. The Kalman
filter combines measurements and model
predictions into a composite estimate, weighted
inversely proportional to their variances.



The Kalman filter is usually applied to a time
series of measurements (Fig. 3). With each new
measurement, a composite estimate is made, whicl
serves as new initial conditions for the next
prediction from the deterministic model (e.g.,
Fig. 3, year 4).
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Fig. 3 Kalman estimates and confidence intervals
for percent forest. In this example from
Czaplewski, et al. (1988), intensive forest
inventories were conducted in years 0 and 10;
lower precision monitoring data were gathered in
years 4 and 7.

The Kalman filter is a multivariate estimator
(Maybeck 1979). It can simultaneously estimate
multiple state variables, such as proportions of
different vegetation cover types. Measured rates
of change can be statistically combined with
rates of change predicted from the deterministic
model. The Kalman filter can model correlated
errors among the state variables and rate
coefficients, correlated prediction errors from
the deterministic model, and random errors in
measurenent data. i

6.1 Verification of the Kalman filter

Two independent estimates disagree or "diverge"
in that neither estimate is likely given the
other (Fig. 4). Contradictory estimates can be
combined, but the resulting composite estimate
can be biased. Discrepancies are can be caused
by biased estimates of the error distribution
(either location or spread) of the measurement at
time t, or the estimate at time t-1 that is
updated to time t using the deterministic
prediction model.

It is possible that bias exists in the current

measurement. For example, calibration equations
are needed to correct for misclassification bias,
as discussed in Section 3. Also, bias might
exist in the estimated variance of errors from
the prediction model; direct estimates of
prediction variance require known differences
between model predictions and the true status of
the system. As an alternative, adaptive filters
modify initial variance estimates until
disagreements are within acceptable bounds (Fig.
4), often using a time series of residuals
(Sorenson 1985). As accuracy of model
predictions increases, the weight placed on model
predictions will increase, and as will accuracy
of the Kalman filter.

Estimate from Increasing estimate
prediction model of prediction error
disagrees with improves
measurement agreement
Composite
estimate
£ Other
3 estimate
3 Model
: fL"i%:
] 1!
Smaller Larger
prediction error prediction error

Fig. 4 Expected probability densities for two
estimates that disagree. Adaptive filters assume
the estimated variance of model prediction error
is inaccurate, and change this estimate until the
disagreement is within acceptable bounds.

7. KALMAN FILTER APPLIED TO SAMPLE UNITS

Consider the following hypothetical example, in
which a 1/4 subsample of the sample units in the
stratum are observed using remote sensing with
imagery acquired at time t in an interpenetrating
design. (Similar examples could be based on
other intensities, such as 1/7, 1/9, 1/12, etc.)
The biased estimate of the status of each sample
unit in the 1/4 subsample is corrected using a
stratum level calibration estimator, as in
Section 3. An estimate of stratum status at time
t is made with the 1/4 subsample using composite
estimation (Section 5). A different 1/4
subsample of sample units is observed using
remote sensing and imagery acquired at time t+l.
An estimate of stratum status at time t+1 might
be made using only this second subsample, as
described in Sections 3 and 5.

The estimate for time t+l1 might be improved using
the sample units in the first 1/4 subsample,
which were observed at time t. However, changes
between times t+l1 and ¢ have probably occurred in
the status of each sample unit in the first 1/4
subsample. If a model were available to predict
these changes, then estimates from the 1/4
subsample observed at time t might be combined
with the 1/4 observed at time t+l1 into an
estimate of the stratum status at time t+l, using
the composite estimator presented in Section 5.

7.1 Updating eastimates for one sample unit

Predicted true status Xt+1 (e.g., proportion
forest) of one sample unit at time t+l is

=R L+ B (1-4). (34)

P31

£t is the estimated status of the sample unit at
time t, B is the estimated conditional
transition probability that a point is truly

-forest at time t+l, given it is was forest at

time t, and /o is the estimated conditional
transition probability that a point at time t+l
is truly forest, given it was other cover at time
t. Transition probabilities A and R are
predicted from the deterministic model. The
predicted status Xt+1 of the one sample unit at



time t+1 in equation (34), given its estimated
status Xt at time t, is analogous to the
calibrated estimate in equation (7), given an
imperfect (biased) remotely sensed estimate.

If the deterministic model is perfect, variance
var(Xt+1) of estimated status lt+1 of the one
sample unit at time t+l is

var(Xe+1) = var(Le) A? + var{Xe) B2, (35)

as portrayed in Fig. 2. More realistically, the
deterministic model is imperfect, and there is
additional error ({t) in predicting change
between time t and t+l1. Assuming additive,
independent prediction errors, variance of the
updated estimate for the one sample unit is

var(l&oi) = var(Xt)R2+var(Xc)R2+var(lh), (36)

as portrayed " sig. 2. One fundamental problem
will be ¢itic ling the variance of the prediction
errors var(lk} ° :tween times t+1 and t. This is
discussed in Section 7.3.

7.2 Stratum estimates for each time period

The stratum level prediction model (i.e.,
transition probabilities & and B ) in equations
(34) and (36) could update the estimated status
of each sample unit in the 1/4 subsample observed
at time t. These estimates might be directly
combined with those from the other 1/4 subsample
observed at time t+l, using the composite method
presented in Section 5. The resulting stratum
estimate at time t+1 would include measurements
from 1/2 of the sample units.

At time t+2, the estimated status of each sample
unit in the 1/4 subsample observed at time t+l1,
and the 1/4 subsample ohserved at time t and
updated to time t+1 using equations (34) and
(36), could be updated to time t+2 using

Xrez = B Ste1 + B (1-Xee1), (37)

var(Xces2)=Privar(Xee1)+Po2var{Xes1)4var(les1).

(38)

These updated estimates from the 1/4 subsasples
observed at times t+1 and t might be directly
combined with those from the 1/4 subsample
observed at time t+2, using the composite method
in Section 5. The resulting stratum estimate at
time t+2 would include measurements from 3/4 of
the sample units.

The same method might be applied at time t+3 to
estimate stratum status using all sample units.
Most weight in the composite estimator would be
placed on the 1/4 subsample observed at time t+3
because a prediction model is not needed to
update estimated status of sample units within
this subsample, and there would be no prediction
errors; least weight would be placed on the
subsample observed at time t because their status
has not been directly observed for 4 time
periods, and variance from prediction errors in
updating estimated the status of the sample units
would be greatest for this 1/4 subsample.

7.3 Variance of prediction errors

Variance of prediction errors froe the
deterministic model , i.e., var(lk) = var(lhe1) =
var{U), are needed in (36) and (38) to update
status estimates for sample units, which are
combined into an estimate for the stratum. The
variance of sampling errors from tramnsition
probabilities estimated using permanent ground
plots (from other agencies or more detailed field
sampling within the same monitoring system) might
serve as initial estimates of prediction error
variance, Initial estimates of prediction error
variance for a process level landscape model
might be made with data used to fit the model.
These initial estimates are likely biased (i.e.,
too small) because the deterministic model is
extrapolated over time or space. Stratum
estimates from Section 7.2 can be compared to
independent stratum estimates from other
monitoring systems, and the adaptive methods
discussed in Section 6.1 used to refine estimates
of prediction error. .

Dfrect estimates of prediction error variance
from the deterministic model would be available
through remote sensing of permanent sample units.
For example, new imagery is acquired at time t+4
for the same 1/4 sample observed at time t.
Misclassification bias in the estimated status of
each sample unit at time t+4 is corrected using
the calibration model in Section 3. A second
estimate of the status of each sample unit in the
1/4 subsample at time t+4 is available from the
deterministic prediction model, using the
observed status at time t as initial conditions
(Section 7.2). A sample estimate for variance of
prediction errors between times t and t+4 can be
made using the known differences between these
two estimates at time t+4 for each sample unit.
The remotely sensed estimate of these sample
units at time t+4 would then be used as new
initial conditions in the deterministic model to
predict status at time t+5 and later.

This requires matrix representation of the
statistical model, as in equation (25). The
matrix solution for estimating var(U) would be
complicated by covariances among prediction
errors, use of the same calibration model at
times t and t+4, or spatial autocorrelations.
Approximations might be needed, but verification
procedures introduced in Section 6.1 could
protect against unreliable approximations.

8. KALMAN FILTER APPLIED TO CELLS

Each 40 km? sample unit may be considered a
sample of the surrounding 640 km? cell, with a
sample size of one. Estimates for aggregations
of cells might utilize composite estimation
(Section 5), treating the estimate for a 40 km?
sample unit as an estimate of the entire 640 km?
cell. This can reduce proliferation of
stratification criteria from the calibration
models and deterministic prediction models, and
use of ancillary estimates from independent
sources.

8.1 Combining independent ancillary estimates

Ancillary statistical estimates from independent
sources can improve efficiency and temporal
detail using composite estimation. For example,
the USDA Forest Service and the USDA Soil
Conservation Service both produce areal estimates
of the extent of forestlands for geographic areas
that might include one-hundred or more 640 km?



cells. These independent estimates provide a
source of useful data for landscape level
monitoring. However, the estimates from the two
systems are made with different definitions of
forest, in different years, and can be
contradictory. Differences in schedules among
independent monitoring systems can be !
accommodated by annual estimates (Section 7);
different classification systems can be
accommodated by calibration.

Calibration for misclassification error in remote
sensing requires plots for which reference and
remotely sensed classifications are known
(Section 3). Calibration for "misclassification”
error caused by differences in classification
systems requires plots which are independently
classified by two independent monitoring systems.
If sample unite from other monitoring systems are
accurately registered to the 40 km? sample units,
then multivariate calibration models can estimate
the quantitative statistical relationship between
areal estimates from another agency, and areal
estimates from the landscape monitoring system.
These estimates that are "~-'ibrated” for
differences in definiti: :“hight be further
calibreted using the cal’, ration model for remote
sensing errors.

This would allow several agencies to share areal
estimates applicable to aggregations of sample
units, while maintaining their own classification
systems. These shared estimates might be made at
the level of individual 640 km? cells using small
area estimation, which takes the fora of a
composite estimator. Shared statistical
estimates might improve the efficiency and
compatibility of participating monitoring
systems, without major disruptions to any one
existing system. However, statistical
calibration is not a panacea. Calibration will
propagate statistical errors (Section 3.4), but
these can be are minimized by making the
independent classification systems as compatible
as possible,

8.2 The cell as a stratum with sample size one

A stratum is a contiguous, homogeneous geographic
area. However, calibration models superimpose
additional stratification criteria, such as
Landsat scene boundaries, or sets of sample units
photointerpreted by one individual. These
differences are needed to correct for different
misclassification probabilities, and these
criteria can change over time. When ancillary
data from other monitoring systems are combined,
a stratum is further subdivided by the geographic
criteria used by each other system It is likely
the number of strata will eventually approach the
number of sample units.

The estimated status of a 640 km? cell might be
considered a combination of the estimated status
of the one 40 km? sample unit it that cell, and
ancillary estimates from other agencies, which
apply to aggregations of cells (Section 8.1).
Estimation error associated with each 40 km?
sample unit includes propagated and correlated
errors from a regional calibration model (Section
5), propagated and correlated prediction errors
from a regional deterministic prediction model
(Section 7), and sumpling error from use of one
40 ka2 sample unit in the cell. Sampling error
might be estimated using aggregations of 40 km?
plots and assuming independence and homogeneity,
or geostatistical methods, such as Kriging and
spatial correlogranms.

9. LANDSCAPE DETECTION AND EVALUATION MONITORING

One objective might be monitoring "environmental
health." "Detection" monitoring might use
quantitative indicators of response and exposure
to classify each 40 km? sample unit as "healthy"
or "unhealthy". Unhealthy sample units could be
further subclassified as to probable cause during
"evaluation monitoring”. Sample units classified
based on their health can be used to make areal ’
estimates of environmental health for regional
assessments. Therefore, there is interest in
individual sample units that might not be
necessary if statistical estimates of regional
status were the sole objective.

This is analogous to a psychologist’s judgment
(i.e., detection) whether a patient in a random
sample (i.e., a sampling unit) is mentally ill
{(i.e., unhealthy) based on blood chemistry and
psychological profile tests (i.e., response
indicators), and history of chemical abuse or
family wental health problems (i.e., exposure
indicators); diagnosing probable cause(s) for the
patient’s condition (i.e., evaluation); and
making an estimate of the suspected prevalence of
various types of mental illnesses in the
population {(i.e., assessment) using a large
sample of patients.

Quantitative indicators are needed to identify
unhealthy sample units. Causal hypotheses might
be suggested by exploratory statistical methods,
such as scatter plots or principal components
analyses, or geostatistical methods that might
show similar spatial associations in unhealthy
sites and indicator values. Hypotheses might be
more difficult to formulate if landscape
processes are nonlinear, with time lags and
feedback mechanisms that obscure direct cause and
effect relationships. Process oriented
deterministic models contain a collection of
individual hypotheses regarding landscape
structure and function. If exposure indicators
associated with individual sample units are
included among driving variables for a landscape
level model, and the model can predict response
indicators that are measured on sample units,
then aggregate hypotheses in the deterministic
model can be scientifically tested.

The residual difference between' model predictions
and direct observations represents model
prediction error, i.e., lack of agreement in
predicting measurements of landscape structure
and function. A model and direct measurements
are imperfect caricatures of a system, and
prediction errors are expected. However,
residuals are expected to be random if the model
and measurements are reliable. If spatial or
temporal patterns exist in the residuals, then
important processes are not included in the
model, or there are unrecognized probleme with
the measurement process.

Such an unexpected situation should trigger a
search for hypotheses that might explain the
apparent nonrandom patterns. If the prediction
model, rather than measurements, is judged to be
the problem, alternative hypotheses might be
incorporated in the prediction model, and tested
with independent monitoring data. Therefore,
analysis of data from a landscape monitoring

‘system, and predictions from a landscape model,

can be a crucial step in the cycle of hypotheses
development, hypothesis testing, and hypotheses

refinement to help understand the condition and

functioning of landscapes.



10. DISCUSSION

The true status of spatially fixed sample units
or cells are expected to have heterogeneous
variance and lack independence, caused by
landscape level processes such as regional land
use practices, climatic patterns, and
physiographic gradients. Therefore, no new
complications are introduced by heterogeneous and
dependent errors propagated from regional
calibration and deterministic prediction models
applied to 40 km? sample units, or small area
estimation techniques for ancillary data applied
to 640 km? cells.

It is frequently assumed that sampling errors
associated with a systematic sample of plots in
space are independent and identically
distributed. These unrealistic assumptions will
not bias estimates of stratum status, but there
would be loss of efficiency, and bias in the
estimated covariance matrix for stratum stratus
estimates. Biased estimates of the covariance
matrix might adversely affect important te~':: of
hypothesis, and stepwise regression &ua;; :al
models. Therefore, heicrogeneity and Tast
independence among should be expressed in tue
statistical models.

Additional statistical details need development
before the hypothetical example in this paper
could be implemented. This example is
univariate, where status is defined as proportion
of forest. More detailed categories would be
required in a true landscape monitoring system,
and the estimators in this paper would have to be
developed for the multivariate case. Estimating
model prediction error with remeasurements of
permanent plots would require multivariate roots
of polynomial matrix equations. . Combining
ancillary data from other monitoring sources
would require multivariate, small area estimation
techniques to estimate status of individual
cells., It is assumed that the stratum is
homogeneous, but multivariate spatial trends in
status might be expected. Multivariate
geostatistical methods used to estimate spatial
trends and heterogeneous variance among sample
units must deal with propagated heterogeneity and
dependence from multivariate calibration and
deterministic prediction models. Multivariate
logit transformations, or the multivariate
Dirichlet distribution might be needed to better
deal with skewed error distributions for
proportion estimates that approach zero.

The procedures outlined in this paper might have
conceptual appeal to some, but they have never
been put into operation within a broad scale,
landscape level, environmental monitoring systenm.
More work is needed to verify their applicability
and feasibility. Alternatives, such as an
interpenetrating design without the model based
Kalman filter might be less risky, but could be
less efficient, and might be incapable of testing
deterministic models to improve understanding of
system dynamics. Contingency plans should be
made in case a design based or model based
approach is found unacceptable.
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