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C l a s s i f i c a t i o n s  of remotely sensed data contain 
misclassification errors that bias areal estimates. 
Monte Carlo techniques were used to compare two 
statistical methods that correct or calibrate re- 
motely sensed areal estimates for misclassification 
bias using reference data from an error matrix. 
The inverse calibration estimator was consistently 
superior to the classical estimator using a simple 
random sample of reference plots. The effects of 
sample size of reference plots, detail of the clas- 
sification system, and classification accuracy on 
the precision of the inverse estimator are discussed. 
If reference plots are a simple random sample of 
the study area, then a total sample size of 500- 
1000 independent reference plots is recommended 
for calibration. 

INTRODUCTION 

Remote sensing is an efficient means of mapping 
vegetation, land use, or other characteristics of 
local sites. Summary statistics from these thematic 
maps estimate the proportion or area of the geo- 
graphic area in each cover category. Areal esti- 
mates are often needed for strategic planning, 
land management,  and resource assessments. Re- 
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motely sensed areal estimates are often unaccept- 
able unless they are consistent with the definitions 
and measurement  protocol used for reference 
data (Thomas, 1986; Burk et al., 1988; Poso, 
1988). Frequently, reference and remotely sensed 
classifications are available for a small sample of 
reference plots. Such reference data can be used 
to construct a contingency table or cross-tabula- 
tion table, called an "error" or "confusion" matrix 
in the remote sensing literature, to assess the 
classification accuracy of remotely sensed data 
(Card, 1982). In addition, the error matrix is an 
empirical estimate of the probabilistic association 
between remotely sensed data and reference data, 
and an error matrix can be used to correct or 
calibrate for misclassification bias in remotely 
sensed statistical estimates of cover proportions 
(Hay, 1988). Failure to correct for even low proba- 
bilities of misclassification error can bias areal 
estimates from remotely sensed data (Card, 1982; 
Chrisman, 1982; Czaplewski, 1991). 

True misclassification probabilities are un- 
known if they are estimated with a finite sample 
of reference plots. Thus, estimates of misclassifi- 
cation probabilities contain sampling errors. These 
sampling errors are propagated into errors in cali- 
brated areal estimates. As the sample size of refer- 
ence plots increases, propagated errors will de- 
crease. Merits of alternative calibration estimators 
can be affected by the sample size used to esti- 
mate misclassification probabilities. 

Brown (1982), in a key review of the multivari- 
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ate calibration literature, identifies two classes of 
statistical calibration estimators that treat mea- 
surement error: 1) classical models that predict 
the known but imperfect measurements using the 
unknown true state; and 2) inverse models that 
predict the true but unknown state using known 
but imperfect measurements. Based on many sim- 
ulation studies, neither the classical nor inverse 
estimator has been shown universally superior 
(Brown, 1982; Heldal and Spjotvoll, 1988). Much 
depends upon the specific application and the 
evaluation criteria. There have been no direct 
comparisons of alternative probabilistic estima- 
tors that calibrate for measurement errors caused 
by misclassification. 

A classical estimator for misclassification bias 
was introduced into the statistical literature by 
Grassia and Sundberg (1982), with remote sensing 
applications by Bauer et al. (1978), Maxim et al. 
(1981), Prisley and Smith (1987), and Hay (1988). 
Selen (1986), Mak (1988), and Li et al. (1991) use 
the classical calibration estimator for misclassifi- 
cation error in a double sampling scheme, where 
the reference data are considered a large subsam- 
ple of the population (Heldal and Spjotvoll, 1988). 
An inverse calibration estimator for classification 
error was introduced by Tenenbein (1972), with 
remote sensing applications by Card (1982) and 
Chrisman (1982). Czaplewski and Catts (1990) 
give examples that show how these two methods 
are applied in remote sensing. 

OBJECTIVES 

The first objective of our study was to evaluate 
two classical and inverse calibration estimators 
that use misclassifieation probabilities estimated 
from reference data that are typical of many re- 
mote sensing studies. Evaluation criteria in- 
cluded: 1) infeasibility, which gauges the fre- 
quency of numerical problems (i.e., estimates do 
not exist because of singular matrices) and inad- 
missible estimates (i.e., negative estimates of pro- 
portions); 2) bias, which is the consistent differ- 
ence between estimated proportions and their 
true values; and 3) dispersion (i.e., converse of 
precision), which can be described by the size 
of the covariance matrix for each multivariate 
estimate. The second objective was to evaluate 
the effects of classification accuracy, sample size 

of reference plots, and detail of the classification 
system on the calibration results. 

MONTE CARLO SIMULATION STUDY 

It is difficult to compare performance of different 
calibration estimators in a remote sensing study 
because exact determination of the true propor- 
tions is too expensive. Given that the true propor- 
tions are not known, one does not know which 
estimator tends to produce the most accurate 
results. Also, infeasibility, bias, and dispersion are 
expectations over a large number of replicate 
estimates, not one estimate, and numerous repli- 
cations of remote sensing studies under controlled 
conditions are not practical. Therefore, two cali- 
bration estimators were compared with a hypo- 
thetical yet realistic population, in which the true 
misclassification probabilities were known exactly 
by definition and numerous replications were in- 
expensive. The replications were obtained by 
Monte Carlo simulation, where a pseudorandom 
number generator was used to simulate replicate 
samples of reference sites from the same popula- 
tion. 

To be informative, the hypothetical popula- 
tion must have realistic properties that are often 
encountered in practice. Our simulation was 
based upon detailed remotely sensed classifica- 
tions from photointerpretation of 1:12,000 23 
cm x 23 cm color infrared stereo transparencies 
from the Piedmont and coastal plain of North 
Carolina (Catts et al., 1987; Czaplewski et al., 
1987). In this geographic area, land use practices 
and structure of the temperate forest vegetation 
are complex, fine-grained, and spatially diverse. 
Field and photointerpreted classifications were 
available for a systematic sample of 282 Forest 
Service Forest Inventory and Analysis (FIA) 
ground plots, each of which was 0.4 ha in size. 
Field data were taken from the 1982 USDA FIA 
survey of North Carolina (Sheffield and Knight, 
1986). The location of each 0.4 ha field plot was 
accurately registered to the aerial photography 
using the field notes and aerial photography. 

The land use/land cover classification system 
included 21 categories defined by FIA. This classi- 
fication system is hierarchical, and contains cate- 
gories for general land uses (agriculture, pasture, 
shrubland, urban, and forest), and 16 combina- 
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tions of broad forest management classes (planted 
pine, natural pine, oak-pine, bottomland hard- 
wood, upland hardwood) and forest size classes 
(sawtimber, poletimber, seedling/saplings, non- 
stocked). The number of categories in the classi- 
fication system is designated by k (i.e., k = 21). 

Data from these 282 field plots were used to 
construct a 21 x 21 matrix of joint classification 
probabilities (P), which contains all of the data 
necessary to construct an error matrix [see Eqs. 
(A7) and (A8)]. However, many elements of this 
matrix equaled zero because certain types of mis- 
classification errors did not occur with the 282 
sample plots. In reality, these unobserved errors 
might have a nonzero probability of occurrence; 
these types of errors might not be observed be- 
cause the sample size is too small. Therefore, 
the matrix of misclassification probabilities was 
smoothed with a Bayesian method (Fienberg and 
Holland, 1973). This produced a matrix of hypo- 
thetical misclassification probabilities that con- 
tained no probabilities equal to zero, although 
many probabilities were nearly zero. This smoothed 
probability matrix is a concise but sufficient char- 
acterization of a realistic hypothetical population, 
from which an infinite number of randomized 
samples can be drawn to simulate reference data 
for a real population. Smoothing decreased the 
overall classification accuracy in the original 
source, but yielded more realistic definitions of 
hypothetical true misclassification probabilities. 

These smoothed probabilities were treated as 
the true probabilities P in our simulation study. 
A pseudorandom number generator and the true 
joint probabilities (P) were used to generate a 
large number (s) of simulated joint probability 
matrices ilj (1 ~<j ~< s), each of which was estimated 
from a simulated sample of m reference sites, 
where m could be greater than or less than the 
282 field plots used to build the unsmoothed joint 
probability matrix. Because of sampling error, any 
one simulated probability matrix had some zero 
probabilities for specific types of misclassification 
that did not occur in the Monte Carlo sample of 
m reference sites. The sample size (m) used to 
compute each PS was varied between 50 and 2000 
reference plots. 

Each simulated joint probability matrix i~7 was 
used to estimate the vector of true proportions of 
each category with both the classical (ic)j and 
inverse (ti)j calibration estimators [Eqs. (A10) and 

(All)]. Each vector estimate was compared to the 
true vector of proportions (t), which is known 
without error in the simulation [Eq. (A4)]. The 
difference between estimated and true propor- 
tions was caused by chance differences (i.e., sam- 
piing error) between i~j and P in each iteration, 
and the difference in structure between the two 
estimators [Eqs. (A10) and (All)]. 

Since there were s simulated matrices, there 
were s Monte Carlo estimates of the true vector 
of proportions (t) in the population. Bias is defined 
as the expected difference between an estimate 
and its true value. Unbiased estimates have an 
expected difference of zero. A vector of biases (b) 
for each estimator was readily estimated using the 
true vector of proportions: 

bc = ~ [t - ([Ec)j]/s, (1) 
j=l 

b, = ~ [t - (ti)j]/s. (2) 
j = l  

Likewise, a sample covariance matrix for each 
estimator was readily computed from the Monte 
Carlo simulations: 

Qc = ~ / [ i c  - (i~)j][i~ - (ic)j]'//(s - 1), (3) 
j=l 

Q, = ~ {[t,- (t,)7][i,- (i,)j]'] I(s  - 1), (4) 
j=l 

where 

Y, £)jls, 
j = l  

if = E (ii)j / s. 
j = l  

EVALUATION CRITERIA 

We compared the two calibration estimators 
based on their infeasibility, bias, and dispersion. 
Infeasible estimates occur when f~ is singular in 
the inverse estimator [Eq. (A10)], or "i" or ilrT - 1 
is singular in the classical estimator [Eq. (All)], 
or the estimate contains negative proportions. The 
percentage of infeasible estimates in the Monte 
Carlo simulations is used as an index of infeasibil- 
ity. A scalar index of bias [Eqs. (5) and (6)] was 
taken as the sum of the absolute value of the bias 
vector from Eqs. (1) and (2): 
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bc = V,bc,, (5) 

bi = lqbil, (6) 

where 1 is a k × 1 vector of l's. Dispersion can 
be partially described by the size of the eovariance 
matrix for estimation errors, which is estimated 
by Q~ and Qi in Eqs. (3) and (4). The best estima- 
tor will have the smallest dispersion. For compara- 
tive purposes, the k 2 elements of the covariance 
matrices in Eqs. (3) and (4) were summarized to 
yield a scalar statistic: the sum of the variance 
terms on the diagonal of the covariance matrix, 
that is, the trace of the covarianee matrix. 

Evaluations based on scalar descriptors of bias 
vectors and covariance matrices assume that the 
Monte Carlo estimates are close to their true 
values, which requires an adequate number of 
Monte Carlo simulations. Therefore, simulations 
were continued until the evaluation indiees stabi- 
lized near consistent values, and the standard 
deviations of the bias indices in Eqs. (5) and (6) 
were small. The number of Monte Carlo simula- 
tions (s) varied from 20,000 to 80,000, depending 
on the number of simulated reference sites (m). 

CLASSIFICATION DETAIL 

The complexity of the classification system can 
affect sample size of reference sites used to esti- 
mate any one misclassification probability in E As 
the number of categories (k) in the classification 
system increases, the proportion of most catego- 
ries will approach zero; this can increase the 
probability of infeasible estimates, bias the esti- 
mates of joint classification probabilities, and in- 

Table 1. Descript ive Statistics for Each Level of 
Classification Detail and Accuracy 

Number of 
Classes Percent 

System (k) Kappa a Correct 

A 4 0.90 94.6 
B 4 0.65 74.9 
C 10 0.68 72.5 
D 10 0.65 69.1 
E 10 0.57 62.3 
F 14 0.59 63.1 
G 14 0.54 58.0 
H 21 0.52 55.9 

a Kappa statistic (Cohan, 1960) equals 0 for accuracy no greater 
than expected by chance and 1 for perfect accuracy. 

crease the dispersion of the estimation errors 
caused by a small sample size of reference sites. 
Therefore, the effects of different numbers of 
categories (k=4, 10, 14, 21) in the hierarchical 
classification system were explored for each esti- 
mator. The less detailed levels were formed by 
collapsing the basic classification system in vari- 
ous ways. The resulting eight classification sys- 
tems vary widely in detail and classification accu- 
racy (Table 1). 

RESULTS 

The inverse estimator was consistently superior 
to the classical estimator based on all evaluation 
criteria (infeasibility, bias, and dispersion). The 
classical estimator had a much higher percentage 
of infeasible solutions than the inverse estimator 
for all eight levels of classification detail and accu- 
racy (Table 1), as shown in Figure 1. For the 
simplest classification systems (A and B), which 
have only four categories, 25-40 % of the classical 
estimates were infeasible based on 50-100 refer- 
ence plots, whereas almost none of the inverse 
estimates were infeasible. For the more detailed 
classification systems C-E (10 categories), 30- 
80% of the classical estimates were infeasible 
based on 500 reference sites, whereas almost 
none of the inverse estimates were infeasible. 
For the most detailed classification system H (21 
categories), all of the classical estimates were 
infeasible, whereas none of the inverse estimates 
were infeasible based on 1000 or more reference 
sites. 

Both the classical and inverse calibration esti- 
mators were substantially less biased than the 
uncalibrated remotely sensed estimates (dashed 
lines in Fig. 2). However the feasible classical 
estimates were consistently more biased than the 
inverse estimates (Fig. 2). The inverse estimator 
was virtually unbiased for all levels of detail in 
the classification system and all sample sizes of 
reference sites. Bias from the classical estimator 
was greater for smaller sample sizes of plots and 
for the more detailed levels of the classification 
system. Even with sample sizes of 2000 reference 
sites, the classical estimator was biased for classi- 
fication systems C-G. (None of the estimates were 
feasible for classification system H, the most de- 
tailed system.) Even for the simplest classification 
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Figure 1. Comparison of classical and inverse estimators based on proportion of infeasible estimates for different 
levels of classification detail (Table 1) and sample sizes of reference plots. Classification systems A and B have four 
categories, systems C-E have 10 categories, systems F and G have 14 categories, and system H has 21 categories. 
The inverse estimator had a smaller percentage of infeasible solutions; in most cases, the inverse estimator was 
superior to the classical estimator, especially for smaller sample sizes of reference plots and the more detailed 
levels of classification. 

systems (A and B), which had only four categories, 
the classical estimator required sample sizes of 
200-600 reference sites to achieve unbiased esti- 
mates (Fig. 2). 

The classical estimator had consistently less 
precision and higher dispersion than the inverse 
estimator, as shown by the traces for the covari- 
ance matrices in Figure 3. For example, the classi- 
cal estimator required a sample size of 2000 refer- 
ence sites with classification systems B and C to 
obtain the same precision as the inverse estimator 
that used only 200-400 reference sites. This dis- 
parity was even greater  for the more complex 
classification systems E-G.  The two estimators 
had comparable precision only with classification 

system A, which has high accuracy and contains 
only four categories. 

Sample Size of Reference Plots 

The remote sensing practit ioner must determine 
the value of calibration for misclassification bias 
in areal estimates. If the expected bias is small 
relative to user needs, then calibration might not 
be worth the cost. Czaplewski (1991) provides 
guidance to help in this decision. If the magnitude 
of expected misclassification bias is unacceptable, 
then the practit ioner must select a reasonable 
sample size of reference plots to estimate the 
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Figure 2. Comparison of classical and inverse calibration estimators based on an index of bias [Eqs. (5) and (6)]. 
Bias with either calibration estimator was consistently less than bias with uncalibrated estimates (dashed lines). The 
inverse estimator was unbiased for all levels of classification detail and sample sizes of reference plots. The classical 
estimator was biased except for very large sample sizes or the very simple classification systems. Bias for the classi- 
cal estimator in system H is not given since there were no feasible solutions. 

misclassification probabilities, which are used for 
calibration. 

Reference plots are expensive, but an inade- 
quate sample size will produce imprecise cali- 
brated estimates. Precision increases with an in- 
crease in the sample size of reference plots 
because there is less sampling error in estimated 
misclassification probabilities, and less propaga- 
tion of these sampling errors into estimation er- 
rors for the cover proportions. This is apparent 
in Figure 3, and the same pattern occurs with 
individual categories, as shown in Figure 4; as 
sample size of reference plots increases, the co- 
efficient of variation decreases nonlinearly for 
each category. The coefficient of variation is a 

proportion equal to the standard deviation of an 
estimate divided by the estimate. The relationship 
between coefficient of variation (Ci) for category 
i and the total sample size of reference plots 
(m) is approximately linear (Fig. 4), given the 
following logarithmic transformation 

In(C,) = a, + b, In(m). (7) 

where In(m) is the natural logarithm of the num- 
ber of reference plots. The slopes of these loga- 
rithmic relationships are very similar for all cate- 
gories (Fig. 5); the principal difference among 
categories is the intercept of the logarithmic rela- 
tionship. Figure 5 suggests the intercept for any 
one category is related to the classification accu- 
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Figure 3. Comparison between classical and inverse estimators based on dispersion (trace of the Monte Carlo 
covariance matrix); as dispersion decreases, precision increases. The inverse estimator has less dispersion compared 
to the classical estimator. Dispersion of the classical estimator in System H is not given since there were no feasible 
solutions. 

racy for that category, where  accuracy is de- 
scribed by Light's conditional xi coefficient of 
agreement  (Light, 1971; Rosenfield and Fitz- 
patrick-Lins, 1986). This coefficient equals zero 
w h e n  accuracy for a category equals that expected 
by chance alone and 1 when  there is perfect  
agreement .  Categories that  are more  accurately 
classified have less propagated  error  from the 
calibration model  and require  fewer reference 
plots. The  intercepts  are also related to the re- 
motely  sensed propor t ion (Pi) of category i in the 
popula t ion (Fig. 5). For simple random samples, 
inaccurately classified or rare categories require 
relatively larger total sample sizes of reference 
sites than the more  accurately classified or com- 
mon  categories. 

Our  Monte Carlo results (Fig. 5) were  used 
to fit regression models  [Eq. (8)] that predic t  the 

intercepts  of the logarithmic relationships in Eq. 
(7) as functions of conditional accuracy (Ki) and 
proportion (Pi)  for each category i: 

ai = CO + C1Ki + C2pi. (8) 

Parameter  estimates for several versions of this 
model  are given in Table 2, depend ing  on avail- 
ability of estimates for Ki or pi. Since there  was 
little variation in slopes of these logarithmic rela- 
t ionships (Figs. 4 and 5), the mean overall slope 
(b = - 0.53) was used to predict  the slope for any 
one category i. Therefore,  the coefficient of varia- 
tion (C/) for category i in the Monte  Carlo simula- 
tions was pred ic ted  by 

In(C/) = co + C]Xi + c 2 P i  - 0.53 In(m), (9) 

where  paramete r  estimates are given in Table 2. 
W h e n  the inverse est imator is used with a 
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gory. 

simple random sample of reference sites in other 
studies, this predictor of the coefficient of varia- 
tion could be useful to anticipate the total sample 
size of reference sites required for calibration, 
assuming preliminary estimates of Ki or pi are 
available. However, it is not known how well the 

Table 2. Coefficients in Regression Models [Eq. (9)] 
Used to Predict Coefficient of Variation for Any Single 
Category Given Its Prevalence (Its Proportion in the 
Population) and the Accuracy Classified Based on 
Remotely Sensed Data ~ 

co Cl c2 nt~2 

1.83 - 6.74 0.0 0.69 
2.35 0.0 - 2.04 0.46 
2.45 - 5.47 - 1.32 0.86 

These models should only be extrapolated to other remote sensing 
studies to plan for total sample size of reference sites; they are not to 
be used to describe variance of estimation errors after reference data 
are available. If a coefficient equals zero, then the corresponding 
predictor variable is not used. 

results from our Monte Carlo study will extrapo- 
late to other studies; the relationship between 
precision and sample size might differ for other 
error matrices. By considering the marginal im- 
provement in the coefficient of variation by incre- 
mentally increasing sample size, it is possible to 
use the slope of the logarithmic relationship (b) 
and ignore the less predictable intercept (ai). If 
Cij is the coefficient of variation for category i for 
a sample size of reference plots mj, then the ratio 
of coefficients of variation for category i at two 
alternative sample sizes (mj, j = 1,2) is 

C i l _  exp(ai) exp[b ln(ml)] 

Ci2 exp(ai) exp[b In(m2)] 

= exp/b[ln(ml) - In(m2)]/. (10) 

This ratio is independent of the intercept ai and 
any parameters unique to category i; it depends 
only on the slope of the logarithmic relationship 
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given in Eq. (9) and Table 2. 

(b), which varies little among different categories 
within different classification systems (Fig. 5). For 
a simple random or systematic sample of refer- 
ence plots, the relative change in the coefficient 
of variation given a change in the total sample 
size of reference plots is approximately the same 
for all categories. 

This relationship is illustrated in Figure 6, 
which gives the percent improvement in coeffi- 
cient of variation, that is, lO0%[(Cil/Ci2)-1], 
when the total sample size of reference plots (ml) 
is increased by 100 sites (m2 -- ml + 100). For ex- 
ample, the coefficient of variation for any category 
is decreased approximately 45% when the total 
number of reference sites is increased from 100 
to 200, 16% when increased from 300 to 400, 
12% when increased from 400 to 500, and 10% 
when increased from 500 to 600 (Fig. 6). The 
improvement in coefficient of variation for all 

categories starts to reach a point of diminishing 
returns when the total sample sizes of reference 
sites becomes larger than 500 (Fig. 6), and gains 
in improving the coefficient of variation by in- 
creasing total sample sizes above 1000 are mini- 
mal (i.e., less than 5% for every additional 100 
reference sites). Therefore, we recommend that 
a total of 500-1000 independent reference sites 
be used in other studies, if a simple random 
sample of reference plots is used. 

DISCUSSION 

These results are strictly valid only for the error 
matrices used in our particular Monte Carlo simu- 
lation. It is possible that the classical estimator is 
superior to the inverse estimator for other error 
matrices, and further simulations are encouraged. 



38 Czaplewski and Catts 

t'- 
.o_ 
t~ 

. m  

> 0 
4-- EE 

r-- i~ 

• t -  
o 121 
o 
c 

ffl 

o 

r- 

o 

(3. 

r~  L L_ I 5_ I _1 I I [ __1 I t - I ~ l _ ~  . . . . .  

i - -  o~ 

~0 40 

I 

30 
I 

"0 20 ~ 

L I I I I t I I I I I J I L I I I I T - ~  - ~  

0 500 1000 1500 2000 

Total sample size of reference sites 
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However, the error matrices used in this paper 
are typical for many remote sensing studies, and 
vary widely in classification detail and accuracy. 
Therefore, future simulation studies will likely 
agree with our results. 

Emphasis has been placed on estimating pro- 
portions of a geographic area in each category of 
cover. However, estimates of area (e.g., hectares 
or acres) are more commonly needed. Estimated 
area in each category can be easily computed 
from proportion estimates by multiplying tc or [i 
total area in the study area. 

The recommended sample sizes of 500-1000 
reference plots assumes that the true probabilities 
of misclassification are constant across the entire 
study area. If there are subregions that differ in 
probability of misclassification error (e.g., differ- 

ent physiographic regions), then calibrated esti- 
mates should be stratified by these subregions, 
and there should be 500-1000 reference sites 
within each subregion. If misclassification proba- 
bilities vary between different classification pro- 
cesses (i.e., different photointerpreters, dates of 
image acquisition, or satellite scenes), then an 
error matrix should be developed for each classi- 
fication process based on 500-1000 reference 
sites. Well-known statistical methods are available 
to test for different probabilities of misclassifica- 
tion (e.g., Cohen, 1960; Congalton et al., 1983), 
but these require a large number of reference 
sites to detect differences in classification accu- 
racy. In many cases, prudent judgment of an expe- 
rienced remote sensing practitioner will be re- 
quired to assess whether or not misclassification 
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error probabilities are reasonably constant over 
a given geographic area, or between different 
classification processes. 

More precise methods for estimating total 
sample sizes might be possible using variance 
estimates for the inverse calibration model (Ten- 
enbein, 1972). However, this requires a prior 
estimate of the error matrix, which may not be 
available. It also assumes that Tenenbein's approx- 
imation for estimating the covariance matrix is 
adequate for small sample sizes. This assumption 
needs to be tested in a future study. A total of 
500-1000 reference sites is proposed until this 
recommendation is refined in future studies. 

The classical and inverse estimators are de- 
rived under the assumption that the reference 
sites are a simple random sample of the popula- 
tion, although a simple systematic sample might 
also be used (e.g., Norton-Griffiths, 1988). Sup- 
pose, however, that the reference plots are a 
stratified sample. In this case, an unbiased esti- 
mate of the joint classification probabilities cannot 
be made unless auxiliary data for the marginal 
probabilities are available. Reference data might 
be a stratified sample based on the remotely inter- 
preted classifications. This might be the case if 
the reference data are gathered after the entire 
geographic area is classified with remote sensing. 
Then the conditional probabilities [PR-1 in Eq. 
(A10)] can be estimated directly, and the inverse 
estimator can be applied without a direct estimate 
of P. Conversely, reference data might be a strat- 
ified sample based on the true classifications. This 
might be the case when existing survey plots are 
used as reference data, and their true classifica- 
tions are available independently of their remote 
interpretation. Then, direct estimates of the con- 
ditional probabilities [P'T -1 in Eq. (All)] are 
available for the classical estimator, and the classi- 
cal estimator can be applied without a direct 
estimate of P. If unbiased estimates of the marginal 
probabilities are not available, then unbiased esti- 
mates of P are not available, and the calibration 
estimators might be biased if an inappropriate 
calibration estimator is applied to a stratified sam- 
ple of reference plots. 

It has been assumed that reference sites are 
a randomized sample of the population. However, 
reference sites are often purposefully selected in 
remote sensing studies, without randomization 
techniques. Such plots are frequently convenient 

for training or labeling digital classifiers. Calibra- 
tion using these types of reference sites might be 
acceptable if nearly unbiased estimates of the 
misclassification probabilities (P) are produced. 
Brown (1982) shows that such purposeful sam- 
pling (i.e., controlled calibration) can be justified 
on Bayesian grounds. Unfortunately, it is difficult 
to verify that purposefully selected reference plots 
produce approximately unbiased estimates of P 
(Card, 1982), especially when the same plots are 
used both to build a digital classifier and estimate 
a calibration model. 

Sometimes the number of categories or their 
definition in the true classification system differs 
from those in the remotely classified system. Un- 
supervised digital classification of satellite data 
is an example, where the number of spectral 
categories is often greater than the number of 
categories in the target classification system. In 
this case, the matrix of misclassification probabili- 
ties (P) will be rectangular. It is necessary to label 
each spectral category to produce a thematic map, 
but labeling is not necessary to produce statistical 
estimates. For a rectangular error matrix, the in- 
verse estimator ti will retain the form given in Eq. 
(A10), as discussed by Tenenbein (1972), Hoch- 
berg (1977), and Card (1982); however, the classi- 
cal estimator in Eq. (All)  will not exist because 
the matrix inverse does not exist for a rectangular 
error matrix. 

One of our evaluation criteria was error dis- 
persion of the estimators, which was estimated 
with sample covariance matrices from Monte 
Carlo simulations. The objective of our study was 
to evaluate two calibration estimators, not esti- 
mate proportions in a specific study area. In prac- 
tice, only one realization of reference data is 
available, and methods other than Monte Carlo 
simulations would be needed to estimate the co- 
variance matrix for the estimation errors. Estima- 
tors for variance terms on the diagonal of the 
covariance matrix are given by Card (1982) for 
the inverse estimator, and by Maxim et al. (1981) 
for the classical estimator. Tenenbein (1972) gives 
an asymptotically unbiased estimator for the en- 
tire covariance matrix for the inverse estimator, 
while Grassia and Sundberg (1982) and Heldal and 
Spjotvoll (1988) present linear approximations of 
the covariance matrix for the classical estimator. 
These approximations are unbiased for large sam- 
ple sizes, but their bias under a small sample size 
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of reference data is not well known. Therefore, 
the objectives of our study were met with sample 
covariance matrices from the Monte Carlo simula- 
tions, which are considered more accurate for 
small sample sizes of simulated reference sites 
when the true classification probabilities are 
known. Future studies are needed to evaluate 
estimators of the covariance matrices cited above. 

It has been assumed that the reference plots 
are a small, independent sample of the population. 
If the reference data are a larger subsample of 
the remotely interpreted sites, there might be 
more efficient estimators that treat reference data 
as a double sample (e.g., Li et al., 1991). However, 
the sampling design in a double sample might 
effect the estimator. If the reference data are a 
stratified sample based on true classifications, the 
classical methods of Sel6n (1986) or Mak and Li 
(1988) would directly apply; if reference data 
are stratified on the remotely interpreted classifi- 
cation, then the inverse estimator of Tenenbein 
(1972) would applyL If the reference data are a 
simple random or systematic sample, then either 
the classical or inverse estimator could be used 
with double sampling. 

CONCLUSIONS 

The inverse calibration estimator was more pre- 
cise and less biased for areal estimates than the 
classical estimator given the conditions of our 
simulation study. These conditions are typical of 
many remote sensing studies in which a simple 
random sample of homogeneous and accurately 
registered reference plots are available. However, 
other types of reference data are also used in 
remote sensing, such as heterogeneous reference 
sites, stratified sampling, and purposefully se- 
lected reference sites. Future studies are needed 
to evaluate estimators using these other types of 
reference data. 

It is recommended that sample sizes of 500- 
1000 reference sites be used to calibrate areal 
estimates, if the reference sites are homogeneous 
and a simple random sample of the study area. 
More precise methods for determining the neces- 
sary sample size might be possible using approxi- 
mate estimators of the covariance matrix for er- 
rors propagated from the calibration process, as 
given by Tenenbein (1972) and Grassia and Sund- 

berg (1982). However, this assumes these estima- 
tors are reliable for small sample sizes. Future 
studies are needed to test this assumption. Also, 
additional work is required to recommend sample 
sizes for other types of reference data used in 
remote sensing, such as heterogeneous clusters 
of pixels. 

If areal estimates are an important product of 
a remote sensing project, then the expense of 
500-1000 unstratified, independent reference 
data plots will often be justified. However, this is 
more reference data than typical for most remote 
sensing studies. Efficiency of statistical areal cali- 
bration can be improved with a stratified sample 
of reference plots, and certain issues are discussed 
regarding the choice of the appropriate statistical 
estimators for a given stratification scheme, but 
this subject is beyond the scope of the present 
study. Efficiency might also be improved with 
larger, heterogeneous reference plots to estimate 
the misclassification error matrix. In this case, the 
inverse and classical estimator evaluated in this 
paper can be used to calibrate areal estimates; 
however, the estimators for the error covariance 
matrix given by Tenenbein (1972) and Grassia 
and Sundberg (1982) do not apply. However, this 
too is beyond the scope of tLe present study. 
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APPENDIX 

The classical and inverse calibration estimators 
for misclassification bias are derived in this sec- 
tion. Part of the following uses notation that was 
introduced into the remote sensing literature by 
Bauer et al. (1978) and Hay (1988), but there is 
no universally accepted notational convention. 

First, consider the deterministic situation in 
which a population of N sites make up a geo- 
graphic area. Each site might be a pixel, a homo- 
geneous forest stand or agricultural field, or forest 
inventory plot. Each site can be inexpensively 
but imperfectly classified into one of k mutually 
exclusive and exhaustive categories using remote 
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sensing, and independently classified without er- 
ror into its true category using expensive field 
measurements or high-resolution aerial photog- 
raphy. 

Let the (k × 1) indicator vector tl represent 
the true classification of site l, where ith element 
of tl, that is, (tl)i, has the value of 1 if the true 
classification of site I is category i; otherwise, (tl)i 
is 0. Likewise, let the (k × 1) indicator vector rl 
represent the remote classification of site I. Let t 
be a (k × 1) vector of proportions of the population 
in each category, and r be the vector of population 
proportions from remote interpretations; there- 
fore, these deterministic relationships produce by 
definition 

N 
t = ( ~ t t ) / N ,  (A1) 

l = l  

N 
r = ( ~ rt) / N. (A2) 

l = l  

Let P be a (k x k) matrix of true joint misclassi- 
fication probabilities, where the ijth element (P)ij 
equals the number of sites in the population that 
are truly type i and remotely classified as type j 
divided by the total number of sites in the popula- 
tion (N): 

N 
P = ~ tlr[/N. (A3) 

1=1 

Since r~l = 1 by definition, Eq. (A1) can be rewrit- 
ten as 

N 
t = ~]tt(r~l)/N. 

1=1 

From Eq. (A3), this is equivalent to the determin- 
istic relationship: 

t = P 1 ,  (A4) 

that is, t is a vector of marginal probabilities of P. 
For reasons that will become clear when we 

move to the stochastic case, it is necessary to 
factor the vector of remotely sensed proportions 
(r) from Eq. (A4). If P is solely estimated from a 
small sample of reference plots, an estimator 
based on Eq. (A4) would not use the bulk of the 
remotely sensed information in r. 

1 can be rewritten as the (k x 1) vector 

1 = [(-r)l l  "" " I(r)k]  ' , ( A 5 )  
[(r)l (r)kJ 

where (r)j is the jth element of r (i.e., the propor- 
tion of sites remotely interpreted as type j). Equa- 
tion (A5) is equivalent to 

1 = R -  lr, (A6) 

where R is a (k x k) diagonal matrix with vector r 
on the diagonal, that is, R = diag(r), and R-1 is 
diagonal with its jth diagonal element equal to 
1/(r)j. Combining Eqs. (A4) and (A6), 

t = (PR - l)r. (A7) 

Using the Bayes theorem, (PR-1) can be con- 
sidered a matrix of conditional probabilities where 
the ijth element is the probability that a site is 
truly type i given its remote classification is type 
j, and each column vector of (PR-1) sums to 1. 
Heldal and Spjotvoll (1988) term this a transition 
matrix in a measurement error model. In Eq. 
(A3), the true proportions (t) of categories in 
the entire population are a multivariate linear 
function of proportions of the remotely inter- 
preted categories in the entire population (r) and 
the conditional probabilities of true classifications 
given the remotely sensed classifications. 

Using r = P ' l  similar to Eq. (A4), it can be 
shown that the proportions of remotely inter- 
preted categories can be expressed as functions 
of the true proportions in the population and 
different conditional classification probabilities: 

r = (P'T- 1)t, (AS) 

where T = diag(t) and (T- 1),, = 1 / (t),. (P'T- 1) is a 
matrix of conditional probabilities (Grassia and 
Sundberg, 1982), where the ijth element is the 
probability that the remote classification is type i 
given its true classification is type j, and the 
column vectors in P'T-1 each sum to 1. 

If (P'T -1) is nonsingular, then Eq. (AS) can 
be inverted so that the unknown true proportions 
(t) in the population are a function of the known 
remotely sensed proportions (r): 

t = (P 'T-  1) - lr, (A9) 

which is structurally different than the determin- 
istic equality in Eq. (A7). The conditional proba- 
bility matrix (P'T- 1) is commonly labeled an error 
matrix in the remote sensing literature, and de- 
noted as E by Bauer et al. (1978) and Hay (1988). 

In the stochastic case, known estimates P of 
the true but unknown joint probabilities P are 
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available using a simple random or systematic 
sample of m reference sites: 

m 
P= ~tlr~/m, 

/=I  

where the randomized sample is considered as 
the first m sites for notational convenience. As 
ntoed by Maxim and Harrington (1983), P is the 
maximum likelihood estimate under certain as- 
sumptions (Kendall and Stuart, 1967) and, more 
generally, the minimum variance estimate (Bishop 
et al. 1975). Equation (A7) suggests the following 
inverse estimator of true proportions in the popu- 
lation, where estimates of classification probabili- 
ties (P) are used in place of the unknown true 
probabilities (P): 

ti = ( P R -  1)r (A10) 

with 1~ -- diag(Prl), that is, the marginal probabili- 
ties of each remotely sensed classification estimated 
solely from the reference data. This estimator was 
proposed for industrial sampling inspection by 
Tenenbein (1972), and for remote sensing by Card 
(1982) and Chrisman (1982). Tenenbein shows 
that this is an unbiased maximum likelihood esti- 
mator; the sum of proportions in ti is 1, and each 
element of ti is positive because all elements in 
~a-1 and r are positive. If there are no sampled 
reference sites that are truly category i and re- 
motely interpreted as category j, by convention 
P/j = 0, even if Pij :/: O. In this case, ti is unbiased 
unless m is small (Tenenbein, 1972). It is possible 
this estimator is infeasible if estimate 1~ is singular, 
even if the true R is nonsingular. This infeasibility 
can occur when R has a zero element on its 
diagonal because a remotely sensed category did 
not occur in a particular sample of reference sites. 

Similarly, Eq. (A9) suggests the alternative 
classical estimator using the estimate t' rather 
than its true, but unknown, value (P): 

tc = (P"i'- 1)-'r, ( a l l )  

where T = diag(P1), that is, the marginal probabili- 
ties of true classifications estimated solely from 
the reference data. This is the estimator proposed 
by Grassia and Sundberg (1982) for mechanical 
sorting machines, and by Bauer et al. (1978), 
Maxim et al. (1981), Prisley and Smith (1987), 
and Hay (1988) for remote sensing. It has also 
been employed by Barron (1977) and Greenland 
(1988) for epidemiology. This estimator is approxi- 

mately or asyptotically unbiased (Grassia and 
Sundberg, 1982). It is also a method of moments 
estimator (Maxim et al., 1981). Column vectors 
of estimated conditional probabilities in P'T- 1 are 
statistically independent (Grassia and Sundberg, 
1982). Furthermore, the vector of estimated pro- 
portions sums to 1. However, it is possible that 
some proportions in tc will be negative because 
(~,~--1)- 1 can contain negative elements (Maxim 
et al., 1981). It is also possible that (P'T- 1) - 1 does 
not exist, (i.e., P"I'-1 or ] '-1 is singular) even if 
(P'T-1) -1 does exist. For example, a diagonal 
element of t' could be zero, which causes P']'-1 
to be singular, because none of the sampled refer- 
ence sites happened to be correctly classified. 
This problem will occur most frequently when 
there are few reference sites for a particular cate- 
gory, as might be expected for a rare category in 
a simple random sample of reference sites. 
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