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RESUME 
On utilise souvent /'analyse statistique Kappa pour carac­
teriser les resultats d'une evaluation d'exactitude destinee a 
evaluer les classifications d'occupation des sols et de 
couverture terrestre obtenues a partir de donnees de telede­
tection. Cette analyse statistique permet de .comparer 
differentes conceptions d'echantillons, les algorithmes de 
classification, Jes photointerpretateurs, etc. Pour pouvoir 
faire ces comparaisons, ii est important de savoir quelle 
peut etre l'etendue de /'erreur d'estimation. On y arrive en 
construisant des intervalles de confiance autour des points 
d'estimation. La decision d'utiliser des formules de 
variance asymptotique ou des estimations de variance 
d'amor<;age pour construire des intervalles de confiance 
pour /'analyse statistique Kappa n'est pas facile. Celle 
elude avait pour objet d'aider a trouver une reponse a cette 
question. Neu/ matrices d'erreur representant trois degres 
d'exactitude (mauvaise, moyenne et bonne) des donnees TM 
du satellite Landsat consistant en 4, 8 et 16 categories de 
couverture terrestre en Caroline du Nord ant ete utilisees 
dans cette etude. Chaque matrice d'erreur a ete echantil­
lonnee, avec remplacement, a /'aide d'echantillon de 50, 
100, 150, 300 et 800 pixels pour obtenir /es estimations de 
/'analyse statistique Kappa et les estimations de variance 
d'amorr;age. Chaque matrice d'erreur d'echantillon a ete 
re-echantillonnee 500 fois pour obtenir des estimations de 
variance d'amorr;age. Laformule de variance asymptotique 
pour /'analyse statistique Kappa et la variance d'amorr;age 
ont fourni des estimations sans biais de la variance de 
l'echantillon. En general, Jes estimations de variance 
asymptotique etaient plus grandes que celles obtenues 4 
]'aide de l'amorr;age, mais la difference etait peu impor­
tante. Les intervalles de confiance bases sur Jes centiles de 
la distribution d'amorr;age ontfourni les meilleurs 95 pour 
cent de taux de couverture (92 a 96 % avec une mediane de 
95 %). Les 95 % /es plus bas de taux de couverture ont ete 
obtenu a /'aide de /'estimation de variance d'amorr;age 
(mediane de 83 %). 

SUMMARY 
The Kappa statistic is frequently used to characterize the 
results of an accuracy assessment used to evaluate land use 
and land cover classifications obtained by remotely sensed 
data. This statistic allows comparisons of alternative 
sampling designs, classification algorithms, photo­
interyreters, and so forth. In order to make these comparisons, 
it is important to know how far in error the estimate might 
reasonably be. This is accomplished by constructing 
confidence intervals around the point estimate. The decision 
to use either the asymptotic variance formulae or boot­
strapping variance estimates in constructing confidence 
intervals for the Kappa statistic is not a simple task. This 
study was designed to help answer this question. Nine error 
matrices representing three levels of accuracy (poor, average, 
pnd good) of Landsat TM Data consisting of 4, 8 and 16 
land cover types in North Carolina were used in this study. 
Each error matrix was sampled, with replacement, using 
sample sizes of 50, 100, 150, 300 and 800 pixels to obtain 
estimates of the Kappa statistic and sample variance. Each 
of the sample error matrices were resampled 500 times to 
obtain bootstrap estimates of the variance. The asjmptotic 
variance formula for the Kappa statistic and bootstrap 
variance provided unbiased estimates of the sample 
variance. In general, the asymptotic variance estimates 
were larger than those obtained using bootstrapping, even 
though the differences were not significant. Confidence 
intervals based on percentiles of the bootstrap distribution 
provided the best 95 percent coverage rates (92 to 96 
percent with a median of 95 percent). The lowest 95 percent 
coverage rates were obtained using the bootstrap variance 
estimate (median of 83 percent). 
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INTRODUCTION 

The most common index used to assess the accuracy of remotely 
sensed data is the Kappa statistic. The Kappa statistic, which 
was originally developed to measure observer agreement for 
categorical data (Cohen 1960) has received considerable 
attention in remote sensing applications (Congalton and Mead 
1983; Rosenfield and Fitzpatrick-Lins 1986; Aickin 1990; 
Congalton 1991; Stehman 1992; Fitzgerald and Lees 1994; and 
Kalkhan 1994). The Kappa statistic is defined as (Bishop et al. 
1975, p. 395-400): 
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where r is the number of rows in the error matrix x.. is the 
' II 

number of observations in row i and column i (i.e. the diagonal 
elements), X;+ and x.; are marginal totals ofrow i and column i1 

respectively, and N is the total number of observations. 
If there is perfect agreement between categories, K = 1, 

while a value of K = 0 indicates that the observed agreement 
equals chance agreement (Cohen 1960). Skidmore and- Turner 
(1989) point out that positive values of Kappa_;c~ur from 
greater than chance agreement, while negative V!:Ilues indicates 
a less than chance agreement. The lower limit ·of the Kappa 
statistic depends on the marginal distributions and is not likely 
to have practical interest (Rosenfield and Fitzpatrick-Lins 1986). 
Using criteria developed by Landis and Kock (1977), Monserud 
and Leemans (1992) suggest that a value of Kappa greater than 
,0.75 indicates very good to excellent agreement, while a value 
between 0.4 and 0.75 indicates fair to good agreement. A value 
less than or equal to 0.4 indicates poor agreement between 
classification categories. 
• The asymptotic variance of the Kappa statistic is given by 
,(Bishop et al. 1975, p.396): 
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In applying the Kappa statistic, it is assumed that one iS 
sampling from a.multinomial distribution in which each sampling 
unit is classified into a mutually exclusive category (Bishop et al. 
1975; Congalton 1991; Stehman 1992; Kalkhan 1994). With a 
large sample size, the normal approximation holds reasonably well 
in terms of constructing confidence intervals and hypothesis 
testing. With small sample sizes this may not be true. 

To overcome this potential problem associated with small 
sample sizes, one can use bootstrapping (Efron 1979) to obtain 
unbiased estimates of the sample variance. This is accomplished 
by generating B bootstrap error matrices, each consisting of N 
data values drawn with replacement from an error matrix 
consisting of N objects. For each bootstrap replication of the error 
matrix, the Kappa statistic is computed using Equation 1. The 
variance of the Kappa statistic is obtained using the empirical 
variance of the B bootstrap replication (Efron and Tibshirani 1993). 

In general, bootstrap variance estimates may provide better 
estimates of the variance than those obtained from using the 
asymptotic variance formula (Equation 2). The estimated 
variances are often used to assign approximate confidence 
intervals to a parameter of interest. If the distribution of the 
Kappa statistic is non-normal, the use of the standard normal 
distribution in constructing confidence intervals may not adjust the 
confidence interval to account for skewness in the underlying 
distribution, or other errors that can result when estimating the 
Kappa statistic (Efron and Tibshirani 1993). As an alternative, 
one could use the percentiles of the bootstrap histogram to define 
confidence intervals without having to make normal theory 
assumption. If the bootstrap distribution of the Kappa statistic 
is roughly normal, then the standard normal and percentile 
interval will generally agree. If the bootstrap distribution is 
non-normal, then the percentile interval should achieve a better 
balance in the left and right tails, since one is using more of the 
information in the bootstrap histogram than just its standard 
deviation (Efron and Tibshirani 1993). 

Previous studies aimed at evaluating the statistical properties 
of the Kappa statistic in assessing the accuracy of remotely 
sensed imagery have focused primarily on the bias of the 
statistic (Stehman 1992). Little or no attention has been given 
to the statistical properties of the variance estimator and 
accompanying confidence interval. Thus, the objective of this 
study is to evaluate the use of bootstrapping to obtain confidence 
intervals and variance estimates of the Kappa statistic in assessing 
the accuracy of remotely sensed data. 

METHODS 

Study Area 

The study area is located in the State of North Carolina. North 
Carolina was selected because of its diversity in physiographic 
regions, representing land cover conditions commonly found in 
the eastern and southern United States. Elevations range from 
sea level to over 2,000 meters. Kuchler (1985) stated that 
potential climax vegetation for most of the entire state is 
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Appalachian oak forest. Mountainous areas include forest 
species commonly found in more northern latitudes. The flat 
coastal plain includes sand ridges, bays pocosins, and maritime 
forests. Relative to other temperate forests, vegetation in North 
Carolina is very diverse. Czaplewski et al. (1987) provides a 
more complete description of the study area. 

Data 

The data used in this study were from a pilot study designed to 
evaluate the use of large permanent sample plots and Landsat 
TM data to monitor short-term land cover and land use changes 
at the state and regional level (Schreuder et al. 1986). Sample 
plots were located on a systematic grid where each node of the 
grid corresponded to the approximate center of alternate rows of 
a 7 .5 minute USGS topographic quadrangle, for a total 411 
permanent sample plots each with an area of 405 ha ( 4500 pixels). 
Sample plots were classified with respect to their land cover 
and land use using basic land cover categories (Level I) adopted 
by the Common Terminology Work Group (Powell 1981 ). 
Forest categories which represent Level II classifications were 

error matrix representing the overall accuracy of each group of 
plots. Each error matrix consisted of a series of rows and 
columns representing the cover types identified on remotely 
sensed imagery (columns) and the ground (rows). The error 
matrix provides the users with information on the accuracy of 
identifying individual cover types and both errors of commission 
and omission in the classification (Rosenfield and Fitzpatrick­
Lins 1986). Errors of commission relate to the accuracy of the 
aerial photographs while errors of omissi9n represent the accu­
racy of the remotely sensed data. The error matrices were then 
collapsed to form a set of 8x8 and 4x4 error matrices. The 
collapsed error matrices were created by combining classes 
with similar class signatures (Table 1). 

Because of the low accuracy associated with the sample data, 
we developed a third set of error matrices representing a good level 
of agreement in the cover type maps. This was accomplished by 
building up the diagonal of the individual error matrices. In build­
ing up the diagonals we reduced the cell counts of the off-diagonal 
cells associated with obvious misclassification errors such as 
grassland and pine sawtimber, while cell counts associated with 

Table 1. 

developed in association with the 
Southern Forest Inventory Analysis 
Unit to ensure the availability of perti­
nent forest wide information. Initial and reduced classification scheme used to describe the land cover and forest 

Image Analysis and Classification 

A Landsat TM scene (October 8, 1985, 
Identification number Y505061522XO) 
near Raleigh, North Carolina was 
selected for this study. The scene 
contained 35 sample plots. Sixteen 
cover types were identified using an 
unsupervised classification procedure 
available in ERDAS Software (version 
7.5, 1992) using bands TM3 (red), 
TM4 (IRl), and TM5 (IR2) (Table 1). 
Of the 35 plots, four were selected to 
represent images with a poor classifica­
tion and four were selected to represent 
an average classification. Criteria used 
in selecting the sample plots were 
based on Cramer's V (Bishop et al. 
1985, p. 386) coefficient of agreement. 
Plots selected to represent an image 
with a poor classification had a 
Cramer's V ranging from 0.059 to 
0.178, while the plots representing an 
average classification had a Cramer's V 
ranging from 0.355 to 0.460. The inter­
pretation of Cramer's V is similar to 
that of the Kappa statistic, but Cramer's 
V is not as widely used in the remote 
sensing literature. 

The sample plots representing the 
poor and average classifications were 
combined to form a 16x16 composite 

types in North Carolina. 

Initial 16 classes Reduced 8 classes 

1. Idle agriculture, crop land, and Idle agriculture, crop land, 
nonstocked forest land nonstocked forest and 

seedlings/saplings 
(1,13,14,15,16) 

2. Grassland 

3. Urban Grassland (2) 

4. Pine sawtimber Urban (3) 

5. Mixed sawtimber Pine sawtimber (4) . 

6. Pine sawtimber Mixed sawtimber ( 5) 

7. Bottom land sawtimber Oak-pine sawtimber (6) . 
8. Upland sawtimber Hardwood sawtimber (7 ,8) 

9. Pine and mixed pole timber Pole timber (9,10,11,12) 

10. Oak-pine pole timber 

11. Bottom land pole timber 

12. Doland pole timber 

13. Pine and mixed seedlini:dsaolings 

14. Oak seedlin!Usaolimzs 

15. Bottom land seedlings/saolings 

16. Upland seedlings/saplings 

Reduced 4 classes 

Nonforested, 
seedling/Saplings 
(1, 2, 13, 14, 15, 16) 

Urban (3) 

Pine and mixed 
sawtimber and pole 
timber (4,5,9) 

Oak-hardwood 
sawtimber and pole 
timber 
(6,7,8,10,l l,12) 



less obvious misclassification errors such as pine sawtimber and 
pine pole timber were left unchanged. Finally, all error matrices 
were converted to joint probability matrices for the purpose of 
sampling. This was accomplished by dividing the individual cell 
:ounts by the total number of sample plots. . 

Data Analysis 

Each of the nine composite error matrices ( 3 levels of accuracy X 

J levels of classes) were sampled n = 50, 100, 150, 300, and 
~00 times using a two-step process to approximate an equal 
Jrobability sample. First, a cover type on the remote sensing 
mage was selected with probability proportional to their 
narginal probabilities (columns). The corresponding ground 
;lassification was then selected with probability proportional to 
he conditional probability of observing a particular cover type 
~iven the remote sensing classification obtained in the first 
;tep. This was repeated n times to obtain an estimate of the 
mor matrix which was then used to obtain estimates of the 
K.appa statistic (Equation 1), its variance (Equation 2) and 95% 
;onfidence interval assuming a normal distribution. This 
Jrocess was repated 500 times for a total of 22,500 estimated 
mor matrices. 

Each of the estimated 22,500 error matrices were resampled 
B =. 500 times using a sample of size n to obtain 500 estimates 
>fthe Kappa statistic. The variance of the 500 estimates of the 
K.appa statistic became the bootstrap variance estimate of the 
Kappa statistic. The bootstrap variance estimates were used to 
;onstruct 95% confidence intervals around the estimated 
Kappa statistic, assuming a normal distribution. Bootstrap 
Jercentile intervals (0.025, 0.975) were also computed from the 
Jootstrap histogram of the Kappa statistics. 

The bias for the Kappa statistic was computed as the difference 
between the average of the 500 estimates of the Kappa statistic 
l.!;Ild their true values. A t-test was used to test the null hypothesis 
of no significant bias at the 0.05 level of significance. In testing 
this hypothesis the variance of the 500 estimates of the Kappa 
statistic (i.e. simulation variance) was used as an estimate of 
the sample variance. 

In addition to knowing whether an estimate is unbiased, it is 
desirable to know something about the distribution of the sample 
statistic. The Shapiro and Wilk's (1965) Wtest was used to test 
the null hypothesis that the Kappa statistic is normally distributed 
at the 0.05 level of significance. Randomly selected bootstrap 
distributions were also tested for normality. The selected boot­
strap distributions were compared to the sample distribution of 
the Kappa statistic using the two sample Kolmogorov-Smimov 
goodness-of-fit statistic. 

The bias associated with estimating the sample variance was 
evaluated by computing the ratio of the mean variance to the 
simulation variance. The mean variance of the asymptotic 
variance (Equation 2) and bootstrap variance were computed 
by averaging the 500 estimated variances. The ratio of the 
asymptotic variance to the bootstrap variance was also 
computed. An F-test was used to test for significant differences 
in the variance estimates at the 0.05 level of significance. 
Finally, we determined the proportion of confidence intervals 
computed using the classical variance, bootstrap variance, and 
bootstrap percentile intervals that enclosed the true Kappa. 

RESULTS AND DISCUSSION 

The nine error matrices had Kappa statistics ranging from a low 
of0.35 percent to a high of82.06 percent (Table 2). In general, 

Table2. 

4 

8 

Influence of sample size, accuracy of the remotely sensed image, and number of cover types in estimating the Kappa 

. statistic. The numbers in parenthases are the standard deviations associated with individual estimates of 

Kann a. Estimates of the Kanna statistic and standard deviations were based on 500 Monte Carlo simulations. 

Average Estimated Kappa(%) (standard deviation(%)) 

No. Level of True Sample Size 

Classes Agreement Kanoa 

:.(~l••••m• ~(} •M~•••!ml." 150 ,..1J!Q " ---~--80~0 
Poor 0.35 0.42 (9.53) 0.20* (6.77) 0.34 (5.08) 0.16* (3.66) 0.41 * (2.30) 

Average 3571% 35.38* (9.28) 35.03* (6.39) 35.23* (5.29) 35.76 (3.72) 35.76* (2.23) 

Good 82.06 81.56* (6.90) 82.02 (4.68) 82.03 (3.83) 82.25* (2.78) 81.97* (1.60) 

Poor 5.17 5.42* (7.69) 5.19 (5.34) 5.17 (4.10) 5.35* (2.42) 5.18 (1.83) 

Average 30.84 30.62* (8.00) 30.65* (5.48) 31.01 * (4.40) 30.89 (3.08) 30.81 (2.08) 

Good 77.83 77.75 (6.76) 77.77 (4.67) 77.70* (3.85) 77.89* (2.77) 77.75* (1.57) 

16 Poor 1.54 1.60 (4.24) 1.53 (2.47) 1.39* (2.38) 1.42* (1.82) 1.51 * (1.02) 

Average 20.39 20.14* (6.18) 20.53* (4.45) 20.15* (3.56) 20.31 * (2.73) 20.27* (1.57) 

Good 74.28 74.01 * (5.99) 74.43* (5.03) 74.09* (3.98) 74.35* (2.83) 74.10* (1.68) 

* The estimated Kappa differed significantly from the true Kappa based on a two-tailed t-test with 499 degrees 

of freedom at the 0.05 level. 



the sample estimates of the Kappa statistic were biased, though 
there was no consistency in the direction of this bias. There was 
also no relationship between the sample size and number of 
classes and whether an estimate was biased or not. There was 
however, a tendency for the error matrices representing a 
remote sensing image with an average and good level of accu­
racy to have a higher proportion of biased estimates than the 
error matrices representing a poor level of accuracy (Table 2). 
While these biases niay not seem large from a practical point of 
view, they can have a direct impact on the observed coverage 
rates by distorting the confidence probabilities (Cochran 1977, 
p. 12-15). In a similar study, Stehman (1992) observed little to 
no bias associated with the Kappa statistic in estimating the 
accuracy ofremote sensing images. However, Stehman (1992) 
only considered error matrices with three classes and Kappa 
statistics ranging from 45 to 68 percent. Because of the differences 
in the number of classes and the ranges in the level of accuracy, 
the results of these two studies may not be directly comparable. 

The asymptotic variance formulae (Equation 2), for the most 
part, provided unbiased estimates of the sample variance 
(Table 3). Exceptions to this occurred when the level of accuracy 
associat~d with the population error matrix had a Kappa statistic 
less than 1.6 percent. In these instances, the asymptotic variance 
formulae significantly overestimated the sample variance, 
irrespective of the sample size or number of classes associated 
with the error matrix. Tests of normality indicated that 38 out 

Table3. 

Ratio of the asymptotic variance to the simulation 
variance of the Kappa statistic. 

Sample Size 

No. Level of I 
'800 I 'too 150 300 Classes Agreement 50 

4 Poor 1.26* 1.18 1.39* 1.32 1.24 

Average 1.02 1.17 1.04 1.05 1.09 

Good 0.93# 1.00# 0.99 0.93 1.07 

8 Poor 1.08 1.06 1.18 1.16 1.10 

Average 1.00 1.06# 1.09 1.12 0.91 

Good 0.95# 1.00# 0.98 0.95 1.11 

16 Poor 1.58*# 1.61 * 1.53 1.27* 1.52 

Average 1.17 1.13 1.16 0.99 1.12 

Good 1.07 0.88 1.00 0.94 1.00# 

* The asymptotic variance differed significantly from 

the simulation variance using a two-tailed F-test 
with 499 degrees of freedom in the numerator 
and denominator at the 0.05 level. 
#The sample distribution of the Kappa statistic 
differed significantly from a normal distribution using 
the Shapiro-Wilk's (1965) W test at the 0.05 level. 

of 45 sample distributions of the Kappa statistic were normally 
distributed (Table 3). In the few cases in which the hypothesis 
of normality was rejected, the sample distributions were skewed 
to the right, and the asymptotic variance formulae tended to 
slightly underestimate the sample variance. 

The bootstrap variance estimate, in contrast, provided unbiased 
estimates of the sample variance, irrespective of the sample size, 
level of accuracy, or the number of classes associated with the 
population error matrix (Table 4). There was a general tendency of 
the bootstrap variance estimate to underestimate the sample 
variance. A few of the bootstrap distributions did not follow a 
normal distribution (Table 4). In these cases, . the bootstrap 
distributions were skewed to the left,justthe opposite of what was 
observed for the sample distributions of the Kappa statistic. 

The asymptotic variance estimates were significantly larger 
than the bootstrap variance estimate for population error matrices 
with a Kappa statistic less than 1.6 percent. In general though, the 
asymptotic variance estimates tended to be larger than those 
obtained using bootstrapping, even though these differences were 
not significant. This suggests that the bootstrap distributions have 
less variability associated with them compared to the original error 
matrices. When we compared the cumulative density function of 
the sample estimates of the ·Kappa statistic with those obtained 
from the bootstrap procedure, 41 out of 45 were significantly 
different at the 0.05 level. Comparing the individual distributions, 
we noticed that the sample distributions were slightly skewed to 

Table 4. 

Ratio of the mean bootstrap variance to the simulation . 
variance of the Kappa statistic. 

Sample Size 

No. Level of 
Classes Agreement 50 100 150 300 800 

4 Poor 0.85 0.87 1.03 0.99 0.96 

Average 0.88 0.97 0.94 0.94 0.99 

Good 0.95 1.00# 0.99 0.93 1.07 

8 Poor 0.85 0.92 1.06 1.05 1.02 

Average 0.92 1.00 1.04 1.07 0.88 

Good 0.92 1.01 0.99 0.96 1.11 

16 Poor 0.92# 1.05# 1.03 0.88 1.08 

Average 0.98# 0.99 1.02 0.89 1.00 

Good 1.09 0.89 1.00 0.94 1.00 

* The bootstrap variance differed significantly from 
the simulation variance using a two-tailed F-test with 
499 degrees of freedom in the numerator and denominator 
at the 0.05 level. 
# The bootstrap distribution of the Kappa statistic differed 
significantly from a normal distribution using the 
Shapiro-Wilk's (1965) W test at the 0.05 level. 
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Table 5. 
Ninety -five percent confidence coverage rates for the 
Kappa statistic using asymptotic variance under the 

assumption of normality. 

Sample Size 

No. Level of • 
Classes Agreement 50 100 150 300 800 

4 Poor 0.97 0.96 0.98 0.97 0.96 

Average 0.96 0.95 0.95 0.96 0.96 

Good 0.88 0.89 0.90 0.85 0.85 

8 Poor 0.95 0.95 0.98 0.96 0.95 

Average 0.94 0.96 0.96 0.97 0.94 

Good 0.94 0.95 0.94 0.94 0.96 

16 Poor 0.98 0.98 0.97 0.97 0.98 

Average 0.94 0.95 0.97 0.97 0.96 . 
Good 0.94 0.93 0.95 0.93 0.95 

the right, while the bootstrap distributions were skewed somewhat 
to the left. Also, the bootstrap distributions were flatter than the 
sample distributions which may account for the slightly smaller 
variance estimates. 

Ninety-five percent confidence coverage rates for the estimat­
ed Kappa statistic using the asymptotic variance formulae ranged 
from 88 to 96 percent (Table 6). The median coverage rate was 
95 percent. Figure lA depicts the frequency distribution of the 
coverage rates obtained using the asymptotic variance. Error 
matrices with a low level of accuracy generally had coverage 
vites larger than expected, while error matrices with a high level 

Table 6. 

Ninety-five percent confidence coverage rates for the 
Kappa statistic using bootstrap variance estimates 

under the assumption of normality. 

Sample Size 

No. Level of t 

Classes Agreement i50 100 150 300 800 
,. 

4 Poor 0.81 0.80 0.84 0.83 0.83 

Average 0.82 0.83 0.82 0.83 0.85 

Good 0.82 0.79 0.84 0.86 0.84 

8 Poor 0.84 0.83 0.84 0.86 0.83 

Average '0.85 0.84 0.86 0.83 0.85 

Good 0.82 0.83 0.83 0.87 0.85 

16 Poor 0.82 0.86 0.83 0.84 0.86 

Average 0.82 0.84 0.84 0.85 0.83 

Good 0.83 0.80 0.84 0.80 0.83 
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Figure 1. 
Frequency distribution of the 95 percent coverage rates obtained using (A) 
the asymptotic variance formulae, (B) the bootstrap variance estimate, 
and (C) the percentiles of the bootstrap distribution. 

of accuracy had coverage rates lower than expected. The larger 
than expected coverage rates observed for error matrices with a low 
level of accuracy was directly attributable to the over estimation of 
the sample variance (Table 3). Similarly, the lower than expected 
coverage rates associated with error matrices with a high level of 
accuracy was due to the tendency of the asymptotic variance 
formulae to underestimate the sample variance and the bias 
associated with the sample statistic. Both of these factors can 
result in a distortion in the observed confidence probabilities. 

In contrast, the coverage rates using th.e bootstrap variance 
estimates ranged from 80 to 87 percent, with a median coverage 
rate of 83 percent (Table 6, Figure lB). The lower than 

11111 



expected coverage rates may be due in part to the general 
tendency of the bootstrapping procedure to underestimate the 
sample variance (Table 4). There is some anecdotal evidence to 
suggest that the underestimation of the sample variance may be 
due to the sampling procedure used in obtaining the bootstrap 
sample (Schreuder 1996, personal communications). 
Alternative sampling procedures may improve the variance 
estimates. The biases associated with estimating the Kappa 
statistic also may be a contributing factor to the lower than 
expected coverage rates. 

Confidence intervals based on the percentiles of the boot­
strap distribution provided the best coverage rates (92 to 96 
percent with a median of 95 percent) of the three procedures 
evaluated in this study (Table 7, Figure lC). The percentiles of 
the bootstrap distribution obtained a better balance in the left 
and right tails since they use more information than just an 
estimate of the variability associated with the distribution. 

Table 7. 

Ninety-five percent confidence coverage rates for the 
Kappa statistic based on the percentiles of the bootstrap 

distribution. 

Sample Size 

No. Level of t .. 

Classes Agreement 50 Joo 150 300 800 

4 Poor 0.93 0.95 0.95 0.95 0.95 

Average 0.95 0.95 0.95 0.95 0.95 

Good 0.95 0.94 0.94 0.95 0.96 

8 Poor 0.95 0.94 0.93 0.96 0.95 

Average 0.94 0.96 0.93 0.95 0.95 

Good 0.93 0.96 0.93 0.96 0.95 

16 Poor 0.94 0.95 0.95 0.96 0.95 

Average 0.92 0.94 0.93 0.96 0.95 

Good 0.94 0.94 0.97 0.96 0.95 

RECOMMENDATIONS 

Based on the results of this study, we recommend the 
following for estimating the sample variance and constructing 
confidence intervals for the Kappa statistic: 

1. Use the bootstrap variance estimate to obtain unbiased 
estimates of the sample variance for purposes of hypothe­
sis testing. We do not recommend using the bootstrap 
variance estimates for constructing confidence intervals. · 

2. Use the asymptotic variance formulae for constructing 
confidence intervals assuming a normal distribution. 

3. Percentiles of the bootstrap distribution should be used 
in constructing confidence intervals for the estimated 
Kappa statistic. 
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