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Abstract. We simulated the effects of missing information on statistical distributions
of animal response that covaried with measured predictors of habitat to evaluate the utility
and performance of quantile regression for providing more useful intervals of uncertainty
in habitat relationships. These procedures were evaulated for conditions in which hetero-
geneity and hidden bias were induced by confounding with missing variables associated
with other improtant processes, a problem common in statistical modeling of ecological
phenomena. Simulations for a large (N 5 10 000) finite population representing grid lo-
cations on a landscape demonstrated various forms of hidden bias that might occur when
the effect of a measured habitat variable on some animal was confounded with the effect
of another unmeasured variable. Quantile (0 # t # 1) regression parameters for linear
models that excluded the important, unmeasured variable revealed bias relative to param-
eters from the generating model. Depending on whether interactions of the measured and
unmeasured variables were negative (interference interactions) or positive (facilitation in-
teractions) in simulations without spatial structuring, either upper (t . 0.5) or lower (t ,
0.5) quantile regression parameters were less biased than mean rate parameters. Hetero-
geneous, nonlinear response patterns occurred with correlations between the measured and
unmeasured variables. When the unmeasured variable was spatially structured, variation
in parameters across quantiles associated with heterogeneous effects of the habitat variable
was reduced by modeling the spatial trend surface as a cubic polynomial of location co-
ordinates, but substantial hidden bias remained. Sampling (n 5 20–300) simulations dem-
onstrated that regression quantile estimates and confidence intervals constructed by in-
verting weighted rank score tests provided valid coverage of these parameters. Local forms
of quantile weighting were required for obtaining correct Type I error rates and confidence
interval coverage. Quantile regression was used to estimate effects of physical habitat
resources on a bivalve (Macomona liliana) in the spatially structured landscape on a sandflat
in a New Zealand harbor. Confidence intervals around predicted 0.10 and 0.90 quantiles
were used to estimate sampling intervals containing 80% of the variation in densities in
relation to bed elevation. Spatially structured variation in bivalve counts estimated by a
cubic polynomial trend surface remained after accounting for the nonlinear effects of bed
elevation, indicating the existence of important spatially structured processes that were not
adequately represented by the measured habitat variables.
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INTRODUCTION

The relationship between an organism and its habitat
is of theoretical interest in ecology because it is fun-
damentally tied to questions about distribution and
abundance (Wiens 1989, Huston 2002). Understanding
habitat relationships also is important for natural re-
source management because environmental regulations
in the United States (e.g., National Environmental Pol-
icy Act, Fish and Wildlife Coordination Act, National
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Forest Management Act) and other countries often ne-
cessitate consideration of animal habitat requirements
in land use planning. Theoretical and management ap-
plications have led to the development of numerous
mathematical and statistical models for quantifying the
relationship between an organism and the resources
provided by its habitat (Morrison et al. 1998, Stauffer
2002). The reliability of quantitative predictions from
animal habitat models has been questioned, however,
because factors other than the resources provided by
habitat may limit populations (Rotenberry 1986,
Fausch et al. 1988, Terrell et al. 1996, Terrell and Car-
penter 1997). Typically, not all factors that limit pop-
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ulations are measured and included in habitat models,
either due to logistical constraints or because they are
unknown. As a consequence, statistical predictions of
responses to changes in habitat often lack the generality
to be considered reliable statements of outcomes likely
to occur at other times or places than those originally
sampled. This hinders both the development of general
theory related to resource selection and the utility of
models for predicting outcomes of alternative man-
agement or conservation actions.

The distribution and abundance of any species is
constrained by biophysical factors (e.g., climate, soil
productivity), habitat resources (e.g., vegetation pro-
viding food and cover), and interspecific (e.g., com-
petition and predation) and intraspecific (e.g., density-
dependent behavioral responses) biotic interactions
(Morrison 2001, Huston 2002, O’Connor 2002). A spe-
cies will be locally abundant when none of the factors
are limiting over some relevant interval of time and
space. When any single factor is limiting, the species
will be constrained to lower abundance than expected
when all factors are permissive. If the factor that is
limiting differs among sample locations and times and
is unmeasured at some sample locations, then the spe-
cies response may exhibit heterogeneous variation
across levels of the measured factors simply because
they were not limiting at all times or locations sampled
(Van Horne and Wiens 1991, Kaiser et al. 1994, Cade
et al. 1999, Huston 2002). Heterogeneity then is a log-
ical consequence of having incomplete information on
the interactions among the multiple biotic and abiotic
factors that affect growth, survival, and reproduction
of the organism. Any important factor that is not ex-
plicitly included as a parameter in a statistical model
is implicitly included as part of the error distribution.
When those unmeasured factors interact with the mea-
sured factors, the error distribution will be heteroge-
neous with respect to the variables included in the mod-
el. This creates a form of hidden bias (sensu Rosen-
baum 1991, 1995, 1999), where effects attributed to
the measured habitat variables are confounded with ef-
fects due to other unmeasured variables associated with
other processes.

Statistical distributions that are heterogenous with
respect to variables observed on some focal process
have created interpretation issues for a variety of phe-
nomena in addition to resource selection, e.g., density-
dependent competition in plants (Cade and Guo 2000),
plant productivity vs. diversity (Huston et al. 2000,
Grace 2001, Huston and McBride 2002, Schmid 2002),
resource–consumer interactions (Clark et al. 2003), and
regional vs. local community organization (Angermeier
and Winston 1998). Recently, quantile regression has
been used to estimate parameters for heterogeneous
responses to limiting factors, where rates of change
(slopes) cannot be the same for all parts of the distri-
bution by definition (Terrell et al. 1996, Cade et al.
1999, Cade and Noon 2003). Viewing resources as con-

straints on organisms rather than as correlates suggests
that changes near the maximum response better rep-
resent effects when the measured factors (e.g., habitat)
are the active limiting constraint (Kaiser et al. 1994,
Terrell et al. 1996, Thomson et al. 1996, Cade et al.
1999, Huston 2002, O’Connor 2002, Cade and Noon
2003). This is predicated on an assumption that un-
measured processes should only reduce responses rel-
ative to the focal process (Kaiser et al. 1994, Terrell
et al. 1996, Cade et al. 1999, Cade and Guo 2000).
However, other forms of interaction among measured
and unmeasured variables can generate heterogeneous
distributions, and estimated changes in the entire re-
sponse distribution should more completely character-
ize relationships in the presence of hidden bias.

Our objectives were fourfold. First, we further ex-
plored patterns of heterogeneity and hidden bias re-
vealed with quantile regression by expanding the sim-
ulation examples of Cade et al. (1999) and Huston
(2002) to include large, finite populations and addi-
tional relationships between measured and unmeasured
variables. Second, we demonstrated how effects of un-
measured limiting factors that were spatially structured
could be accounted for by incorporating spatial trend
surfaces (Borcard et al. 1992, Lichstein et al. 2002) in
quantile regression models. Third, the statistical per-
formance of quantile rank score tests were evaluated
for unweighted and weighted estimates for large, finite
populations in simulations in which unmeasured var-
iables hidden in the error term induced complex forms
of heterogeneity. Finally, we used quantile regression
to model bivalve abundance in relation to physical hab-
itat and spatial trend on a tidal sandflat in a New Zea-
land harbor, data previously analyzed by Legendre et
al. (1997). In this example application we demonstrated
approaches for selecting among candidate models using
the Akaike Information Criterion, estimating weighted
parameters and confidence intervals, and estimating
tolerance intervals for a proportion of the population.
Our ultimate objective is to encourage estimation and
interpretation of more relevant statistical intervals to
characterize the real uncertainty in modeled relation-
ships between organisms and their habitat resources.

LINEAR QUANTILE REGRESSION MODELS

Linear models y 5 b0X0 1 b1X1 1 b2X2 1 . . . 1
bpXp 1 « used with quantile regression include those
where the errors « may be independent and identically
distributed (iid) or independent but not identically dis-
tributed (inid), e.g., (g0 1 g1X1)«; X0 is a column of
ones for an intercept and X1 to Xp are continuous or
categorical indicator variables. The quantile regression
parameterization of the linear model, Qy(tzX) 5 b0(t)X0

1 b1(t)X1 1 b2(t)X2 1 . . . 1 bp(t)Xp, transfers the
effect of the error distribution « to parameters for a
family of quantiles indexed by t (0 # t # 1), where
bp(t) 5 bp 1 (t) and is the inverse of the cu-21 21F F« «

mulative distribution of the errors. If the errors are
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TABLE 1. Parameters used in quantile regression simulations for generating finite populations
of N 5 10 000 from the model y 5 u0X0 1 u1X1 1 u2X2 1 u3X1X2 1 «.

Model u0 u1 u2 u3 r(X1, X2)
X2 spatially
structured?

Additive 1.0 0.41 0.005 0.0000 0.00 no
Interference 1.0 0.41 0.000 20.0001 0.00 no
Facilitation 1.0 0.01 0.000 0.0001 0.00 no
Interference 1.0 0.41 0.000 20.0001 0.56 no
Interference 1.0 0.41 0.000 20.0001 0.92 no
Interference 1.0 0.41 0.000 20.0001 0.00 yes

Note: X1 5 uniform [0, 50]; X2 5 uniform [0, 4000] for r(X1, X2) 5 0, X2 5 1200 1 32.0X1

1 uniform [21200, 1200] for r(X1, X2) 5 0.56, X2 5 600 1 56.0X1 1 uniform [2600, 600]
for r(X1, X2) 5 0.92, or spatially structured as X2 5 2000 1 4.5LONG 1 7.5LAT 1 0.1LONG2

2 0.2LAT2 1 0.005LONG3 1 uniform (2900, 900), with LONG and LAT coordinates [250,
50]; and « was lognormal (median 5 0, s 5 0.75) or uniform [20.50, 0.50].

homogeneous (iid), then slopes are identical for all
quantiles (bp(t) 5 bp, p . 0) although the intercepts
b0(t) differ. Otherwise, if the errors are heterogeneous
(inid), then slopes for some or all quantiles may differ
for one or more independent variables. Additional tech-
nical details are in Cade et al. (1999) and Koenker and
Hallock (2001) and an extensive primer on quantile
regression is provided by Cade and Noon (2003).

Confidence intervals for parameter estimates in
quantile regression can be constructed by several pro-
cedures but commonly are based on inverting the quan-
tile rank score test because of their ease of computation
and because they were found to be little affected by
error heterogeneity (Koenker 1994). Conceptually, the
quantile rank score test can be considered a sign test
extended to any quantile and the linear model as it is
based on the signs of the residuals from a null model
with constrained parameters. Recent evaluations
(Koenker and Machado 1999, Cade 2003) suggest that
weighted versions of the quantile rank score test are
required to provide valid confidence interval coverage
for models with heterogeneous errors. Weighted quan-
tile regression models are constructed by multiplying
weights (w) by the dependent and independent vari-
ables, Qwy(tzX) 5 wb0(t)X0 1 wb1(t)X1 1 wb2(t)X2 1
. . . 1 wbp(t)Xp. Appropriate weights are proportional
to the density of the errors evaluated at a selected quan-
tile t and can be estimated by a variety of techniques
(Koenker and Machado 1999, Cade and Noon 2003).
The weighted estimates are consistent, like their un-
weighted counterparts, but have reduced sampling var-
iation.

QUANTILE REGRESSION SIMULATIONS

WITH UNMEASURED VARIABLES

Design and methods

Because the effects of important unmeasured vari-
ables are implicitly incorporated into the error term of
a statistical model, quantile regression is a useful ap-
proach for exploring hidden bias as changes in the error
distribution are revealed by changes in bp(t). To ex-
plore patterns of heterogeneity due to missing infor-

mation on some important limiting factor, we generated
large, finite populations of N 5 10 000 from a two-
variable linear model with interaction, y 5 u0X0 1 u1X1

1 u2X2 1 u3X1X2 1 «. Errors were iid lognormal to
create asymmetric or iid uniform to create symmetric
distributions. By varying the correlation between X1

and X2 and direction and size of interaction effects due
to u3 (Table 1), it was possible to simulate a range of
linear, nonlinear, homogeneous, and heterogeneous dis-
tribution patterns associated with an estimating model
that lacked an important variable. Spatial structuring
was explored by relating the unmeasured limiting fac-
tor X2 to latitude (LAT) and longitude (LONG) coor-
dinates for the center of 10 000 square blocks on a 100
3 100 grid (Table 1). We used a homogeneous cubic
polynomial spatial trend surface model (Borcard et al.
1992, Legendre et al. 1997) to yield an R2 5 0.426
with the least-squares regression estimate of the mean
spatial trend surface (Appendix A). The large, finite
population can be thought of as 10 000 100-ha blocks
occurring on a landscape of 100 3 100 km extent.
Simulation data were generated with random number
functions in S-Plus 2000 (Insightful Corporation, Seat-
tle, Washington, USA), and quantile regression models
were estimated with S-Plus scripts available in Eco-
logical Archives E080-001 or with the Blossom statis-
tical package (available online).6

The tth regression quantile of the generating model
was Qy(tzX0, X1, X2, X1X2) 5 u0(t)X0 1 u1X1 1 u2X2 1
u3X1X2, where u0(t) 5 u0 1 (t). This was a homo-21F«

scedastic linear regression model where all parameters
other than the intercept (u0) are the same for all quan-
tiles t, i.e., parallel hyperplanes (Cade et al. 1999). The
tth regression quantile of the estimating model where
the effect of the unmeasured covariate X2 was not di-
rectly estimable was Qy(tzX0, X1) 5 b0(t)X0 1 b1(t)X1.
In the estimating model both the intercept b0(t) and
slope b1(t) for the measured covariate might vary with
quantile t because the modified error term «9 5 « 1
u2X2 1 u3X1X2 included a mix of the additive random

6 ^http://www.fort.usgs/gov/products/software/blossom.
asp&
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component and a multiplicative component that was a
function of the measured covariate X1. We compared
regression quantile parameters b0(t) and b1(t) from the
estimating model with parameters u0(t) and u1 from the
generating model for the finite populations to examine
differences due to different interaction effects and cor-
relations with the unmeasured variable (X2). By using
parameters for the population of N 5 10 000 with the
estimating model, our interpretations of hidden bias
were not affected by sampling variation of estimates.

Additive, no interaction

We first simulated from an additive (u3 5 0) gen-
erating model (Table 1) to demonstrate why the het-
erogeneous constraint patterns investigated by Terrell
et al. (1996), Cade et al. (1999), and Huston (2002)
imply that there must be more than just additive effects
between the measured and unmeasured processes gen-
erating the data. When the estimating model y 5 b0X0

1 b1X1 1 «9 was used because X2 was unmeasured, all
the unexplained variation in the modified error term «9
5 « 1 u2X2 was additive. This caused differences be-
tween quantiles of the intercept parameters b0(t) in the
estimating Qy(tzX0, X1) 5 b0(t)X0 1 b1(t)X1 and gen-
erating u0(t) models but negligible differences between
the slope parameters b1(t) and u1 (Fig. 1). The esti-
mating model had homogeneous variances like the gen-
erating model with bias in intercepts and little bias in
slopes. Thus, rates of change in X1 based on sample
estimates for any quantile or the mean would be similar
in repeated random sampling. The slightly chaotic fluc-
tuation in parameter values at the highest quantiles (t
. 0.99) for this and other simulations were due to
generating the finite population as a sample from an
error distribution that assumes infinite population size.

Multiplicative interference interaction

A multiplicative interference interaction (u3 , 0.0)
generating model (Table 1) produced an increasing var-
iance pattern similar to those discussed by Terrell et
al. (1996), Thomson et al. (1996), Cade et al. (1999),
and Huston (2002). There was little bias in the intercept
b0(t) but large bias in the slope b1(t) parameter across
quantiles of the estimating model relative to the gen-
erating model parameters u0(t) and u1, respectively
(Fig. 1). Bias of b1(t) relative to u1 was less with in-
creasing quantile (t → 1). This is easy to explain by
recognizing that the modified error distribution («9 5
« 1 20.0001X1X2) was multiplicative with respect to
X1, and higher quantiles occurred when 20.0001X1X2

approached its maximum as X2 approached its mini-
mum of zero. Lower quantiles occurred when
20.0001X1X2 approached its minimum as X2 ap-
proached its maximum of 4000. The lognormal error
distribution resulted in a distribution in which b1(t) did
not converge with u1 at highest quantiles. However,
when this example was simulated with a uniform error
distribution, b1(t) converged with u1 at the highest

quantiles. The lesson is that we can never be sure of
the magnitude of bias when important variables are
unmeasured since in applications we will never know
the exact distributional form of the generating process.
However, we can be confident that estimates for upper
quantiles are less biased than those for lower quantiles
or for the mean when the assumption of interference
interactions with unmeasured variables is reasonable.

Multiplicative facilitation interaction

A multiplicative facilitation interaction (u3 . 0.0)
generating model (Table 1) yielded an increasing var-
iance pattern similar to the previous example for the
interference interaction except that now b1(t) at lower
quantiles (t → 0) were less biased relative to u1 (Fig.
1). The explanation again is that the modified error
distribution («9 5 « 1 0.0001X1X2) is multiplicative
with respect to X1, but now higher quantiles occurred
when 0.0001X1X2 approached its maximum as X2 ap-
proached its maximum of 4000. Lower quantiles oc-
curred when 0.0001X1X2 approached its minimum as
X2 approached its minimum of 0. This simulation cou-
pled with the previous one demonstrated that the type
of interaction (1 for facilitation or 2 for interference)
between the measured variables and unmeasured pro-
cesses determines whether lower or upper quantiles
provide less biased estimates for the measured effects.

Multiplicative interference interaction
and correlation

Nonlinear, increasing variance patterns were simu-
lated by a slightly more complicated interference in-
teraction model with varying degrees of correlation (r)
between the measured habitat variable X1 and the un-
measured variable X2 (Table 1). Here the obvious non-
linear response required an estimating model with a
quadratic polynomial of X1, y 5 b0X0 1 b1X1 1 b2

2X 1

1 «9 (Fig. 2). Stronger heterogeneity with less nonlin-
earity was evident for r(X1, X2) 5 0.56 and more ho-
mogeneity with stronger nonlinearity for r(X1, X2) 5
0.92. Nonlinearity occurred because the correlation
structure implied that some of the effect of X2 was
linearly related to X1, and, thus, their interaction in the
modified error term «9 5 « 1 20.0001X1X2 was partly
explained by the quadratic term . The stronger the2X 1

correlation between the measured X1 and unmeasured
X2, the more captured the interaction effect in the2X 1

modified error term «9, increasing the nonlinearity
(zb(t)z) and decreasing the heterogeneity indexed by
changes in b1(t). Depending on whether the signs of
the interaction (u3) and correlation (r) coefficients were
similar (1u3, 1r, and 2u3, 2r) or dissimilar (1u3, 2r,
and 2u3, 1r), nonlinear functions curved upwards or
downwards, respectively. The lesson is that correlation
between measured and unmeasured variables can result
in nonlinear response relationships; the stronger the
correlation the greater the nonlinearity and less het-
erogenous the response. This also suggested that some
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FIG. 1. (A) Samples (n 5 150) from the N 5 10 000 population of grid cells from the generating model y 5 u0X0 1 u1X1

1 u2X2 1 u3X1X2 1 « for additive, interference interaction (2), and facilitation interaction (1) models, with « lognormally
distributed (parameters in Table 1). Lines plotted are for selected regression quantile estimates (t ∈ {0.95, 0.90, 0.75, 0.50,
0.25, 0.10, 0.05}) when the estimating model is y 5 b0(t)X0 1 b1(t)X1 1 «9 because X2 was not measured. (B) The deviation
between b0(t) and u0(t) and (C) the deviation between b1(t) and u1(t) by quantiles for the finite population (u’s have dashed
lines, and b’s have solid lines).

surrogate variable that was strongly correlated with the
unmeasured variables might help account for some of
the variation in the modeled relationships.

Multiplicative interference interaction
and spatial correlation

The spatial coordinates of sample locations are a
potential set of surrogate variables for unmeasured pro-
cesses that are spatially structured. An interference in-
teraction model was simulated with no correlation be-
tween measured and unmeasured variables but with the

unmeasured variable related to latitudinal and longi-
tudinal coordinates (Table 1). The estimating model y
5 b0X0 1 b1X1 1 (b2X1 3 LAT) 1 (b3X1 3 LONG) 1
(b4X1 3 LAT2) 1 (b5X1 3 LONG2) 1 (b6X1 3 LONG3)
1 «9 had relatively homogeneous parameters b2(t)–
b6(t) across quantiles for the interactions of the mea-
sured habitat variable with the spatial trend surface,
consistent with the homogeneous variation in the spa-
tially structured unmeasured variable (Fig. 3). Varia-
tion in b1(t) across quantiles was evident for the mea-
sured habitat variable with less bias relative to u1 at



March 2005 791QUANTILE REGRESSION HABITAT MODELS

FIG. 2. (A) A sample (n 5 150) from the N 5 10 000
population of grid cells from the generating model y 5 u0X0

1 u1X1 1 u2X2 1 u3X1X2 1 « for interference interaction, «
lognormally distributed, and where r(X1, X2) 5 0.56 and 0.92
between measured and unmeasured variables (parameters in
Table 1). Lines plotted are for selected regression quantile
estimates when the estimating model is y 5 b0(t)X0 1 b1(t)X1

1 b2(t) 1 «9 because X2 was not measured. Panels B–D2X 1

show: (B) b0(t) and u0(t) deviating slightly for some quantiles
(t) of the finite population (u’s have dashed lines and b’s have
solid lines); (C) b1(t) and u1(t) deviating less for higher quan-
tiles and less for r(X1, X2) 5 0.92; and (D) b2(t) across quan-
tiles, with more negative estimates for r(X1, X2) 5 0.92 in-
dicating greater nonlinearity; multiply the y-axis scale num-
bers in (D) by 1022 for actual values.

FIG. 3. Parameters for the N 5 10 000 population of grid
cells from the interference interaction generating model (u’s
have dashed lines) as in Fig. 1 but with X2 spatially structured
(parameters in Table 1); and for the estimating model y 5
b0(t)X0 1 b1(t)X1 1 [b2(t)X1 3 LAT] 1 [b3(t)X1 3 LONG]
1 [b4(t)X1 3 LAT2] 1 [b5(t)X1 3 LONG2] 1 [b6(t)X1 3
LONG3] 1 «9(b’s have solid lines) used because X2 was not
measured: (A) b0(t) and u0(t) deviating slightly for some
quantiles (t); (B) b1(t) and u1(t) deviating less for higher
quantiles; (C)–(G) relatively homogeneous effects of b2 (t),
b3(t), b4(t), b5(t), and b6(t) across quantiles for the inter-
actions with the cubic polynomial spatial trend. For panels
(C–G), y-axis scale numbers must be multiplied by the factor
given in the y-axis label to obtain actual values.

higher quantiles. Notice by comparing b1(t) in Fig. 3,
where some of the effect of the unmeasured variable
was accounted for by the spatial trend, with b1(t) in
Fig. 1, where it was not, that variation and average bias
across quantiles was less for the spatial model although
bias at higher quantiles was slightly greater. Stronger
spatial structuring of the unmeasured variable (X2) pro-
duced less variation in b1(t) across quantiles and less

bias relative to u1. However, the amount of variance
explained (R2 5 0.426) with the spatial trend surface
simulated in Fig. 3 was typical of the better results
achieved in ecological investigations (e.g., Legendre
et al. 1997). The lesson is that considerable hetero-
geneity and bias in parameters associated with effects
of measured processes likely will remain even after
accounting for effects of unmeasured processes by
modeling their spatial structure with a trend surface.

PERFORMANCE OF QUANTILE RANK SCORE TESTS

FOR MODELS WITH HIDDEN BIAS

Type I error rates for quantile rank score tests com-
monly used for constructing confidence intervals for
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FIG. 4. Counts of .15-mm Macomona liliana in 0.25-m2

quadrats (n 5 200), 22–23 January 1994, by location and bed
elevation (meters above chart datum) contours on a 250 3
500 m area of sandflat at Wiroa Island, Manukau Harbor, New
Zealand (data from Legendre et al. [1997]). Counts are pro-
portional to the size of the circle. Cubic polynomial spatial
trend surfaces are for the 0.90, 0.50, and 0.10 regression
quantiles of counts. Latitude (LAT) and longitude (LONG)
were centered to mean zero. The view is from the southwest
corner of the site.

b0(t) and b1(t) were simulated for a range of sample
sizes (n 5 20, 30, 60, 90, 150, and 300) and quantiles
(t 5 {0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95,
0.99}) by repeatedly sampling from the finite popu-
lation of N 5 10 000 generated by the interference in-
teraction model (Table 1). Weighted quantile estimates
were required to maintain correct Type I error rates and
confidence interval coverage. Because the heteroge-
neity induced by the confounding between measured
variables and important unmeasured variables was not
a simple location/scale form, weights were estimated
for the selected quantiles based on a local interval
(bandwidth) of quantiles (Koenker and Machado 1999,
Cade and Noon 2003). Power to detect the homoge-
neous spatial trend surface model in Fig. 3 indicated
.80% power for a 5 0.05 was achieved for unweighted
estimates of b2(t)–b6(t) for t 5 0.05–0.90 when n $
150. Details on methods and results of simulations are
in Appendix B.

EXAMPLE APPLICATION

Methods

Legendre et al. (1997) and Legendre and Legendre
(1998:745–746) evaluated the contributions of spatial
trend, physical habitat variables, and biotic interactions
to bivalve distribution and abundance in a New Zealand
harbor. Physical habitat variables included sediment
characteristics, bed elevation, and hydrodynamic mea-
sures likely to affect larval deposition, transport of ju-
veniles, food supply, and feeding behavior. There were
many strong correlations among the physical habitat
variables considered. Biotic interactions considered
adult–juvenile interactions by adding abundance of bi-
valves in different size classes to the models. Effects
of a spatial trend surface, abundance of competitors,
and habitat conditions were partitioned by considering
nested sets of models in a linear least-squares regres-
sion (Legendre et al. 1997), following procedures of
Borcard et al. (1992). We explored relationships for
one species, Macomona liliana, using similar proce-
dures but estimated with quantile regression. We pre-
sent comprehensive analyses for the 22–23 January
1994 counts of .15-mm Macomona, adult size class,
in 0.25-m2 quadrats randomly located within 200 grid
cells on a 250 3 500 m area on the sandflat of Wiroa
Island, Manukau Harbor, New Zealand (Fig. 4). The
data used are provided in the Supplement. A condensed
summary of results for Macomona in size class 0.5–
2.5 mm are in Cade (2003).

We followed similar steps in modeling bivalve
counts as used by Legendre et al. (1997) but made
several adjustments because regression quantile esti-
mates were used to account for heterogeneity and be-
cause we had a slightly different philosophy regarding
model selection. Bivalve counts were not normalized
by taking logarithms as done by Legendre et al. (1997).
When selecting polynomial terms to include in the final

spatial trend surface model, we considered models with
all linear terms; all linear and quadratic terms; and all
linear, quadratic, and cubic terms; this resulted in com-
parisons of three spatial trend models. We did not elim-
inate any individual monomial term from the set of
linear, quadratic, or cubic polynomial terms as done by
Legendre et al. (1997).

We used R1(t) coefficients of determination (Koenker
and Machado 1999) to compare fits of different re-
gression quantile models across t 5 0.05–0.95 by in-
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crements of 0.05. However, R1(t), like R2 from least-
squares regression, cannot decrease with increasing
number of parameters and, thus, it was desirable to
have a statistic that adjusts for inclusion of additional
parameters relative to sample size. Therefore, we se-
lected among models using a small-sample-size-cor-
rected version of the Akaike Information Criterion
(AICc) developed by Hurvich and Tsai (1990) for the
0.50 regression quantile (i.e., least absolute deviation
regression) and extended to other quantiles; AICc(t) 5
2n 3 ln(SAF(t)/n) 1 2p(n/(n 2 p 2 1)), where SAF(t)
was the weighted sum of absolute deviations minimized
in estimating the tth quantile regression with p param-
eters (including one for estimating s). Appendix C de-
scribes computations for R1(t) and AICc(t) and their
justification. We computed differences (DAICc(t)) be-
tween AICc(t) for more complex models and the sim-
plest model with just a constant (b0) to facilitate com-
parisons among models in a fashion comparable to us-
ing coefficients of determination.

The modeling steps Legendre et al. (1997) and we
followed were (1) select an appropriate polynomial
spatial trend surface model for bivalve counts; (2) se-
lect an appropriate model for bivalve counts as a func-
tion of the physical environmental variables; and (3)
test whether the spatial trend surface explained a sig-
nificant fraction of additional variation given that the
physical environmental variables were already in the
model. The two steps based on abundance of compet-
itors were not required for the adult (.15 mm) Ma-
comona (Legendre et al. 1997). Legendre et al. (1997)
fit a spatial trend surface model first to determine
whether there was any spatial structuring at the scale
of the study plot associated with effects of ecological
processes. However, we also considered the spatial
trend surface as a potential surrogate for effects of
unmeasured processes to be included in models after
having accounted for effects associated with the mea-
sured variables.

Spatial trend surface

The cubic polynomial explained the greatest pro-
portion of variation in counts of adult Macomona
across t 5 0.05–0.95 and was the preferred trend sur-
face model based on R1(t) coefficients of determination
and AICc(t) (Fig. 5). Trend surfaces plotted for the
0.90, 0.50, and 0.10 quantiles had wavy variation along
the northwest to southeast axis similar to the least-
squares regression surface estimated by Legendre et al.
(1997), but the divergence of the quantile surfaces to-
wards the northwest was indicative of greater variation
in counts (Fig. 4). The regression quantile estimates
established that variation in abundance and not just
mean abundance of adult Macomona had a spatial trend
on the Wiroa sandflat. Substantially more variation was
explained for higher than lower quantiles of the trend
surface as indicated by R1(t) coefficients of determi-
nation (Fig. 5).

Physical habitat

Legendre et al. (1997) found that only two physical
habitat variables explained any of the variation in mean
counts (log transformed) of adult Macomona, bed el-
evation (in meters) and percentage of time the plot was
covered by .20 cm of water during spring tide. These
also were the only physical habitat variables that we
found explained any of the variation in quantiles of
adult Macomona. However, these two variables were
near perfectly linearly correlated (r 5 20.999) because
bed elevation has a direct, physical relation to water
depth during high tides. We therefore chose to use only
bed elevation in the physical habitat model. Legendre
et al. (1997) used a cubic polynomial of bed elevation
to model the nonlinear response of large Macomona
counts (Fig. 6). We initially considered this model too
but also examined a simpler quadratic polynomial and
compared models based on R1(t) and AICc(t). There
was very little improvement in coefficients of deter-
mination by going to the cubic compared to the qua-
dratic polynomial (Fig. 5). Differences in DAICc(t)
supported use of the cubic polynomial of bed elevation
only for 0.80–0.85 quantiles. An examination of the
cubic polynomial model of bed elevation suggested that
regression quantile fits that were better with the cubic
term were greatly influenced by the outlying minimum
elevation value of 1.95 m. Removing this influential
value and estimating quadratic and cubic polynomial
models and associated fit and model selection statistics
again indicated even less support for including the cu-
bic bed elevation term.

The nonlinear response of large Macomona to bed
elevation (Fig. 6) indicated increasing abundance at
lower and higher bed elevations and increasing vari-
ation in abundance at higher elevations (Fig. 4). Rank
score tests indicated that the joint effect of the linear
and quadratic terms differed from zero for t . 0.10 (P
, 0.05) but not for t # 0.10 (P . 0.15). Because bed
elevation was near-perfectly negatively correlated with
percentage of time the location was covered by .20
cm of water at spring flood tide, this relationship in-
dicated that higher counts of adult Macomona occurred
at locations that were flooded for shorter and longer
periods of time. This was inconsistent with the Legen-
dre et al. (1997) interpretation that adult Macomona
abundance was structured by food availability deter-
mined by the amount of time a location was exposed
to tidal flooding.

Although heterogeneity in abundance across bed el-
evation was not extreme, we constructed weighted re-
gression quantile estimates for t 5 0.05–0.95 by in-
crements of 0.05, where weights were estimated sep-
arately for each individual quantile with a variant of
the bandwidth approach used by Koenker and Machado
(1999). Details of this approach to constructing local
quantile weights are in Appendix D. Weighted esti-
mates for the quadratic polynomial terms of bed ele-
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FIG. 5. R1(t) coefficients of determination and differences in Akaike Information Criteria [DAICc(t)] for linear, quadratic,
and cubic polynomial spatial trend surfaces and for quadratic and cubic functions of bed elevation (in meters) and quadratic
function of bed elevation plus cubic spatial trend for t 5 0.05–0.95 (by increments of 0.05) regression quantiles of .15-
mm Macomona liliana counts in 0.25-m2 quadrats (n 5 200), 22–23 January 1994, on the sandflat of Wiroa Island, Manukau
Harbor, New Zealand (data from Legendre et al. [1997]). All DAICc(t) were computed by subtracting the AICc(t) for the
model with just an intercept (b0) from the AICc(t) for more complex models.

vation followed a similar pattern of changes with quan-
tiles as the unweighted estimates, although weighted
estimates smoothed over a little detail because they
were only done for 19 increments of t between 0.05
and 0.95 (Fig. 7). The 90% confidence intervals for the
weighted estimates were slightly narrower than those
for the unweighted estimates at most higher quantiles.
The overall pattern and inference for weighted esti-
mates did not differ substantially from those for un-
weighted estimates, consistent with the moderate
amount of heterogeneity in adult Macomona counts
across bed elevation (Fig. 6).

Simultaneous 80% prediction intervals on 80% of
adult Macomona densities indicated more than a dou-
bling in interval lengths from 22–44 to 27–85 per 0.25
m2 as bed elevation increased from 2.7 to 3.2 m (Fig.
6). Lower intervals that extended below zero counts
(nonsensical) for bed elevations #2.5 m and upper in-
tervals exceeding 100 for bed elevations #2.2 m were
unreliable. The wide intervals were due to fewer ob-
servations at lowest bed elevations. This band of in-

tervals was estimated by constructing simultaneous
confidence intervals for the 0.10 and 0.90 regression
quantile estimates at 25 values of bed elevation be-
tween 2.10 and 3.30 m. The simultaneous prediction
intervals emulated the Working-Hotelling simulta-
neous confidence intervals (Neter et al. 1996:234) for
intercept estimates b0(t) with the origin of bed eleva-
tion shifted to the 25 values selected for prediction.
Two-sided intervals were constructed by inverting the
weighted quantile rank score test with an a 5 0.0316
5 1 2 [prob F((3 3 F(0.80, 3, 197)), 1, 197)], using
the upper part of the confidence interval for b0(0.90)
and the lower part of the confidence interval for
b0(0.10). The interval band displayed in Fig. 6 was,
thus, a statement about the central 80% of adult Ma-
comona densities that would be expected to occur with
respect to bed elevation in 80% of repeated random
samples, i.e., a tolerance band. Slight irregularities in
the simultaneous confidence intervals should not be
overinterpreted as they were likely due to the vagaries
of interpolating between discrete probabilities associ-
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FIG. 6. Counts of .15-mm Macomona lil-
iana in 0.25-m2 quadrats (n 5 200), 22–23 Jan-
uary 1994, on the sandflat of Wiroa Island, Ma-
nukau Harbor, New Zealand, by bed elevation
(in meters). Solid lines are 0.90, 0.50, and 0.10
regression quantile estimates of Macomona
counts as a quadratic function of bed elevation.
Lines with small dots connect upper and lower
Working-Hotelling 80% simultaneous confi-
dence intervals for predicted 0.90 (upper) and
0.10 (lower) regression quantiles at 28 selected
values of bed elevation.

ated with the rank score test statistics (Cade 2003). Use
of a more stringent confidence level such as 90% re-
quired smaller individual a’s that resulted in intervals
with greater irregularities.

Physical habitat plus spatial trend

Adding the cubic polynomial spatial trend surface to
the model indicated that there was additional variation
in adult Macomona abundance that was spatially struc-
tured after accounting for effects of bed elevation (Fig.
5). Changes in DAICc(t) clearly supported the model
with bed elevation and the spatial trend surface over
the model with just bed elevation (Fig. 5). Sampling
distributions for most quantiles (0.20 , t , 0.85) in-
dicated the joint effects of the polynomial spatial co-
efficients differed from zero (rank score T, P , 0.05)
after accounting for bed elevation but did not differ
(rank score T, P . 0.10) from zero for lower (t # 0.20)
and higher (t $ 0.85) quantiles. Because bed elevation
itself was spatially structured along the northwest to
southeast axis (Fig. 4), estimated effects of bed ele-
vation after adjusting for spatial trend were attenuated,
reversed in sign, and did not differ from zero (Fig. 8).
Only unweighted estimates were used with this model,
as the previous analysis on bed elevation suggested
effects of heterogeneity were not sufficient for weight-
ed confidence intervals to differ substantially from un-
weighted ones.

The model including bed elevation and spatial trend
indicated similar wavy variation in adult Macomona
abundance from the northwest to southeast as estimated
by the spatial trend surface alone, except that some of

the variation in the northwest corner was reduced (com-
pare Figs. 4 and 8). However, the spatial trend surface
model explained nearly as much variation as the model
that included bed elevation and spatial trend (Fig. 5).
Because increases in adult Macomona abundance
above and below 2.6–2.8 m bed elevation followed the
dominant spatial trend from the northwest to southeast
(Fig. 4), the effects of bed elevation and the spatial
trend surface were partially confounded and probably
should not both be included for an interpretable model.

DISCUSSION

Our example simulations demonstrated how hetero-
geneous and nonlinear relations in habitat models can
easily arise from confounding with some important but
unmeasured processes. More complicated arguments
are not required to explain why heterogeneity and non-
linearities are so common in statistical models of an-
imal responses to their habitat resources. Although the
dimensions of the measured habitat variables (X1) and
the unmeasured limiting factors (X2) were kept to single
variables for simulation purposes, it is reasonable to
extend interpretation of these simulation results to
greater dimensions by thinking of X1 and X2 as being
the composite additive effect of more than two vari-
ables. Our simulations focused on confounding with
unmeasured variables not related to habitat resources.
It also is reasonable to extend the results and interpre-
tations to situations in which confounding occurs with
some important habitat resources that were not mea-
sured and included in the model used for estimation.
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FIG. 7. Estimates for intercept [b0(t)], linear [b1(t)], and quadratic [b2(t)] terms for regression quantiles of .15-mm
Macomona liliana counts in 0.25-m2 quadrats (n 5 200), 22–23 January 1994, on the sandflat of Wiroa Island, Manukau
Harbor, New Zealand, as a quadratic function of bed elevation (in meters) for both unweighted and weighted models. Solid
lines are step functions of parameter estimates by quantiles (t), all for unweighted estimates and for t 5 0.05–0.95 by
increments of 0.05 for weighted estimates. Dashed lines connect pointwise 90% confidence intervals based on inverting the
T rank score tests for t 5 0.05–0.95 by increments of 0.05.

The philosophy embodied in our simulations reflects
a view that most ecological relations have an appear-
ance of randomness not because they are inherently
random but because we are always estimating them
with incomplete information (Regan et al. 2002). As
long as random variation induced by missing infor-
mation is small and homogeneous, conventional re-
gression estimation procedures (e.g., least squares) may
provide useful, reasonable estimates of conditional re-

lationships. When missing information is for processes
of substantial importance to an organism, it is reason-
able to expect large, heterogeneous random variation
and estimates with hidden bias. While all organisms
are dependent on some suite of resources obtained from
their habitat, at many times and locations other factors
may actually exert more influence on organism growth,
survival, reproduction, and dispersal, causing a per-
ceived disconnection between the organism response
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FIG. 8. (A) Estimates for linear [b1(t)] and quadratic [b2(t)] terms for regression quantiles of .15-mm Macomona liliana
counts in 0.25-m2 quadrats (n 5 200), 22–23 January 1994, on the sandflat of Wiroa Island, Manukau Harbor, New Zealand,
as a quadratic function of bed elevation (in meters) after adjusting for the cubic polynomial spatial trend surface. Solid lines
are step functions of parameter estimates by quantiles (t), and dashed lines connect pointwise 90% confidence intervals based
on inverting the T rank score tests for t 5 0.05–0.95 by increments of 0.05. (B) The 0.90, 0.50, and 0.10 cubic polynomial
spatial trend surfaces after adjusting for the quadratic function of bed elevation at the mean value of 2.9 m. The view is
from the southwest.

and the requisite habitat resources. Garshelis (2000)
and Morrison (2001) both have argued for improving
our knowledge of animal habitat relations by focusing
modeling efforts on more specifically defined resources
and relating them to demographic parameters such as
survival and reproductive rates that ultimately contrib-
ute to differences in abundance. These are reasonable
suggestions. But neither a more focused definition of
what constitutes a habitat resource nor measuring al-
ternative demographic parameters will eliminate issues
of hidden bias due to confounding between measured
habitat factors and unmeasured ones associated with
other processes.

Inference procedures based on rank scores for
weighted regression quantile estimates provided valid
intervals reflecting the sampling distribution of param-
eter estimates for the measured habitat processes, but
the parameters for the estimating model clearly were
biased relative to those generating the responses. In
applications, the degree of hidden bias will be greater
or lesser for different quantiles depending on the non-

estimable interaction effects and unknown error dis-
tributions. If it is possible to rule out certain types of
interaction effects (e.g., facilitation) with unmeasured
processes, then we might profitably focus estimation
and inference procedures for quantile regression at one
end of the probability distribution (e.g., upper quan-
tiles). While interference interactions may be more
common in ecological systems, facilitation interactions
have been suggested for some processes, e.g., trans-
gressive over-yielding where plant biomass is greater
when a nitrogen-fixing legume and a C4 grass are grown
together than when either species is grown separately
(Huston and McBride 2002). Facilitation interactions
are more difficult to articulate for animal habitat re-
lationships but may exist. Deciding whether interfer-
ence or facilitation interaction is a more reasonable
assumption requires knowledge obtained from sources
other than the data being analyzed. In the absence of
such knowledge, it would appear prudent to obtain es-
timates and confidence intervals across the entire in-
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terval of quantiles that provide reliable estimates (e.g.,
t 5 0.05–0.95).

We encourage the use of prediction intervals, and
especially simultaneous prediction intervals or toler-
ance intervals, as a strong antidote to overzealous ex-
pectations that any habitat model can provide precise
predictions. Prediction and tolerance intervals provide
confidence statements related to individual or a pro-
portion of individual observational units (Vardeman
1992). These were areal plots in our simulations and
example application as in most habitat models. It is
unreasonable to expect habitat models to provide very
precise predictions for any individual area when they
exclude many other important processes, which we of-
ten barely understand or know how to measure. The
uncertainty associated with multiple unmeasured pro-
cesses will likely increase as we increase the spatial
and temporal extent of our sampling. Thus, the conun-
drum of developing useful habitat models is that gen-
erality requires extensive sampling in time and space,
but doing this almost ensures that many other unmea-
sured processes will be limiting at some locations and
times. However, this does not imply that useful pre-
dictions are impossible with habitat models, especially
for management or conservation purposes. Predictions
made by characterizing intervals of response with pro-
cedures such as those presented here are useful mea-
sures of uncertainty when we expect population re-
sponses to vary greatly across different locations (or
time) even if they have similar habitat resources. Pre-
diction and tolerance intervals provide measures of
sampling variation for individual units that actually can
be observed and on which management or conservation
actions can be implemented. Improving predictions
from habitat models requires understanding the con-
texts in which habitat models fail or succeed as pre-
dictors of population change by considering contin-
gencies across individual units of area on landscapes.

Our simulation results demonstrated that heteroge-
neity that arises due to confounding between measured
and unmeasured variables often will not be a simple
location-scale form. In this situation, weighted regres-
sion quantile estimates and rank score tests require es-
timating weights that are based on changes in a local
interval of quantiles around a specific quantile rather
than globally applied across all quantiles. We used a
minor modification of bandwidth estimation procedures
developed by Hall and Sheather (1988) as extended to
regression quantiles by Koenker and Machado (1999).
Although adequate, there clearly is room for improve-
ment in these procedures, including automating their
computation in the necessary software.

Our use of DAICc for model selection with the bi-
valve data extended Hurvich and Tsai (1990) proce-
dures for median regression (t 5 0.5) to other quantiles.
The fact that some large DAICc between models at high
and low quantiles were associated with sampling dis-
tributions of parameter estimates that did not differ

from zero was a little disconcerting. This may reflect
a fundamental difference between AICc and hypothesis
tests, the former being inductive and the latter deduc-
tive inference, or that we extended estimates and in-
ferences too far into the extreme quantiles for them to
be reliable. Machado (1993) discussed extension of the
Schwarz information criterion (SIC) to robust M esti-
mates, including median regression, for linear models.
The SIC increases more rapidly with additional param-
eters than AICc and, thus, will generally lead to selec-
tion of lower dimension models. Additional research
on application of information criteria to regression
quantile model selection is clearly warranted.

Use of cubic polynomials of location coordinates to
estimate spatial trend surfaces provided a reasonable
method for modeling larger scale spatial gradients of
responses (Legendre et al. 1997) that are of most in-
terest for models of animal response to habitat. Spatial
trend surfaces provided an indication of spatial vari-
ation in organism response that would suggest effects
of some relevant ecological processes (Legendre et al.
1997) and provided a method for accounting for some
of the variation due to unmeasured processes that were
spatially structured. Other methods for fitting flexible
quantile response surfaces to location coordinates such
as piecewise linear or cubic splines are possible and
may offer advantages in some situations (Koenker et
al. 1994, He and Ng 1999).

It is important to remember that gradients in space
offer no ecological interpretation per se (Legendre et
al. 1997). It is possible to defeat the entire purpose of
developing general habitat relationships by over-reli-
ance on modeling spatial structure. Consider the mod-
els of adult Macomona as a function of bed elevation
and spatial structure. There was more variation in adult
Macomona abundance explained by the spatial trend
surface alone than by the nonlinear bed elevation mod-
el. A parsimonious model that explained most variation
with fewest parameters would be the cubic spatial trend
surface model. Yet this model of bivalve counts based
on spatial gradients on one sandflat has little chance
of generalizing to other locations because it includes
no information on ecological processes. The cubic spa-
tial trend does suggest that spatially structured pro-
cesses are operating within the scale of the sampled
250 3 500 m area (Legendre et al. 1997). There is
greater potential for generalizing the bed elevation re-
lationship to other locations to the extent that bed el-
evation is related to hydrodynamic processes affecting
settlement, feeding, and survival of bivalves. Similarly,
models that include indicator variables allowing for
different habitat relationships for different geographic
locations (e.g., Dunham and Vinyard 1997), although
justified from a statistical standpoint, may actually de-
feat our desire to develop general habitat relationships.
Quantile regression allows contextual differences as-
sociated with different geographic locations to be ex-
pressed through different rates of change for different
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quantiles of one probability model (e.g., Dunham et al.
2002).

Although our focus in this article is on applications
and interpretations of quantile regression for estimating
animal habitat relationships, it should be apparent that
heterogeneous distributions associated with many other
ecological phenomena could benefit from similar anal-
yses. The inference tools and interpretations of linear
quantile regression have been developed sufficiently
that routine analyses are now possible. We expect that
quantile regression estimates for intervals of responses
might prove enlightening for some controversial eco-
logical debates such as whether plant productivity is a
function of diversity (Grace 1999, Huston et al. 2000,
Huston and McBride 2002, Schmid 2002).
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APPENDIX A

A figure presenting the cubic polynomial trend surface used in simulations to generate the values of X2, an unmeasured
nonhabitat variable, is available in ESA’s Electronic Data Archive: Ecological Archives E086-041-A1.

APPENDIX B

The performance of regression quantile rank score tests for models with hidden bias is available in ESA’s Electronic Data
Archive: Ecological Archives E086-041-A2.

APPENDIX C

Model selection criteria are available in ESA’s Electronic Data Archive: Ecological Archives E086-041-A3.

APPENDIX D

The method used for estimating local quantile weights is available in ESA’s Electronic Data Archive: Ecological Archives
E086-041-A4.

SUPPLEMENT

Bivalve data (Legendre et al. 1997) used for example application are available in ESA’s Electronic Data Archive: Ecological
Archives E086-041-S1.


