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ABSTRACT 

The Kalman filter is a generalization of the composite estimator. 

The univariate composite estimate (i) combines 2 prior estimates 

(X and i) of population parameter (~) with a weighted average, 

i=(1-k)x+gi, where the scalar weight k is inversely proportional 
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to the variances: k=Var(x)/[Yar(x)+var(i)]. The composite 

estimator is a .iniaua variance estimator that requires no 

distributional assumptions other than estimates of the first 2 

.aments. The Kalman filter recursively combines 2 estimates: a 

past estimate that is updated for expected change over time, and 

a current, direct estimate. 

The mUltivariate Kalman filter is analogous to the univariate 

composite estimator. Xt1t is an unbiased Ixk vector estimate of k 
I 

population parameters (i.e. a state vector) at time ~, with kxk 

covariance matrix Pt : t • For example, there might be k=6 

proportions of the population in various states of forest 

condition: undisturbed, degraded, cleared, plantation, fallow, 

and non-forest. 't+1:t is a kxk transition matrix that predicts 

change in the state vector between times t and t+l; the vector of 

random prediction errors (i.e., difference between the true and 

estimated states at time t+l) is assumed unbiased and independent 

A 

of errors at other times, with kxk covariance matrix ~+1lt. The 
I 

Kalman filter updates the past estimate for changes expected 

(Yt+1) of the population .ight be available; Yt +1 is a IXJll vector, 
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A 

with the .x::m covariance matrix ~+1' and m need not equal k. Yt+1 

might be a linear combination of the state vector Yt+1=Bt+1X t+1' 

where Bt+1 is a JAXk matrix. For eXaJDple, coarse-resolution 

satellite data might be able to discriminate well-stocked forest 

(undisturbed and plantation forests) from all other cover types 

(degraded, cleared, and fallow forests, and non-forest), in which 

case m=2 and k=6. The kxm matrix weight for the composite 

A A A A A A 

estimator is ~+1=[Pt+1ltB!+1 +Ct+1] [~+1Pt+1ltB!+1 +~+1 +Bt+1Ct+1 +C!+1B!+1 ]-1, 

where Ct+1 is the kxm covariance matrix between model prediction 

errors and the estimation errors for Yt+1. The sum of each 

proportion vector is 1X=1y=1, their covariance matrices sum to 

A A 

IP1'=1R1'=O, and dimensions k and m can be decreased by 1 to 

avoid singularity without loss of information. The mUltivariate 

composite estimate is it+1lt+1=[l:-~+1]it+1lt+~+1Yt+1' with covariance 

A A A A 

matr1-x P -P _. [8 P +C'] The vector of residual t+1l t+1 - t+1l t -t+1 t+1 t+1l t t +1 • 

differences between the estimates and predicted estimates 

A A A A A 

covariance matrix E[rt+1r~+1]=Bt+1Pt+1ltB~+1+~+1+Bt+1Ct+1+C~+1B~+1. 

The Kalman filter repeats this procedure recursively for each 

time period to produce a time-series of composite estimates. If 

any underlaying assumptions are invalid (e.g., model prediction 
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errors not distributed with mean vector 0 and covariance matrix 

.... 
n ) then the Kalaan filter can produce inaccurate estimates. 
~+1lt , 

Diagnostic procedures BUst be used to detect quantitative 

syaptoms that suggest invalid assumptions. 

statistical estimates for proportions of cover in k categories 

can be produced for a sub-continental region each year as 

follows. A random sample of high-resolution satellite scenes 

(e.g., Landsat) is imaged at time t=o, and each Landsat pixel in 

the sample is classified into 1 of &=6 categories; Landsat 

classification error is assumed negligible. An estimate iOlo for 
I 

the proportion of the k categories in the population is made 

using the proportions of the k categories in the scene, and the 

.... 
sample covariance matrix used for POlo. Coarse-resolution 

satellite data (e.g., AVHRR) is acquired for the entire 

population at t=O, and each AVHRR pixel is classified into 1 of 

.=2 simplified categories. The proportion of classified AVHRR 

pixels in this census is a direct estiaate of population 

proportions. Misclassification error (i.e., measurement error) 

will bias this estimate. However, AVHRR proportion estimates can 

be calibrated, using AVHRR pixels registered to the random sample 

of Landsat scenes, to produce an unbiased estimate (Y1) of the 
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-=2 simplified cover categories; covariances of errors propaqated 

"-
fro. the calibration .adel are estimated by~. The Kal.an 

filter coJibines population estimates ~IO and Yl into the 

composite estimate ~Il' where times t=o and t=l are identical 

(i.e., i 011=I, Go 1l=O), and e
1 

estimates the covariance between Xo1o 

and :1'1 caused by shared use of the same Landsat sample scenes. 

C
1 

.iqht be difficult to estimate, and the AVHRR data .iqht not 

substantially improve precision unless the calibration sample of 

Landsat scenes is larqe (i.e., il is saall). If Landsat 

classifications contain errors, then estimates can be further 

calibrated usinq a different sample of hiqher-resolution data. 

A probability transition matrix i211 can estimate the proportions 
. I 

(i
211

) of &=6 cover types at time t=2 qiven the previous composite 

estimate (i
111

) at t=l. The transition matrix can be estimated 

with models that predict chanqe in forest cover caused by 

environmental and anthropogenic forces, or empirical models based 

on past chanqes amonq cover types on permanent sample plots. If 

no direct estimates (:1'2) are acquired at time :t=2, then ~12~11; 

otherwise, new ancillary estimates are combined with the Kalman 

filter, as described above. This procedure is repeated each time 

period. A time-series of known residual vectors 
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(r
t

, ~=O,1,2, ••• ) can be standardized with spectral 

decompositions of their expected residual covariance matrices; 

standardized residuals are expected to be independent and 

identically distributed, with mean 0 and variance 1. If the 

realized distribution of standardized residuals from all time 

periods fails to meet this expectation, then a problem is 

u~tect.'1d. The most likely causes are biased .ooel predictions 

(itHltXtlt> or estimates of model prediction error covariance 
,.. 
(~Hlt)' but there might also be unrecognized biases in the direct 

I 

estimates (YtH) or their covariance matrices (~H). Good 

technical judgement is required to diagnose the probable cause of 

the problem, and prescribe corrective actions. 

This estimation strategy assumes direct estimates are based upon 

a random sample of Landsat scenes, and estimates for 

sub-populations are not required. Both assumptions might be poor 

because national mapping priorities might produce a non-random 

sample of classified Landsat scenes, and sub-population estimates 

are often requested. One solution is to (1) consider the 

population equivalent to all Landsat scenes that image the 

region, (2) estimate of the state of each Landsat scene during 

each time period, and (3) consider this a census of the entire 
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population each ti.e period, with varying degrees of aultivariate 

~asureaent error for each Landsat scene. 

lIeasure.aent errors are caused by i.perfect aodel predictions. 

one .adel estimates current state of each Landsat scene based on 

past aeasureaents and expected changes, and the calibration .odel 

estimates the ClTrent state of each Landsat scene based on 

i.perfectly classified AVHRR pixels that fall within each Landsat 

scene. As in the Kalman filter, .adel predictions and AVHRR 

estimates can be colllbined for each Landsat scene. If a Landsat 

scene has an unusually large residual difference between model 

predictions and AVHRR estimates, then measure.ent error for this 

scene might be high, and new Landsat data could be obtained for 

this scene to reduce aeasureJDent error. However, the 

mUltivariate measure.ent errors among Landsat scenes will not be 

independent or identically distributed. This presents formidable 

challenges to prudent statistical estimation. Spatial statistics 

and propagation of error techniques are needed to estimate the 

covariance aaonq and within Landsat scenes. An estimator 

analogous to the .ultivariate composite estimator aight be needed 

to efficiently coabine state estimates for all Landsat scenes 

into a population or sub-population estimate. 
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