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Abstract. Geospatial species sample data (e.g., records with location information from
natural history museums or annual surveys) are rarely collected optimally, yet are increas-
ingly used for decisions concerning our biological heritage. Using computer simulations,
we examined factors that could affect the performance of autologistic regression (ALR)
models that predict species occurrence based on environmental variables and spatially
correlated presence/absence data. We used a factorial experiment design to examine the
effects of survey design, spatial contiguity, and species detection probability and applied
the results of ten replications of each factorial combination to an ALR model. We used
additional simulations to assess the effects of sample size and environmental data error on
model performance. Predicted distribution maps were compared to simulated distribution
maps, considered “‘truth,” and evaluated using several metrics: omission and commission
error counts, residual sums of squares (RSS), and areas under receiver operating charac-
teristic curves (AUC). Generally, model performance was better using random and stratified
survey designs than when using other designs. Adaptive survey designs were an exception
to this generalization under the omission error performance criterion. Surveys using rect-
angular quadrats, designed to emulate roadside surveys, resulted in models with better
performance than those using square quadrats (using AUC, RSS, and omission error metrics)
and were most similar in performance to a systematic quadrat design. Larger detection
probabilities, larger sample sizes, contiguous distributions, and fewer environmental data
errors generally improved model performance. Results suggest that spatially biased sample
data, e.g., data collected along roads, could result in model performance near that of
systematic quadrat designs even in the presence of potentially confounding factors such as
contiguity of distributions, detection probability, sample size, and environmental data error.
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INTRODUCTION

Species distribution data are useful for population
monitoring (Shaffer et al. 1998), biodiversity mapping
(Bojorquez-Tapia et al. 1995), and conservation man-
agement (Corsi et al. 1999). Suitable habitats have been
described for only a small percentage of species (Gar-
rison et al. 2000); consequently, overlays of geospatial
species sample data (e.g., records with location infor-
mation from museum collections or spatially extensive
annual surveys; henceforth sample data) with environ-
mental variables (e.g., elevation, vegetation types, land
use) are often used to determine wildlife-habitat rela-
tionships and predict distributions (Stoms et al. 1992,
Anderson et al. 2003). As pressures on our biological
heritage increase the need for quick decisions, mod-
eling procedures often rely mostly or exclusively on
existing data and regularly ignore error estimates. Time
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and money considerations, increased accessibility to
sample data (Edwards et al. 2000) and the devel opment
of various modeling approaches (e.g., Stockwell and
Noble 1992, Augustin et al. 1996, Pearce and Ferrier
2000, Hirzel et al. 2002) make distribution estimates
with extant sample data appealing and easy. When the
data used for modeling are less than optimal, which is
often the case, inherent data errors or biases can man-
ifest and negatively affect predictions (Veregin 1989).
Many of these modeling approaches deduce wildlife-
habitat relationships from similar databases and are,
therefore, each exposed to similar data quality issues.

Use of existing data is often our best option for ad-
dressing urgent issues, yet we know little about the
effects of common biases. For example, few studies
have investigated model performance (e.g., thebiasand
precision of a prediction) as a function of sample data
quantity, quality, or spatial configuration. Hirzel et al.
(2001) and Stockwell and Peterson (2002) have shown
that larger sample sizes lead to greater accuracy. Also,
Hirzel and Guisan (2002) reported differences in pre-
diction accuracy resulting from various ‘‘ optimal’’ sur-
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vey designs, but did not evaluate effectsfrom ‘* biased”
survey designs. Kadmon et al. (2004) found that near-
road surveying biases had little effect on prediction
accuracy when a bioclimatic model was used.

Accessibility has long been an important consider-
ation when field surveys are conducted (Funk and Rich-
ardson 2002, Reddy and Déavalos 2003, Kadmon et al.
2004). For example, roads provide vantage points from
which annual surveys such as the North American
Breeding Bird Survey are conducted; however, this
nonrandom design creates obvious difficulties with re-
spect to inference about the population in question.
Roadside habitat can differ from the habitat compo-
sition of surrounding areas (Bart et al. 1995, Keller and
Scallan 1999) and some analyses are limited when sam-
ple data are concentrated along roads or are near ac-
cessible sites (e.g., Bojorquez-Tapia et al. 1995).

Additional modeling factors could confound the per-
formance of models that predict species distributions.
First, the spatial contiguity of a species geographic
range (a measure of whether the distribution is con-
nected throughout or broken into disjunct units) could
interact with a survey design to affect model perfor-
mance. Second, surveys can incorrectly identify a spe-
cies as present that is actually absent (false presence)
or fail to detect a species that is actually present (false
absence). Furthermore, because absence data (i.e., sur-
vey conducted but species not detected) are often not
available, false absences could also occur when geo-
graphic areas without confirmation of species presence
are treated as ‘‘absences” (see Corsi et al. 1999, An-
derson et al. 2003). In either case, the prevalence of
false absence or false presence records will affect em-
pirical attempts to predict distributions based on en-
vironmental variables (Tyre et al. 2003). Third, mapped
environmental variables from which habitat affinities
are derived contain errors (Janssen and van der Wel
1994). It is important to understand how and to what
degree these factors affect model performance because
as Dean et al. (1997) found, overlaying predicted spe-
cies distributions with as little as 5% error could con-
siderably alter the estimated distribution of species
richness.

Our objective was to examine how survey design,
spatial contiguity, detection probability, sample size,
and error in environmental data affect the performance
of models predicting a species distribution using au-
tologistic regression (ALR) with covariates (Augustin
et al. 1996). The ALR model extends basic logistic
regression with an extra covariate (i.e., degree of spa-
tial autocorrelation) used to model responses, in this
case agrid of observed binary responses. We used com-
puter simulations, which allow testing of numerous sce-
narios without complications from natural variation, to
evaluate these rel ationships and test our hypothesisthat
spatially biased survey designs result in models that
perform more poorly than do unbiased survey designs.
The outcomes from these experiments will provide in-
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sights on how various survey designs perform under
various ecological and modeling circumstances.

METHODS

A flow chart and general overview of our methods
are available in Appendix A. Data and simulation pro-
grams are available in the Supplement.

Environmental variables

We acquired elevation (DEM) and national land-cov-
er (NLC) raster data for a 2.25-km? region of the San
Andres Mountains of New Mexico from the U.S. Geo-
logical Survey and the New Mexico Resource Geo-
graphic Information System Program, respectively. The
specific region was selected to reduce computer sim-
ulation time and contained 2500 grid cells, (50 X 50
cells), and relatively few land-cover types, (evergreen
forest, shrubland, and grasslands).

Species distribution maps

We generated three hypothetical “‘true’” species dis-
tribution maps from the environmental variables using
ArcView 3.2a (Environmental Systems Research In-
stitute, Redlands, California, USA). The distributions
covered 10% of the study area (250 cells) and were
created by devel oping environmental data affinitiesthat
associated a defined elevation range with a single land-
cover type. Distributions were comprised of one, three,
or six patches that defined the high, moderate, or low
spatial contiguity treatments, respectively (Fig. 1).

Survey designs

We surveyed the distribution maps with replacement
to emulate actual field sites that have received multiple
surveys over time. Therefore, survey designs applied
equal amounts of effort, but did not necessarily result
in equal numbers of sample data. We compared six
survey designs that included random, stratified, adap-
tive, and three quadrat designs: systematic, rectangular,
and square. In the stratified design, surveys were equal -
ly divided and randomly located amongst the three land
cover types.

Under an adaptive design, a design primarily used
to survey rare and clumped distributions (see Thomp-
son 1990), the study area was randomly surveyed, with
replacement, until a surveyed cell resulted in a pres-
ence. At this point, the eight adjacent cells were sur-
veyed, without replacement, until no presences oc-
curred in any adjacent cell. Finally, all surveyed sites
were replaced and the procedure returned to the first
step (random selection of survey cell).

Three designs (systematic, rectangular, and square)
used quadrats of 25000 m? and 20 samples were ran-
domly drawn from within each quadrat. To increase the
probability of surveying cells at the edge of the study
area, quadrats were permitted to overlay the study area
boundary, resulting in partial quadrats. For the system-
atic design, a random location within a 354 X 354 m



556

GORDON C. REESE ET AL.

Ecological Applications
Vol. 15, No. 2

Fic.1. Hypothetical speciesdistribution (black) maps, occupying 250 of 2500 cells, created by defining habitat associations
based on national land cover and elevation data. The three levels of spatial contiguity with six (leftmost panel), three (center
panel), or one (rightmost panel) species distribution patches correspond to low, moderate, and high contiguity. Thedistribution
with low spatial contiguity was defined as grassland from 1810—1862 m, the distribution with moderate spatial contiguity
was defined as evergreen forest from 1946—-2020 m, and the distribution with high spatial contiguity was defined as evergreen

forest from 1967—-2064 m.

area in the lower left corner of the study area was
selected as the center of the first quadrat. Subsequent
quadrats were then spaced equidistantly (354 m) in the
horizontal and vertical directions. This placement re-
sulted in 16, 20, or 25 quadrats per simulation, de-
pending on whether the first quadrat overlapped 0, 1,
or 2 study area edges, respectively. The rectangular and
square quadrat designs used at least 18 randomly lo-
cated, potentially overlapping, rectangular (50 X 500
m) or square (approximately 158 X 158 m) quadrats.
If fewer than 360 samples were drawn from the 18
quadrats (due to quadrat areas that partially fell outside
the study extent), additional quadrats were used. Rect-
angular quadrats were designed to mimic roadside sur-
veys. We randomly oriented each rectangular quadrat
between 0° and 360° and found numerous data dimen-
sions within an unpublished U.S. Forest Service ver-
tebrate database and, therefore, arbitrarily selected the
1:10 width to length ratio (see Appendix B for ex-
amples).

Simulation process

We also examined the relationship between survey
design and model performance when the potentially
confounding factors (spatial contiguity, detection prob-
ability, sample size, and environmental error) were var-
ied. For each combination of survey design (six), spa-
tial contiguity (three), and detection probability (three;
p = 0.5; 0.75; or 1), we simulated 10 independent
replications. Surveys resulted in presences only when
the surveyed grid cell was part of the distribution and
only when a computer-generated uniform (0, 1) variate
was less than or equal to p; an absence (in this case,
a false absence) occurred in these cells if the uniform
variate was greater than p. A cell surveyed as a pres-
ence was permanently recorded; however, false ab-
sences cells were changed if they were resurveyed and
then resulted in a presence. An absence occurred wher-
ever the surveyed cell was not part of the distribution.

We did not test effects from false presences, consid-
ering these to be much less common an occurrence than
false absences.

We also examined effects from sample size and en-
vironmental data error. To test sample size effects we
doubled the number of samples (720) and used only
the distribution map of moderate spatial contiguity and
p = 0.75. The effects of environmental data error on
model performance were assessed by introducing clas-
sification error to the NLC data and measurement error
to the DEM. Following Dean et al. (1997), we tested
error rates of 5% and 20% and additionally tested an
extreme case where 50% of the cells contained error.
In addition to error rate, we examined how the location
of error (randomly or selectively placed) affects model
performance. Both random and selective error maps
were created from the NLC data at each level of error.
For the random error map, randomly selected cellswere
reclassified and for the selective error map only land-
cover class edges were reclassified, i.e., error predom-
inated in areas of transition between adjacent land-
cover classes (see Pathirana 1999). Additionally, we
assumed a positive relationship between the amount of
classification error and the buffer area around cells that
define land-cover class edges. For 5% error, the buffer
area included only cells adjacent in the cardinal direc-
tions, diagonals were added to the buffer areafor tests
of 20% error, and an additional one-cell separation in
the cardinal directions was added to the buffer areafor
use with 50% error. For both error location types, se-
lected cells were changed to the land-cover class of the
nearest neighbor of a different class.

We introduced error only to randomly selected cells
in the DEM because we expected that selective error
(i.e., larger probability of error near some geographic
feature) is less likely in a continuous variable such as
elevation. Elevation values were changed to the mean
of the surrounding 3 X 3 neighborhood, resulting in
measurement error ranging from —11.0 to 12.3 m. The
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sample data that resulted from surveying the distri-
bution map with moderate spatial contiguity with p =
0.75 (360 samples) were combined with the environ-
mental data containing error to generate new ALR pre-
dictions.

Autologistic regression model

Augustin et al. (1996) developed an ALR model to
predict a species distribution by modifying logistic re-
gression to model spatial autocorrelation in a grid of
binary responses (e.g., presence/absence data) while
continuing to model associations with grids of covar-
iates (e.g., environmental data). We used a modified
ALR approach (see Hoeting et al. 2000; G. S. Young
and J. A. Hoeting, program Autol ogit.cc, available on-
line)> with Bayesian parameter estimation.

ALR isalogistic regression model that incorporates
an additional term to account for clustering of species
occurrences over the landscape. The ALR model es-
timates the presence/absence of a species across a grid
of cells according to the model

Pr(x, = 1|X—i- 0,z,pB)

_explO + 0,2, + L+ 0,7, + BS()]
1+ exp[6, + 6,2, + L + 6,z, + Bs(x)]

where the probability that site i is occupied (Pr[x, =
1]) is conditioned on the occupancy pattern in some
neighborhood of sitei (x_,), the estimated parameters
(00, - . . ,0,) reflect the effect of the p covariates for site
i (Zy,...,2,) onoccupancy at site i, and the estimated
parameter (B) reflects the effect of the spatial covariate
S(x;) on site occupancy. The spatial covariate, s(x), is
defined as the total number of cells where a species
was detected in the eight cells that surround site i.

In the Bayesian modeling paradigm, the true pres-
ence/absence values over the entire region of interest
are considered to be parameters to be estimated based
on some observed data, which are observed for only a
portion of the region of interest. Each survey repli-
cation produced four observed data sets: (1) an indi-
cator for whether a cell was surveyed, (2) an indicator
for whether a surveyed cell resulted in the detection of
a species (together, these two variabl es define presence/
absence sample data), and the environmental variables
(3) elevation and (4) land-cover type. These results
were used to parameterize an ALR model to predict
probabilities of species occurrence in cells not sur-
veyed. Parameter estimation was carried out using
Gibbs sampling (further details are listed in the ap-
pendices and supplement). Hoeting et al. (2000) pro-
vide additional details on the model and the method of
estimation.

Asimplemented here, the model assumes perfect de-
tection; however, to mimic real sample data we chose
to violate this assumption, thus some observed data

5 (www.stat.col ostate.edu/~jah/software/)
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were generated using a detection probability less than
one. Additional model assumptions were met with the
simulated design of the study, e.g., responses were in-
dependent of the success of surveying at other locations
and territory size of our hypothetical species was set
to be equivalent to the area of one grid cell (see Cressie
1993:section 6.4).

Performance assessment

We used several metrics to evaluate the performance
of predicted distribution maps. We compared the true
presence/absence to the predicted probability of pres-
ence for each grid cell and generally report the mean
of our performance metrics over the 10 replications for
each factorial combination. However, when we pooled
our results across survey designs we report medians as
ameasure of central tendency because the distributions
of performance metrics were skewed (Zar 1996:24).
The number of grid cells for the map and the percent
of cells occupied never changes, so we report cell
counts of omission (species truly present but predicted
to be absent) and commission (species not present but
predicted to be present) error using the 0.5 threshold
commonly used to differentiate a predicted presence
from a predicted absence (Fielding and Bell 1997).
Different thresholds would change cell counts (e.g.,
decreasing the threshold would tend to reduce omission
error and increase commission error); therefore, two
threshold independent metrics, residual sum of squares
(RSS) and area under receiver operating characteristic
curves (AUC), were also computed (see Fielding and
Bell 1997, Pearce and Ferrier 2000).

RSS is computed as

1 10 2500
RSS = = > > (% — X)?
103 =
where &; is the predicted value for cell i in replication
j and X is the true presence (or absence) at cell i. Small-
er RSS values indicate better performing models.

To investigate the discrimination of each model pre-
diction we generated receiver operating characteristic
curves. A receiver operating characteristic curveisone
where the true-presence fraction is plotted against the
false-presence fraction for a sequence of thresholds of
predicted probability of presence. We used 0.01 incre-
ments of the threshold between and including 0 and 1
and used the trapezoidal rule to calculate the area under
the curve (AUC; Pearce and Ferrier 2000). Larger
AUCs indicate better performance, i.e., better discrim-
ination.

REsULTS

Model performance was dependent on survey design
and varied between metrics (Table 1). Generally (av-
eraged across all factors), predictions made from ran-
dom and stratified sample data were better than those
from quadrat designs (systematic, square, and rectan-
gular), and were better than adaptive survey designs
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Performance, based on four metrics, of predicting a simulated species distribution

map using an autologistic regression model, as a function of survey design.

Model performance metric

Survey Average

design AUC RSS Omission Commission rank
Random 0.96 (1) 110 (1) 115 (2) 33(2) 1.5
Stratified 0.96 (1) 112 (2) 119 (3) 32 (1) 1.75
Adaptive 0.95 (3) 259 (6) 53 (1) 307 (6) 4
Systematic 0.91 (4) 152 (3) 145 (4) 59 (4) 3.75
Rectangul ar 0.90 (5) 158 (4) 150 (5) 57 (3) 4.25
Square 0.85 (6) 187 (5) 161 (6) 83 (5) 55

Notes: The means by survey design, across the factors spatial contiguity level and detection
probability, are reported. The rank of each performance metric is given parenthetically. The
mean rank is estimated within each survey design. Survey design indicates the method used
to generate presence/absence data from a known distribution map. Discrimination waseval uated
with the area under receiver operating characteristic curves (AUC), and larger values correspond
to better discrimination. Smaller residual sums of squares (RSS) indicate better performing
models. Omission and commission errors were cal culated with a 0.5 threshold, and the numbers

of incorrectly predicted grid cells are reported.

by all measures except omission error. Although adap-
tive survey designs had the smallest number of omis-
sion errors, they produced the greatest RSS values and
the largest number of commission errors. Rectangular
quadrat designs produced models that performed better
than square quadrat designs and only slightly worse
than systematic quadrat designs. These are general
trends and exceptions can be seen when comparing
among the individual survey designs within each of the
potentially confounding factors (spatial contiguity, de-
tection probability, sample size, and environmental er-
ror; Figs. 2-5).

Using the median across survey designs, prediction
performance was positively related to level of conti-
guity in the distribution maps. This suggested that maps
with high spatial contiguity generally were predicted
better than were maps with low contiguity. However,
the relationship between contiguity and prediction per-
formance was not consistent. We observed numerous
deviations from a monotonic increase in performance
with increasing levels of contiguity. Notably, the adap-
tive design had the poorest performance for the high
contiguity maps using RSS and commission perfor-
mance measures (Fig. 2b, d) and the systematic, rect-
angular, and square designs performed least well under
moderate distributional contiguity (Fig. 2a, c).

When detection probability was varied, omission and
commission errors showed a consistent reciprocal re-
lationship; for each increase in p, omissions decreased
and commissions increased (Fig. 3c, d). AUC and p
were positively related for all survey designs except
systematic which showed lower performance for p =
0.75 (Fig. 3a). Under RSS, most designs (random, strat-
ified, systematic, and rectangular) showed improved
performance with larger detection probabilities; adap-
tive and square designs performed worst when species,
if present, were always detected (Fig. 3b).

Larger sample sizes almost always yielded better
performing predictions of occurrence regardless of the
survey design used (Fig. 4). The exceptions to this

pattern were restricted to two designs and two perfor-
mance metrics. Prediction performance was slightly
worse (RSS) with square quadrats and commission er-
rors increased with square and rectangular designs at
the doubled sample size (Fig. 4b, d). Also of note,
increasing the sample size greatly improved predictions
based on RSS and commission error under the adaptive
survey design (Fig. 4b, d).

Introduction of covariate error, either randomly or
selectively, was characterized by an inverse relation-
ship between prediction performance and level of en-
vironmental error (Fig. 5). The individual survey de-
signs generally yielded predictions that performed
more poorly as the amount of covariate error increased.
There were exceptions for all survey designs except
the rectangular where models performed slightly better
under a 5% error level than 0% error level (e.g., Fig.
5a, b, d, f, g, h). Random and stratified designs yielded
the most robust predictions (smallest absolute change
between 0% and 50% error) for all but the omission
error criterion. The differences in effects on model per-
formance were generally small when comparing selec-
tively to randomly located error.

DiscussioN

We found that the performance of models predicting
species distributions predicted with ALR is dependent
on the design used to collect the sample data and the
measure used to evaluate model performance. Random
and stratified designs performed the best according to
AUC, RSS, and the number of commission errors.
These designs also appeared to be affected less by en-
vironmental data error than other designs (see Fig. 5).
Adaptive survey designs consistently produced the
smallest number of omission errorswhich was expected
because, unlike the other designs, surveys resulting in
a presence directed subsequent survey locations. How-
ever, the small humber of omission errors associated
with adaptive designs came at a cost; adaptive designs
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FiG. 2. Performance of survey designs in predicting a simulated species distribution map as a function of three levels of
spatial contiguity (low, moderate, or high) using (a) AUC, (b) RSS, (c) number of omissions, and (d) number of commissions
as performance measures. Results are the means of the three detection probabilities. The survey designs are random (solid
circles), stratified (open circles), adaptive (solid triangles), systematic (open squares), rectangular (X), and square (solid
squares).
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Fic. 3. Performance of survey designs in predicting a simulated species distribution map as a function of three detection
probabilities (0.50, 0.75, or 1.00) using (a) AUC, (b) RSS, (c) number of omissions, and (d) number of commissions as
performance measures. Results are the means of the three spatial contiguity levels. The survey designs are random (solid
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regularly resulted in the largest number of commission
errors and the largest residual sums of squares.

Our study further showed that models developed
from rectangular quadrats performed equally well as
models developed from systematic quadrats, which is
promising considering the prevalence of systematic
surveys in pre-planned designs (Scherrer 1984 as cited
in Fortin et al. 1989). Also, predictions from surveys
with rectangular quadrats were often better than those
from (random) square quadrats. Similarly, Pearson and
Ruggiero (2003) found that linear transects were more
efficient than square grids in measuring small mammal
community parameters. Rectangular quadrats may sur-
vey heterogeneity of a landscape better than square
quadrats by intersecting a greater number of habitats.

While it has long been recognized that a statistically
based survey design is the best approach to reduce bias
and, perhaps, maximize detection, much of the avail-
able and existing species data were collected using
“‘designs’”’ that maximized accessibility. For example,
a spatially biased survey design would include data
collected predominantly along roads. Our study began
with the hypothesis that spatially biased survey designs
result in models that perform more poorly than do un-
biased survey designs and both our results and those
of Kadmon et al. (2004) support this hypothesis (Table
1). Our study design may have exaggerated the differ-
ence between spatially biased and spatially unbiased
designs by testing equal amounts of effort and not nec-
essarily equal amounts of data. In other words, the
quadrat designs (systematic, rectangular, square), by
being limited spatially, and the adaptive design, by
concentrating effort near presences, were likely to re-
sult in morereplicate surveys (samples within the same
cells) and, therefore, less data (since data was reduced
to one sample per cell) than either of the spatially un-
biased survey designs (random, stratified). We would
expect smaller difference between data collected via a
spatially biased and non-spatially biased survey had
we surveyed without replacement.

Ranks of the survey designs generally remained un-
changed when we varied potentially confounding fac-
tors (spatial contiguity, detection probability [ p], sam-
ple size, environmental error). First, and as expected,
models performed better with maps containing more
contiguous species distributions than with maps con-
taining less contiguous distributions. More contiguous
distributions could increase spatial correlation and im-
prove model performance (e.g., with ALR). Luoto et
al. (2002) also found that the occurrence of a butterfly
species was better predicted in areas with greater con-
tiguity (note however that the test area with high con-
tiguity was adjacent to the training data, making it dif-
ficult to rule out spatial autocorrelation asan alternative
explanation for better model performance). Second, p
and model performance were generally positively re-
lated. A larger p yields more correct data for a given
amount of survey effort. By contrast, asmaller p likely
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results in more false absences and thereby increases
the difficulty of modeling habitat associations (Tyre et
al. 2003). Including an error estimate for p during sta-
tistical analysis could improve model performance
(Hoeting et al. 2000). Third, and similar to other find-
ings (Hirzel et al. 2001, Stockwell and Peterson 2002),
model performance was generally improved by increas-
ing the number of samples. Larger sample sizes may
reduce the effects from data inaccuracies (see White
and Garrott 1986). Fourth, there was a negative rela-
tionship between model performance and environmen-
tal data error, likely the result of weaker habitat as-
sociations when sample data coincided with errors in
environmental data.

Our tests also returned a number of unexpected re-
sults. First, stratified designs yielded models that per-
formed almost as well as those resulting from random
designs probably because sample data were almost uni-
formly distributed among the strata. For example, the
areas of the three land-cover types were nearly equal
(approximately 36.5, 31.4, and 32.1% for evergreen
forest, shrubland, and grassland, respectively). Addi-
tionally, Hirzel and Guisan (2002) report that a sys-
tematic design yielded more accurate results than a
random design. The difference between their results
and ours may be due to our restricting systematic de-
signs to quadrats that surveyed only 20% of the land-
scape, whereas their approach was not based on quad-
rats and probably produced smaller distances between
survey sites.

Second, performance of the adaptive design wasvery
sensitive to sample size. In particular, the number of
commission errors resulting from the adaptive design
was drastically reduced by doubling the sample size
(Fig. 4d). With most of the species distribution already
surveyed by the adaptive design at the small sample
size, doubling the number of samples moved the ratio
of samples in unoccupied to samples in occupied areas
closer to 1:1. This balance was found to decrease com-
mission error. The adaptive design, while poor overall
(Table 1), could be the best design when conditions
allow for a large sample size.

Third, contrary to our expectation we did not find a
consistent pattern of increase or decrease in model per-
formance metrics as we systematically altered our con-
founding factors. For example, we observed a number
of instances when model performance was greater at
low contiguity than at moderate contiguity (Fig. 2a, b,
¢) and instances when model performance was greater
at moderate contiguity than at high contiguity (Fig. 2b,
d). Moreover, there were a few cases where there was
no improvement in model performance with larger
sample sizes. In particular, the rectangular and square
designs showed an increase in the number of commis-
sion errors with the larger sample size (see Fig. 4d).
We suspect that these results are idiosyncratic; being
a function of how our particular experiment was im-
plemented (e.g., our choice to fix the size, shape, and
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spatial structure of a species distribution). A more de-
finitive understanding of these patterns will require ad-
ditional investigation.

Other issues important to predicting species occur-
rence that warrant further investigations include the
effects of biased surveys (e.g., roadside surveys) and
false absences on model performance. Perhaps more
fundamentally, investigations are needed that explicitly
explore why different model performance measures
vary under different circumstances. Real roads and
roadside surveys are likely to differ from those sim-
ulated in this study. First, our simulated roads were
randomly located, whereas engineering and political
decisions make real road placement geographically bi-
ased. Habitats never traversed by roads would be with-
out sample datain surveys conducted exclusively along
roads (Hanowski and Niemi 1995). Second, in our
study the probability of surveying was equal for all
locations within arectangular quadrat; however, survey
density might actually be inversely proportional to the
distance from aroad. Third, habitat types of real road-
side areas often differ from the habitat types found in
the surrounding landscape (Bart et al. 1995, Keller and
Scallan 1999). A more sophisticated experiment will
be required before we have a more complete under-
standing of the influence of biased surveys in general,
and roadside surveys in particular, on predictions of
species occupancy.

MacKenzie et al. (2002) and Tyre et al. (2003) show
how to estimate fal se-absence rates from repeated sur-
veys; however, when existing data are without mea-
sures of effort these procedures may be difficult to
implement. Similarly, false absences are likely when
sites with no data are randomly selected and used as
‘“‘absences’” with statistical programs requiring binary
data. The robustness of statistical algorithms to as-
sumed absences (and false absences) in randomly se-
lected sitesrequiresinvestigation. Rather than selecting
‘‘absences” randomly, it might be better to select from
environmentally weighted locations (Zaniewski et al.
2002). Methods that model the association between
presence-only sample data and environmental variables
are another option (see Hirzel et al. 2002, Zaniewski
et al. 2002).

There is a lack of consensus about which metrics
best measure model performance (see Fielding and Bell
1997, Hirzel and Guisan 2002, Zaniewski et al. 2002,
Anderson et al. 2003). We used multiple metrics to
evaluate model performance for a number of reasons,
one of which is that characteristics of the landscape
affect measurement. Consider the following hypothet-
ical example. Assume a study area that has 2500 cells
and is 90% unoccupied and, therefore, composed most-
ly of zero values when depicted as a binary map (i.e.,
10% of the grid cells would equal one, as is the case
in our simulations). Evaluation with a residual sum of
squares (RSS) metric for a model that predicts mod-
erate values of probability of presence, e.g., 0.5, in all
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grid cells would conclude that the model performed
poorly compared to a model that predicts small values
of probability of presence, e.g., 0.1, in all cells. This
conclusion would be drawn even when the probabilities
predicted in truly occupied cells are always larger than
the probabilities predicted in truly unoccupied cells.
Under such an assumed distribution, a model that pre-
dicts a probability of presence of 0.1 for every cell
would appear to perform better (RSS = 225), despite
having zero discrimination (as measured by AUC), than
a model that predicts probability of presence of 1 and
0.5in all truly occupied (x;, = 1) and unoccupied (X, =
0) cells, respectively (RSS = 563). Also, when cal-
culating the AUC, the denominator of the false-pres-
ence fraction (number of unoccupied sites) would be
much larger than that of the true-presence fraction
(number of occupied sites), thus one commission error
would have less effect than one omission error. The
number of omission and commission errors is, as al-
ways, adirect result of the selected threshold (e.g., 0.5).
Accordingly, the behavior of metrics used to evaluate
spatial data continues to be an important area of in-
vestigation.

CONCLUSION

We used a simulated study design to test the effects
from several factors on the performance of models that
predict species distribution maps. Considering that the
absolute values of our reported results are contingent
upon factors such as the size of the distributions (10%),
the simplicity of habitat relationships (only two con-
trolling environmental variables), and sample size, we
present this study as an initial comparison of perfor-
mance among common survey designs.

Species distribution modeling increasingly uses ob-
jective methods due, in part, to the development of
spatial statistical procedures and the availability of
geospatial data. To improve the predictive power of
new sample data, several design considerations appear
to be important. First, maximize sample size and de-
tection probability. Second, design for the contiguity
of the distribution (e.g., increase effort for less contig-
uous distributions). Third, balance the amount of in-
formation collected from suitable and unsuitable hab-
itats. Fourth, try to minimize error in the prediction
variables (measurement error, survey error) sinceit too
contributes to a general erosion of model performance.
Further, if maximizing model performance based on
AUC, RSS, and commission error are important, use a
random or stratified design. To minimize omission er-
ror, an adaptive design could work best. If, instead, the
study uses spatially biased data (most existing data),
expect a reduction in model performance. Our results
suggest that the predictive power of roadside survey
designs is near that of systematic quadrat designs, at
least for the ALR model. We argue that this is prom-
ising considering the abundance and availability of op-
portunistically collected sample data. However, we did
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not include some factors in our simulated road design.
Thus, our model performance estimates could exceed
the prediction potential of real road-biased data.

Our results, to an unknown degree, depend on the
form of the model (e.g., ALR) and the specific spatial
structure of our data (environmental variables, distri-
butions, sample data). Therefore, additional research
using other species occurrence modeling algorithms
and varying spatial patterns would be useful. Ulti-
mately, whether or not the maps created in predicting
a species distribution are acceptable will depend on the
application. For example, Dean et a. (1997) found that
overlaying predicted species distributions containing as
little as 5% error could alter the distribution of species
richness. However, more prediction error might be al-
lowed when managing for a threatened or endangered
species, especialy if no other data exists. Increased
understanding of factorsthat affect model performance,
such as how to incorporate environmental mechanisms
(e.g., competition) into modeling efforts (see Morrison
2001), could further narrow the gap between prediction
and truth.
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APPENDIX A
A general description and flow chart of methods used are available in ESA’s Electronic Data Archive: Ecological Archives

A015-014-A1.

APPENDIX B
Examples of the tested survey designs are available in ESA’s Electronic Data Archive: Ecological Archives A015-014-A2.

SUPPLEMENT
A program containing algorithms to survey square distributions is available in ESA's Electronic Data Archive: Ecological

Archives A015-014-S1.



