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ABSTRACT: In addition to thematic maps, remote sensing provides estimates of area in different thematic categories. 
Areal estimates are frequently used for resource inventories, management planning, and assessment analyses. Ms- 
classification causes bias in these statistical areal estimates. For example, if a small percentage of a common cover type 
is misclassified as a rare cover type, then the area occupied by the rare type can be severely overestimated. Many 
categories are rare in detailed classification systems. I present an informal method to anticipate the approximate mag- 
nitude of this bias in statistical areal estimates, before a remote sensing study is conducted. If the anticipated magnitude 
i s  unacceptable, then statistical calibration methods should be used to produce unbiased areal estimates. I then discuss 
existing statistical methods that calibrate for misclassification bias with a sample of reference plots. 

INTRODUCTION X) would be used if X and Y are acreages, where T is the total 

R EMOTELY SENSED AREAL ESTIMATES are typically treated as 
unbiased estimates of the true area for each cover type in 

a study area. However, Card (1982), Chrisman (1982), and Hay 
(1988) note that misclassification can bias areal estimates from 
remote sensing. My first objective is to demonstrate the cause 
of misclassification bias, and then to present an informal method 
to anticipate its magnitude before a remote sensing study is 
conducted. With a quantitative expectation of the approximate 
magnitude of this bias, the user of remotely sensed areal esti- 
mates can judge the practical importance of misclassification 
bias, given the unique requirements of each remote sensing 
study, If the anticipated magnitude of misclassification bias is 
unacceptable, then areal estimates should be calibrated with 
remotely sensed and reference classifications for a representa- 
tive sample of reference plots from the study area. My second 
objective is to increase awareness of existing methods that can 
statistically calibrate for misclassification bias, and then to pro- 
vide general guidance in the choice and application of an ap- 
propriate calibration method. 

SOURCE OF MISCLASSIFICATION BlAS 

Let the remotely sensed percentage of cover type A be de- 
noted as the scalar Y, and the true percentage of cover type A 
be denoted as the scalar X. The true percentage of cover types 
other than A (labeled cover type B in the following) will equal 
the scalar (100% - X). Let scalar HA represent the conditional 
probability that any pixel is interpreted as cover type A, given 
that the pixel is truly cover type A, where 0 5 HA 5 1; and let 
scalar (1 - H,) represent the conditional probability that any 
pixel is interpreted as cover type A, given it is truly type B, 
where 0 5 HB 5 1. HA and HB represent producer's accuracies, 
and are measures of omission error (Story and Congalton, 1986). 
The remotely'sensed percentage (Y) of cover type A will be the 
following deterministic function of the true percentage (X) of 
cover type A and the true conditional probabilities of omission 
errors (HA and HB): 

Equation 1 shows that misclassification biases areal estimates 
from remote sensing; the remotely sensed percentage (Y) will 
not equal the true percentage (X) unless there are no omission 
errors, i.e., HA = HB = 1, or effects of omission errors exactly 
compensate, i.e., (1 - HB) (100% - X) = (1 - HA) X. Either 
condition is rare in remote sensing. 

Proportions or acreages of each cover type can be readily used 
in place of percentages in Equation 1. Instead of (100% - X), 
(1 - X) would be used if X and Y are proportions, and (T - 

acreage of the study area. 
Assume classification accuracies are high for all cover types 

(e.g ,HA = HB = 0.95). If cover type A truly occupies 90 percent 
of the study area (i.e,, X = go), then the remotely sensed per- 
centage (2') will equal 86 (see Equation 1). Similarly, Y equals 
68 percent if X equals 70 percent, and Y equals 50 percent if X 
equals 50 percent. The bias in areal estimates for rare categories 
can be relatively high, even with such high classification accur- 
acies. If cover type A truly occupies 10 percent of the study 
area, then the remotely sensed estimate will be 14 percent (see 
Equation 1). In this example, the remotely sensed percentage 
will be 40 percent larger than the true value. If a small per- 
centage of a common cover type is misclassified as a rare cover 
type, then the area occupied by the rare type will be overesti- 
mated, unless there is a high rate of omission error in classifying 
the rare type. As the detail of a classification system increases, 
many categories will be rare. Figure 1 portrays the magnitude 
of rnisclassification bias for a wide range of classification accur- 
acies. 

MAGNITUDE OF MlSCIASSlFlCATlON BlAS 
Figure I or Equation 1 can be informally used to anticipate 

the approximate magnitude of misclassification bias for any cover 
type. However, preliminary expectations of classification ac- 
curacies and prevalence of various cover types must be used, 
rather than their true, but unknown, values. For example, as- 
sume you expect that classification accuracies for your study 
area will be similar to those given by Story and Congalton (1986), 
who used reference and remotely sensed classifications of 30 
forested plots, 30 water plots, and 40 urban plots to construct 
an error matrix. From their error matrix, your preliminary es- 
timate of producer's accuracy for the forest cover type in your 
study area is HA = 28/30 = 0.93, and your preliminary estimate 
for non-forest accuracy is HB = (15 + 1 + 5 + 20)/(30 + 40) = 0.59 
(i.e., the water and urban types are pooled together). Assume 
your preliminary estimate of forest cover in your study area is 
33 percent. Using Figure 1 with HA = 0.90, HB = 0.60, and X= 33, 
you anticipate misclassification bias will be approximately 25 per- 
cent; you can expect the remotely sensed areal estimate for forest 
will be (33 + 25) = 58 percent if forest cover is truly 33 percent 
in your study area. From the same error matrix, roducefs ac- 'f curacy for water cover is HA = 15/30 = 0.50, an that for non- 
water (i.e., forest and urban) is H, = (28 + 1 + 15 +20)/(30 +40) = 0.91. 
You can anticipate from Equation 1 that the remotely sensed 
areal estimate for water will be approximately Y = 23 percent 
if water truly covers X = 33 percent of your study area, i.e., 
rnisclassification bias of - 10 percent. Finally, you can use Equa- 
tion 1 and the same error matrix to anticipate that the remotely 
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FIG. 1. Examples deqonstrating magnituge of misclassification bias for various probabilities of omissidn errors. Misclassifi- 
cation bias is the difference between the remotely sensed estimate and the true percentage of a cover type. Remotely sensed 
estimate (r) is a function (Equation 1) of prNaience of a cover type (X) and producer's classification accuracies (HA and HB), 
which are conditional probabilities of omissiof~,errors. HA and H, are sometimes equal in this example, but they are not 
necessarily equal inipractice. This figure, or Equation 1, can be informally used to anticipate the magnitude of misclassification 
bias, given approximate expectations of classification accuracy and prevalence of cover types. If the anticipated magnitude 
is unacceptable, then more formal calibration methods should be considered, which are discussed in this paper. 

sensed areal estimate for urban will be approximately 19 percent 
if urban areas truly cover 33 percent of your study area, i.e., 
misclassification bias of - 14 percent. 

CALIBRATION FOR MlSCLASSlFlCATlON BIAS 

If the anticipated magnitude of misclassification bias is un- 
acceptable to the user, then more formal calibration techniques 
should be included in the remote sensing study. Calibration 
cannot identify misclassified pixels. Rather, calibration is a 
probabilistic technique; it uses proportions of imperfectly class- 
ified pixels in a reference sample to estimate conditional prob- 
abilities of various types of misclassification, and these estimated 
probabilities are then used to predict the true percentage of each 
cover type given the remotely sensed percentages. Proportions 
or acreages can be used in place of percentages. Statistical cal- 
ibration requires accurate estimates of misclassification proba- 
bilities using reference plots from the study area, rather than 
preliminary expectations used above to anticipate the approxi- 
mate magnitude of misclassification bias. 

Two different calibration methods can be used if a reliable 
error matrix is acquired for a particular study. In remote sens- 
ing, Bauer et al. (1978), Maxim et al. (1981), Prisley and Smith 
(1987), and Hay (1988) demonstrate use of a classical multivar- 
iate calibration method, which was introduced into the statis- 
tical literature by Grassia and Sundberg (1982). Equation 1 is a 
univariate example of this method. To produce an unbiased 
areal estimate, Equation 1 is solved for the true percentage (X) 
given the remotely sensed estimate (Y), and accurate estimates 
of the probabilities of omission errors (i.e., HA and H,). The 
inverse calibration estimator of Tenenbein (1972) is an alterna- 
tive to this classical estimator, and Card (1982) and Chrisman 
(1982) demonstrate use of this estimator in remote sensing. The 
inverse estimator uses probabilities of commission errors (i.e., 
user's accuracies), while the classical estimator uses probabili- 
ties of omission errors. Czaplewski and Catts (1990) give ex- 
amples of these two calibration methods in remote sensing. 

Based on unpublished Monte Carlo simulations, I found the 
inverse calibration estimator of Tenenbein is less biased, more 
precise, and less prone to numerical problems and infeasible 

solutions, especially for small sample sizes of reference plots. 
For example, the multivariate classical estimator requires a ma- 
trix inversion, and can produce negative areal estimates; the 
inverse estimator requires less complex algebra, and will always 
produce positive estimates. 

These calibration techniques use misclassification probabili- 
ties from an error matrix that are estimated with a finite sample 
of reference plots from the study area. These estimated prob- 
abilities contain sampling errors, which are propagated into es- 
timation errors for the true percentage of each category in the 
study area. As the sample size of reference plots increases, the 
sampling error deceases for estimates of misclassification prob- 
abilities, and accuracy of the calibrated areal estimate increases. 
Grassia and Sundberg (1982) and Tenenbein (1972) give ap- 
proximate covariance matrices for these estimation errors; they 
assume a large sample of reference plots is available, and the 
reference plots are independent and homogeneous (i.e., each 
independent reference plot is classified into a single category 
with remote sensing, and a single category with the reference 
data). These covariance matrices are needed to construct con- 
fidence intervals, which describe the level of uncertainty in the 
calibrated areal estimate that is produced by uncertain estimates 
of rnisclassification probabilities. 

An unstratified sample of homogeneous reference plots will 
include a small number of rare cover types. Stratification can 
provide more intensive sampling of rare types, which can im- 
prove accuracy of calibrated areal estimates for rare types. How- 
ever, an inappropriate calibration technique can bias calibrated 
areal estimates from a stratified sample of reference plots. In 
general, the inverse estimator of Tenenbein should be used if 
stratification is based on the remotely sensed classifications. If 
the stratified sample is selected based on the reference classi- 
fications, then the classical estimator of Grassia and Sundberg 
should be used. This latter situation might exist if existing field 
plots are used for reference data, but the cost of accurate reg- 
istration of existing field plots to the remotely sensed imagery 
limits the number of plots that can be registered. Bias from an 
inappropriate calibration technique can be eliminated with in- 
dependent ancillary estimates of the true or remotely sensed 
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percentages in the study area, but more elaborate calibration 
metllods are required. 

These calibration methods require a large sample of repre- 
sentative reference plots to estimate misclassification probabil- 
ities. Representative reference plots are best selected with 
randomization methods. Training or labeling plots often have 
lower rates of classification error than are typical for the entire 
study area, and such plots will produce biased areal estimates 
if used for calibration. Brown (1982) discusses controlled cali- 
bration, which can use purposefully selected reference plots; 
however, this requires Bayesian estimation, which is vulnerable 
to subtle problems and undetected biases, 

If the reference plots are not well registered to the remotely 
sensed imagery, then classification error will be confounded 
with registration error, and the misclassification probabilities 
will be poorly estimated. Large heterogeneous reference plots 
might be more successfully registered to remote sensing im- 
agery than small homogeneous plots. If the heterogeneous plots 
are a simple random or systematic sample, and reference clas- 
sifications are available for each pixel in these plots, then the 
calibration methods of Tenenbein (1972) and Grassia and Sund- 
berg (1982) can be applied without modification. However, clas- 
sification errors for adjacent pixels in the same reference plot 
are not independent, and different methods would be required 
to calculate the estimation error covariance matrix. 

Different calibration methods are required if an error matrix 
cannot be constructed from the reference data. For example, 
reference data for agricultural surveys can be limited to areal 
estimates of different crop covers within large, heterogeneous 
plots; maps showing the location of each crop cover within the 
reference plots might not be available. Therefore, the reference 
classifications for each pixel within the reference plots are not 
available, and an error matrix cannot be constructed. Here, cal- 
ibration can only use the remotely sensed and reference per- 
centages of each cover type within each heterogeneous reference 
plot. Calibration estimators for this situation have been devel- 
oped and evaluated by Chhikara et al. (1986), Fuller (1986), Hey- 
dorn and Takacs (1986), McKeon and Chhikara (1986), Hung 
and Fuller (1987), Battese et al. (1988), and Chhikara and Deng 
(1988). Similar situations arise when registration of pixels to 
reference plots is problematic, and reference classifications for 
individual pixels cannot be reliably obtained. Iverson et  al. (1989) 
consider this situation for AVHRR data, where remotely sensed 
estimates for Landsat scenes serve as the reference data. In 
addition, Pech et al. (1986) describe a method to calibrate areal 
estimates from mixed pixels that cannot be classified into unique 
categories. All these methods are liliear regression techniques 
rather than the probabilistic techniques of Tenenbein (1972) and 
Grassia and Sundberg (1982). Calibration based on regression 
methods can produce negative areal estimates. Lewis and Odell 
(1971), Liew (1976), and Shim (1983) propose quadratic pro- 
gramming techniques to avoid negative estimates, and van 
Roessel (USDA Forest Service, 1980) has applied this solution in 
remote sensing. Detection limits can affect rniscIassification bias 
in more complex ways. For example, an AVHRR pixel might 
require 30 percent deforestation before any deforestation can 
be detected. T l h  can cause a nonlinear relationship between 
the remotely sensed and reference areal estimates for the ref- 
erence plots, which might require nonlinear calibration esti- 
mators. Scheff6 (1973) and Brown (1982) discuss the statistical 
aspects of nonlinear calibration, but this technique has not been 
applied in remote sensing. 

All of these calibration methods correct areal estimates for 
misclassification error, despite the cause. Interpretation error is 
the most familiar cause. However, changes in land cover might 
occur between the dates that remotely sensed images and ref- 
erence data were acquired, or there might be differences in 

definitions between the remote sensing and reference classifi- 
cation systems. Calibration treats the reference data as the stan- 
dard, and calibrated areal estimates represent the acquisition 
dates definitions and protocol used for the reference data. For 
example, if the remotely sensed images were acquired in 1987 
and the reference data in 1991, then the calibrated areal esti- 
mates are an unbiased estimate of the status in 1991. If users 
require areal estimates consistent with their existing definitions 
and protocol for field surveys, but other methods are used for 
the reference data in calibration (e.g., photointerpretation of 
large-scale imagery, or "windshield surveys"), then the cali- 
brated areal estimates can be unacceptable to the user. 

All of these calibration techniques are closely related to var- 
ious multi-stage or multi-phase sampling designs, which can 
be more efficient than calibration if the sample size of reference 
plots is large. The remotely sensed data are analogous to the 
first level of a multi-level design, and the reference data are 
analogous to the second level. However, calibration methods 
have been developed that use areal estimates from all pixels in 
an image, and for multivariate and nonlinear situations; cal;.: 
bration might be more readily applied to these more qoxqpli- 
cated estimation problems than multi-level sampling Cesigns. 

CONCLUSIONS 

Some users reject areal estimates from remote sensing be- 
cause the magnitude of rnisclassification bias might be large. 
Some remote sensing specialists recommend that users ignore 
misclassification bias if classification accuracy is high. The most 
reasonable alternative might lay between these extremes. Dur- 
ing the planning stage, remote sensing specialists should antic- 
ipate the approximate magnitude of misclassification bias. If the 
anticipated magnitude is unacceptable to the user of remotely 
sensed areal estimates, then the study plan should require sta- 
tistical methods that will calibrate the final areal estimates. Re- 
liable calibration requires an adequate, representative, and timely 
sample of accurately registered reference data from the study 
area. 
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