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Landscape genetics has emerged as a new research area
that integrates population genetics, landscape ecology and
spatial statistics. Researchers in this field can combine the
high resolution of genetic markers with spatial data and a
variety of statistical methods to evaluate the role that
landscape variables play in shaping genetic diversity and
population structure. While interest in this research area is
growing rapidly, our ability to fully utilize landscape data, test
explicit hypotheses and truly integrate these diverse dis-
ciplines has lagged behind. Part of the current challenge in
the development of the field of landscape genetics is bridging
the communication and knowledge gap between these highly
specific and technical disciplines. The goal of this review is to

help bridge this gap by exposing geneticists to terminology,
sampling methods and analysis techniques widely used in
landscape ecology and spatial statistics but rarely addressed
in the genetics literature. We offer a definition for the term
‘landscape genetics’, provide an overview of the landscape
genetics literature, give guidelines for appropriate sampling
design and useful analysis techniques, and discuss future
directions in the field. We hope, this review will stimulate
increased dialog and enhance interdisciplinary collaborations
advancing this exciting new field.
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Introduction

Technological innovations in spatial analyses coupled
with increased availability of spatial data and hypervari-
able genetic markers have resulted in great advances in
our ability to study the influence of landscape variables,
such as altitude, topography and ground cover, on
genetic variation and structure. As a result, landscape
genetics (Manel et al., 2003) has emerged as a new
research area that integrates landscape ecology, spatial
statistics and population genetics. In contrast to tradi-
tional population genetics studies that were limited in
spatial inference to tests of isolation-by-distance, land-
scape genetics provides a framework for testing the
relative influence of landscape and environmental
features on gene flow, genetic discontinuities (Guillot
et al., 2005a) and genetic population structure (Manel
et al., 2003; Holderegger and Wagner, 2006).

Understanding landscape effects on genetic connectiv-
ity provides insight into fundamental biological pro-
cesses such as: metapopulation dynamics, speciation,
and ultimately the formation of species’ distributions.
Landscape genetic analyses can also have great applied
scientific value, such as identifying specific anthropo-
genic barriers that reduce gene flow or genetic diversity,

predicting the effects of proposed management alter-
natives on genetic variation and population connectivity,
and identifying potential biological corridors to assist
with reserve design.

Given these diverse research opportunities, landscape
genetics is both challenging and exciting, as it brings
together scientists from the broad disciplines of land-
scape ecology, spatial statistics, geography and popula-
tion genetics. While several types of spatial statistical
analyses have been used in geographical genetics (for
review, see Epperson, 2003), there are many well-
developed methods in landscape ecology and spatial
statistics that have yet to be utilized. The vast array of
spatial analysis techniques that can be applied to
population genetic data make options for designing
and conducting a landscape genetics study extremely
diverse and potentially confusing. Better communication
among landscape ecologists, spatial statisticians, remote-
sensing scientists, geographers and population geneti-
cists is key to integrating analysis methods and empirical
data. To help bridge communication gaps, we have
included a glossary of terminology used in spatial
statistics and landscape ecology (Table 1), with the terms
denoted in italics when first used in the text.

Our goals are to: (a) offer a definition of the term
‘landscape genetics’; (b) review questions commonly
addressed in the landscape genetics literature, (c)
provide guidelines for sampling design, (d) highlight
potentially useful analysis techniques; and (e) discuss
future directions for the field. The most commonly used
molecular tools for landscape genetic studies are neutral,

Received 13 April 2006; revised 20 September 2006; accepted 22
September 2006; published online 1 November 2006

Correspondence: Dr LP Waits, Department of Fish and Wildlife Resources,
University of Idaho, PO Box 441136, Moscow, ID 88344-1136, USA.
E-mail: lwaits@uidaho.edu

Heredity (2007) 98, 128–142
& 2007 Nature Publishing Group All rights reserved 0018-067X/07 $30.00

www.nature.com/hdy



Table 1 Glossary of spatial statistics/landscape ecology/geographical genetics terms used in the text

Term Definition Reference(s)

Anisotropic (anisotropy) Intensity and range of spatial dependence (autocorrelation) varies with
direction and/or orientation. Directionality in environmental gradients,
wind or water flow may lead to anisotropic patterns

Haining (2003),
Fortin and Dale (2005)

Correlogram A graph of the correlation coefficient calculated at various distance classes Isaaks and Srivastava
(1989)

Correspondence analysis An ordination technique used to identify associations between variables by
reciprocal averaging. There are several types of correspondence analysis

terBraak (1995),
Angers et al. (1999)

CCA An extension of reciprocal averaging techniques which combines
regression and ordination techniques requiring that the ordination axes be
linear combinations of the explanatory variables

Gradient (analysis) A continuous change in a variable over distance such as moisture or
elevation. Gradient analysis has been popular in relating species
abundance to continuous changes in environmental variables

Jongman et al. (1995)

Interpolation Estimating data at unsampled locations using a mathematical model of the
spatial pattern of sampled values. There are many types of interpolation
models (e.g. inverse distance weighting, kriging models, tessellation
models)

Isaaks and Srivastava
(1989)

Kriging A method of interpolation which uses known values at sampled locations
and parameters from the semivariogram to estimate values at unsampled
locations

Isaaks and Srivastava
(1989)

Least-cost path A line (vector) of ‘least resistance’ is generated between two observation
points. The resistance refers to a resistance surface, or cost grid, generated
according to some understanding of mobility (in landscape genetics,
species mobility). The least-cost distance can be expressed in terms of
geographic distance or total resistance along this path

Singleton et al. (2002),
Adriaensen et al. (2003)

Moran’s I A weighted correlation coefficient used to detect departures from complete
spatial randomness (positive or negative spatial autocorrelation). The
weighting scheme may be defined by distance between points or
contiguity of polygons

Moran (1950)

Network analysis Graph theory is applied to model and analyze linkages and flows in a
network – a system of directional lines (vectors) connecting all of the
observation points (nodes). A classic application of network analysis is
measuring level and direction of traffic flows through road systems

Taaffe et al. (1996)

Neutral landscape models A randomized landscape following some statistical quality of the original
data. Used for permutation testing of hypotheses concerning landscape
pattern or process

Gardner et al. (1987),
Saura and
Martı́nez-Millán (2001)

Point pattern statistics A group of statistics used for analysis of observations collected at specific
X, Y coordinates. The statistics can be used to quantify the pattern
(e.g. clustered, uniform, random) of the points themselves or some
response variable associated with the points

Diggle (2003)

Semivariogram A graph of the spatial dependence between observations calculated at
various distance classes. Semivariogram values become larger as
observations become less similar, thereby offering an estimate of the
distance needed between points before they become uncorrelated

Haining (2003),
Fortin and Dale (2005)

Spatial autocorrelation Observations are not independent identically distributed (iid), but are
correlated over some distance in space. Positive autocorrelation indicates
that nearby values are similar; negative autocorrelation indicates that
nearby values are dissimilar

Haining (2003)

Spatial dependence The influence of spatial relationships on observation attributes Haining (2003)

Spatial generating process Process that leads to the variation among observations over space Turner et al. (2001)

Stationarity Indicates that the variable of interest is influenced by a single process
whose properties do not change with location or direction – it has a
constant mean and variance across the study area

Bailey and Gatrell (1995),
Fortin and Dale (2005)

Tessellation A pattern of non-overlapping polygons is used to partition the area leaving
no gaps. In landscape genetics, tessellation is generally used to create
polygons around each point where genotypes are collected

Bailey and Gatrell (1995)
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Table 2 Recent works in landscape genetics, highlighting sampling design, molecular markers used, analytical techniques, and basic conclusions

Citation Species Sampling design Marker(s) Analysis methods Inference

Arnaud (2003) Landsnail (Helix aspersa) Unspecified 4 polymorphic
enzymes
5 microsatellites

Mantel tests, correlograms,
Moran’s I

Migration occurs along hedge rows

Banks et al. (2005) Marsupial (Antechinus
agilis)

Systematic 15 microsatellites
mtDNA control
region

Simulated annealing approach,
partial Mantel, spatial
autocorrelation, correlograms

Eucalyptus habitat corridors significantly increased
gene flow relative to pine plantations

Cegelski et al. (2003) Wolverine (Gulo gulo) Opportunistic
(harvest)

10 microsatellites F-statistics, Bayesian assignment Wolverine populations are more genetically structured
in fragmented habitat

Funk et al. (2005) Spotted frog
(Rana luteiventris)

Stratified 6 microsatellites AMOVA; (partial) Mantel test;
Bayesian assignment test

Ridges and elevation are major barriers to gene flow

Guillot et al. (2005a) Simulation & wolverine
(Gulo gulo)

Opportunistic
(harvest)

10 microsatellites Bayesian assignment,
Voronoi tessellation

Identification of multiple populations, and cryptic
barriers, with improved power over aspatial methods

Hirao and Kudo
(2004)

Snowbed herbs
(Peucedanum multivittatum,
Veronica stelleri,
Gentiana nipponica)

Clusters 11 allozymes (partial) Mantel test Flowering time is more influential on genetic
variation than isolation-by-distance

Hitchings and
Beebee (1997)

common frog
(Rana temporaria)

Opportunistic
(within urban
and rural)

19 allozymes F-statistics, Mantel test Genetic diversity, gene flow, and fitness were lower
in urban versus rural populations

Jacquemyn (2004) Forest herb (Primula elatior) Random
stratified

3 AFLP Mantel test; AMOVA Herbs found in younger forests had lower genetic
diversity and differentiation than those in older forests

Keyghobadi et al.
(1999, 2005a, b)

Alpine butterfly
(Parnassius smintheus)

Opportunistic
(within
meadows)

7 microsatellites (partial) Mantel tests Genetic distances between butterfly populations were
increased through forest relative to meadows

Liepelt et al. (2002) Silver fir (Abies alba) Opportunistic mtDNA cpDNA Haplotype maps,
variogram model

Difference in semivariograms suggested wind
pollinated influence on gene flow between refugia

Manni et al. (2004) Simulation & human
(Homo sapiens)

Opportunistic Y chromosome Monmonier’s algorithm Identified significant genetic barriers between
northwestern Africa and Iberian Peninsula

Michels et al. (2001) Zooplankton (Daphnia
ambigua)

Connected
ponds- clustered

12 allozymes Mantel test Gene flow was best correlated with two models –
flow rate between ponds and dispersal rate

Pfenninger (2002) Terrestrial snail
(Pomatias elegans)

Opportunistic
(within different
habitats)

1 allozyme (partial) Mantel test; spatial
autocorrelation

Gene flow correlated with ridge distance in two
populations and, with habitat distance in one population

Piertney et al. (1998) Red grouse (Lagopus
lagopus scoticus)

Opportunistic
(harvest)

7 microsatellites Mantel test, PCA, kriging
(interpolation)

Interpolation of PCA scores identified genetic
discontinuity, which corresponded to unsuitable habitat

Poissant et al. (2005) Brook charr
(Salvelinus fontinalis)

Opportunistic
(within both
highland and
lowland areas)

9 microsatellites Neighbor-joining tree; AMOVA;
t-test; (partial) Mantel

Gene flow correlated best with a path based
on historical connectivity, but contemporary
barriers limited gene flow

Roach et al. (2001) Black-tailed prairie dogs
(Cynomys ludovicianus)

Opportunistic 7 microsatellites Assignment tests, Mantel tests,
information theoretic approach

Dispersal between colonies occurs regularly and
likely along drainages

Scribner et al. (2005) White tailed deer
(Odocoileus virginianus)

Opportunistic
by quadrat

3 microsatellites Mantel test Greater thermal cover was significantly correlated
with greater gene flow

Spear et al. (2005) Tiger salamander
(Ambystoma tigrinum)

Opportunistic 8 microsatellites Partial Mantel test; Spearman
rank correlation coefficient

More of the genetic variability explained by including
landscape variables than with distance alone

Vignieri (2005) Pacific jumping mouse
(Zapus trinotatus)

Opportunistic
(within three
different river
areas)

8 microsatellites Mantel test; Moran’s I Least-cost habitat path that maximized riparian
corridors and minimized elevation gain had the greatest
correlation with genetic distance
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hypervariable markers (e.g. amplified fragment length
polymorphisms and microsatellites), and we generally
assume their use throughout this review.

Defining landscape genetics

In general, landscape genetics seeks to understand the
influence of ecological processes (Turner et al., 2001) on
genetic variation by quantifying the relationship between
landscape variables, population genetic structure and
genetic variation (the latter two hereafter collectively
referred to as ‘genetic variation’). Since Manel et al. (2003)
coined the term ‘landscape genetics,’ a diversity of
published articles have been labeled landscape genetics
because they incorporated geographic coordinates or
landscape features when evaluating the spatial distribu-
tion of genetic variation (Table 2). These studies have
varied extensively in their approach to evaluating
relationships between landscape variables and genetic
variation. We suggest that landscape genetics studies
could benefit substantially by including explicit tests of
the relative influence of landscape variables on genetic
variation by incorporating robust, spatially informed
study designs and spatial analyses. Thus, in this review,
we define landscape genetics as research that explicitly
quantifies the effects of landscape composition, config-
uration and matrix quality on gene flow and spatial
genetic variation. This definition expands on the descrip-
tion of landscape genetics in Holderegger and Wagner
(2006). Phylogeography (Avise, 2000) can also be used to
quantify genetic variation in relation to ecological
processes, but at a larger spatio-temporal scale than
landscape genetics, making it more comparable to
biogeography (Manel et al., 2003).

Major research categories in landscape
genetics

There are a wide variety of basic and applied research
questions that can be addressed using a landscape
genetics approach (see Tables 2 and 3). We group these
questions under five major research categories: (1)
quantifying influence of landscape variables and config-
uration on genetic variation; (2) identifying barriers to
gene flow; (3) identifying source-sink dynamics and
movement corridors; (4) understanding the spatial and
temporal scale of an ecological process; and (5) testing
species-specific ecological hypotheses.

Influence of landscape variables and configuration on

genetic variation
Quantifying the effect of landscape configuration on
gene flow has been a major focus of published landscape
genetics studies (Manel et al., 2003; Scribner et al., 2005;
see Table 2). Statistical analyses of genetic data have been
used to identify the effects of matrix resistance on gene
flow and genetic structure, including: cover type (Key-
ghobadi et al., 1999; Spear et al., 2005), stream distance
(Roach et al., 2001; Antolin et al., 2006), historic landscape
configuration (Holzhauer et al., 2006), water flow rates
(Michels et al., 2001), ridge distances (Pfenninger, 2002;
Funk et al., 2005), thermal cover (Scribner et al., 2005) and
the effect of landscape configuration on allelic fixation
time (Ezard and Travis, 2006). Recently, Sezen et al. (2005)

revealed the impact of landscape change and patch type
on genetic variation in Costa Rican canopy palms (Iriartea
deltoidae) by documenting a decrease in genetic diversity
and an increase in the patch diameter of similar
genotypes in second growth forests compared to old
growth patches. This demonstrates that intrinsic scale,
the area encompassed by a population as estimated by a
genetic neighborhood, may change across a landscape
due to the landscape composition and configuration.
As another example, wolverine populations in intact
habitats have a larger intrinsic scale than populations in
fragmented habitats (Cegelski et al., 2003).

Identifying barriers
Identifying potential gene flow barriers is a major focus
of landscape genetics research. While all landscape
features affect gene flow, particular structures such as
roads (Riley et al., 2006), waterways (Antolin et al., 2006)
or mountain ridges (Funk et al., 2005) are potentially
impenetrable barriers. Genetic data have been used to
identify abrupt breaks in gene flow (Dupanloup et al.,
2002; Manni et al., 2004) as well as more gradual
transitions (Geffen et al., 2004). Barriers may also consist
of microhabitats that prevent gene flow because they
exceed a threshold for moisture, temperature or chemical
tolerance for particular species (Palo et al., 2004). There-
fore, barrier identification has important implications for
ecological (Walker et al., 2003; Kreyer et al., 2004; Funk
et al., 2005), conservation (Bhattacharya et al., 2003; Miller
and Waits, 2003; Dodd et al., 2004) and evolutionary
(Castella et al., 2000; Broderick et al., 2003; Cicero, 2004;
Gee, 2004) investigations.

One distinct benefit of a landscape genetics approach
is that spatially explicit techniques can allow researchers
to identify barriers not detectable by traditional popula-
tion genetic methods (Guillot et al., 2005a; Coulon et al.,
2006). For example, Coulon et al. (2006) found genetic
structuring in roe deer due to highways and rivers
using spatial assignment test methods (in the program
GENELAND, Guillot et al., 2005b), whereas a non-
spatial assignment test (STRUCTURE; Pritchard et al.,
2000) was not able to identify any genetic discontinuities.
Landscape genetics can also be used to quantify the
cumulative impact of a particular barrier type distrib-
uted across the landscape. For example, Epps et al. (2005)
evaluated genetic diversity and structure in 27 desert
bighorn sheep populations (Ovis canadensis nelsoni) and
showed that diversity was negatively correlated with
fenced highways, canals and human development. They
also estimated a ‘barrier effect distance’ and suggested
that any one of these barriers would create the same
decrease in gene flow as 40 km of contiguous habitat.

Source-sink dynamics
Understanding source-sink dynamics (Pulliam, 1988;
Dias et al., 1996) and variation in habitat quality can be
useful for identifying corridors and guiding reserve
design. Genetic data have been used to identify source
and sink habitats for populations by identifying asym-
metric gene flow using private alleles (Kennington et al.,
2003), and estimating the number of migrants into a
population using either a coalescent approach (Beerli
and Felsenstein, 2001) or assignment tests (Paetkau et al.,
1995; Wilson and Rannala, 2003). Theoretical population
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models suggest evaluations of linkage disequilibrium
can be used to detect sink habitats because disequili-
brium is predicted to be higher in individuals from sinks
due to immigrants from different sources (Nei and Le,
1973). Dias et al. (1996) empirically tested this theory and
found higher linkage disequilibrium in blue tits (Parus
caeruleus) living in a known sink habitat (evergreen
forest) than that of birds sampled from a known source
habitat (deciduous forest).

Physical locations of corridors have also been identi-
fied using landscape genetic approaches For example,
Banks et al. (2005) used spatial autocorrelation analysis of
genetic structure to demonstrate that riparian strips of
native eucalyptus forest facilitate dispersal in a marsu-
pial carnivore (Antechinus agilis) compared to the matrix
habitat of pine plantations. This study also helped detect
a dispersal threshold for male A. agilis by showing that
fragmented pine plantation habitat significantly reduced
dispersal at distances greater than 750 m. Least-cost
analysis also has been valuable in identifying landscape
variables that facilitate gene flow and may function as
corridors (Spear et al., 2005; Vignieri, 2005). For example,
Vignieri (2005) found that least-cost paths that mini-
mized elevation gain and maximized riparian forest
cover were strongly correlated with gene flow in the
Pacific jumping mouse (Zapus trinotatus).

Spatial and temporal scales
Genetic variation may respond differently over varying
spatial or temporal scales, which is a critical issue in
defining research questions and subsequent study design
in landscape ecology and spatial statistics (for review, see
Gardner, 2001). The scale at which particular landscape
variables have the greatest influence on gene flow (i.e.
process scale) may give insight into species’ biology. For
example, Trapnell and Hamrick (2004) showed that the
contributions of pollen and seed movement to overall
gene flow in the Central American epiphytic orchid,
Laelia rubescens, were scale-dependent. Primary factors
governing gene flow were seed gravity (seed dispersal)
at the finest spatial scale, hummingbird behavior (pollen
dispersal) at the intermediate scale, and wind (occasional
seed dispersal) at the broadest scale.

Temporal scale may also have a significant impact on
landscape genetics. For example, Ramstad et al. (2004)
detected significant genetic structure among sockeye
salmon (Oncorhynchus nerka) populations in Alaska and
used simple and partial Mantel tests to evaluate the
relative influence of different ecological and evolutionary
factors on genetic differentiation. They found that
temporal isolation based on spawning time and founder
effects associated with ongoing glacial retreat and
colonization of new spawning habitats contributed

Table 3 Models that can explicitly incorporate landscape data organized by research questions presented in text

Question type Appropriate model types Example models Sampling

Relative influence of
landscape
variables/ecological
hypotheses

Matrix correlation Mantel test, Partial Mantel test All
Autoregressive and
geostatistical models

CAR, SAR, GWR B, C, D, E, F, G, H

Dispersal route analysis Least-cost paths, network analysis, flow models All
Ordination RDA, CCA, multidimensional scaling B, C, D, E, F, G, H,

Model based
Landscape metrics Many metrics calculated at landscape, class, patch

level, and within different window sizes
E, G, H, Model based

Point pattern LISA, Cross-K B, C, D, F, Model based
Global autocorrelation Moran’s I, Geary’s C B, C, D, Model based
Spatial interpolation Inverse distance weighting, kriging B, C, D, E, F, G, H,

Model based

Identify barriers Assignment tests Monmonier’s algorithm, simulating annealing B, C
Algorithmic models CART, MARS, RANDOM FORESTS All

Source-sink Spatially explicit
metapopulations

RAMAS All

Network analysis Flow models All

Reserve design/
corridors

Spatial autocorrelation Moran’s I, Geary’s C, LISA B, C, D, Model based
Path analysis Least-cost paths, network analysis, flow models All
Spatially explicit
metapopulations

RAMAS All

Matrix correlation Mantel tests All
Landscape simulation LANDIS, RAMAS GIS All

Spatial scale Regression Geographically Weighted Regression E, G, H

Temporal scale Spatial autocorrelation Moran’s I, Geary’s C, LISA B, C, D, Model based
Variance decomposition Hierarchical analysis of variance, delineation of

semivariance
All

Model validation Simulation/permutation Neutral landscapes All
Interpolation Conditional simulation, randomization, Monte Carlo A, B, C

Letters refer to sampling methods (Figure 1) that are most suited to the model type under most conditions.
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significantly to genetic population structure, while
geographic distance and spawning habitat differences
did not have significant influence.

Species-specific hypothesis testing
Landscape genetics offers new approaches for testing
hypotheses specifically related to how the ecology of the
study species shapes patterns of genetic variation,
such as identification of bioregions (Sacks et al., 2004),
potential response to climate change (Rehfeldt et al.,
1999), and ecological variables (J�rgensen et al., 2005). For
example, Sacks et al. (2004) tested the hypothesis that
coyotes would exhibit natal-biased dispersal by evaluat-
ing population genetic structure across four contiguous
habitat bioregions in Northern California and found
genetic groupings could best be explained by habitat
bioregions and not habitat barriers. Rehfeldt et al. (1999)
concluded that the ability of western US conifer species
to adapt to climate change may be constrained due to
significant geographic structure in quantitative genetic
traits associated with elevation and latitude. In a study of
herring (Clupea harengus) in the Baltic Sea, J�rgensen et al.
(2005) showed that the ecological variables that best
explained genetic variation were salinity, surface tem-
perature and spawning time.

Study design

Importance of study design
Historically, population genetic studies often relied on
opportunistically collected samples from known local-
ities or in easily accessible areas. Opportunistic sampling
may fail to capture the spatial variation or spatial
dependency of the system, resulting in difficulty detecting
spatial relationships or erroneous model inferences
(Legendre, 2002; Fortin and Dale, 2005). Thus, studies
should be designed to sample the variable(s) of interest
within the scale of spatial dependency (Coulon et al.,
2004). In addition, population genetics studies have been
traditionally designed to collect samples from a mini-
mum of 20–30 individuals per a priori delineated
‘population’ (Nei, 1978). However, a priori delineation
is no longer necessary due to the development of genetic
clustering algorithms, such as assignment tests (Pritch-
ard et al., 2000; Wilson and Rannala, 2003; Manel et al.,
2005). In addition, models of landscape influence on
genetic variation often require more continuously dis-
tributed sampling, which can be analyzed with a wide
variety of spatial analysis techniques reviewed herein
(see Table 3).

Careful consideration of scale in study design is also
critical because arbitrarily defined scales may lead to
erroneous conclusions or fail to capture appropriate
variability in the landscape (King, 1990; Gardner, 2001).
We refer to scale as the appropriate spatial or temporal
dimensions at which processes can be observed and
quantified (for review, see Dungan et al., 2002). Under
this definition, scale has two relevant components:
‘grain’ and ‘extent’ (O’Neill et al., 1988). Grain is the
minimum resolution of the data and extent is the total
area of interest. Accounting for grain and extent in
both the dependent and independent variables ensures
that the appropriate scale for a specific question(s) is
captured (for review, see Marceau, 1999). When design-

ing a landscape genetics study, researchers can deter-
mine appropriate sampling scale with pilot data (e.g.
movement data of the study organism), or data from
similar organisms in other areas. Ideally, a spatial
sampling scheme should capture the range of spatial
variation in both landscape variables and organismal
genetic variability by collecting observations across a
range of variances (e.g. from low to high local spatial
autocorrelation and from low to high genetic relatedness,
respectively) (Cressie, 1993; Goovaerts, 1997; Fortin and
Dale, 2005).

If pilot data are available, exploration of intrinsic scale
and stationarity can also be executed before sampling or
modeling. Most spatial statistical models assume statio-
narity in the response variable that is implicitly a
function of a spatial generating process (Fortin and Dale,
2005). In other words, the underlying assumption of
most spatial statistical models is that the same ecological
processes (e.g. slope, moisture and topography) influ-
ence the response variable (e.g. genetic variation) in the
same way across the whole study area. However, this
assumption is likely to be violated in complex land-
scapes. Violations of stationarity can be tested with local
indicators of spatial association (LISA) (Anselin, 1995).
Non-stationarity can then be accounted for by incorpor-
ating locally adjusted methods such as geographically
weighted regression or locally coherent spatial regression
(Haining, 2003; Fotheringham et al., 2004).

In landscape genetic studies, it is important to consider
how the effects of temporal scale influence genetic
variation. The theoretical genetics literature has ad-
dressed how temporal heterogeneities in demographic
parameters such as dispersal and density can have large
effects on spatial genetic variation (Whitlock, 1992;
Leblois et al., 2004). However, this complexity is often
overlooked in landscape genetic studies. For species with
overlapping generations and cyclic changes in density,
allele frequency shifts among cohorts and sampling
years are expected (Jorde and Ryman, 1995). If not
accounted for, temporal genetic heterogeneity can be
incorrectly interpreted as true population differentiation,
particularly in cases when genetic differentiation is weak
(Waples, 1998).

Incorporating landscape data
Landscape genetic studies require data from two distinct
sources: landscape data (e.g. remotely sensed data,
digital elevation models, field collections) and multilocus
genetic data. Landscape data are gathered in a number of
ways, including: field surveys, aerial remote sensing
and/or satellite remote sensing. As these methods
contain several potential sources of error that may
obscure relationships with genetic variation (e.g. tem-
poral sampling frequency, data generalization; Burrough
1986), use of data sets with error documentation and
associated metadata is highly desirable (please see the
US Federal Geographic Data Committee website, http://
www.fgdc.gov/standards/standards_publications, for
lists of metadata standards).

Recent advances in fine scale data resolution (o4 m)
and analysis methods have greatly improved the spatial
accuracy and precision of detecting, classifying and
delineating landscape habitat characteristics in both
two (Wulder et al., 2004; Greenberg et al., 2005) and

Putting the ‘landscape’ in landscape genetics
A Storfer et al

133

Heredity



three dimensions (Lefsky et al., 2002). Such fine scale data
can help create detailed digital elevation models and
spatially explicit vegetation canopy structure products.
At coarser spatial scales (resolution 250 m–1.1 km), image
data are acquired for the entire globe twice per day,
enabling analyses at unprecedented temporal resolution
(Rahman et al., 2004; Running et al., 2004) to compare
vegetation phenology with genetic variation in plants
and animals. However, it is important to note that the
scale at which data are collected should match the scale
of the study questions and hypotheses.

Sampling
When selecting a sampling design, there are several
important considerations. First, what is the research or
management question? For instance, identifying specific
barriers to gene flow will require a different sampling
scheme than identifying source and sink habitats.
Second, is the species continuously distributed across
the landscape or does it have a spatially random or
aggregated distribution? To make inferences about land-
scape influence on genetic variation, the sampling
scheme should capture the variability in the independent
landscape variables of interest (Bueso and Angulo, 1999).
Third, based on the sampling design and data collected,
which types of statistical analysis models are appro-
priate? (see Table 3; Forman, 1997).

Simple sampling designs discussed in this paper
include systematic (uniform, unaligned, random start)
and random (simple random or clustered) (Figure 1).
Systematic sampling designs (Figure 1a–c) are more
efficient in covering the extent of the study area than
random samples (Harrison and Dunn, 1993). However, a
uniform systematic design (Figure 1a) can be biased
when it coincides in frequency with a regular pattern in
the landscape due to a fixed sampling interval, and may
miss anisotrophic effects (Berry and Baker, 1968; Fortin
and Dale, 2005). Random sampling designs have the
advantage of producing a spatially unbiased sample and
can be applied to continuously distributed species or
a subset of the landscape based on required habitat
conditions (Figure 1d–e). A random sample can be
beneficial because it generates a wide range of distances
among points, helping describe the relationships be-
tween observations across space if sampling is dense
enough such that sample observations cluster appro-
priately to optimize semivariogram estimation. However,
the distribution of samples may not be representative of
the underlying geographic surface, because for most
samples drawn, some areas will be oversampled while
others will remain undersampled (Griffith and Amrhein,
1997).

These general sampling schemes can be implemented
within more complex designs such as spatial hierarchical
sampling (Figure 1f), nested sampling (Figure 1g) and
stratified sampling (Figure 1h). In a hierarchical sam-
pling design, one measurement (e.g. cover type) is
collected more intensively and at a finer spatial scale
than a second variable (e.g. genotypes) (Haining, 1990).
Landscape variables may be less expensive to measure
and change more rapidly in space than genetic variation,
making spatial hierarchical sampling a viable option in
landscape genetic studies. Spatially nested sampling
designs generally work well for populations that are

naturally clustered or for questions of spatial scale. For
example, at a broad scale (block 1), limits to gene flow
across the landscape may be explained by ridgelines and
canyons (Figure 1g). However, at a finer scale (block 3),
limits to gene flow may be driven by microhabitat
conditions.

A stratified sampling design can be implemented to
capture the range of variability across landscape vari-
able(s) of interest and to account for unbalanced

Figure 1 Visual representation of discussed sampling approaches.
Diagrams with black backgrounds represent sampling approaches
appropriate for continuously distributed populations, gray back-
grounds represent sampling approaches appropriate for continu-
ously distributed or clustered populations, and the white
background represents a sampling approach most appropriate for
clustered populations. Systematic sampling (a–c) designs assume a
relatively even distribution of potential observations across the
landscape and therefore can be used with continuously distributed
populations. Black dots represent sampling locations for (a) uniform
sampling, (b) unaligned sampling and (c) random start systematic
sampling. Random sampling designs (d–e) ensure independence
between samples because each location (or cluster) in a study area
has the same probability of being chosen (Berry and Baker, 1968).
Black dots represent sampling locations for (d) simple random
sampling and (e) clustered random sampling. More complex
sampling designs can be applied with either simple or random
designs. Hierarchical sampling (f) is generally appropriate for
collection of data at two scales: black dots indicate sample locations
for the broad scale variable, a second variable is sampled at finer
scale at the black and gray dots. Nested sampling (g) requires the
landscape to be partitioned into systematic or irregular sample units
(i.e. ‘blocks’), which are then further subdivided into sample units
nested within this first level, and so forth (Haining, 1990; Thompson
and Seber, 1996; Haining, 2003). Block 1 represents the largest area,
which is then partitioned into two Block 2 units. The Block 2 units
are then further subdivided into the smallest units (Block 3). In
stratified sampling (h) the landscape is partitioned based on some
variable(s) that are unequally represented in the landscape and
observation(s) are taken from each stratum (Hudak et al., 2004).
Lines represent strata designed to partition variation across the
landscape, black dots represent random sample location within
each strata. Shown is equal sampling by strata, but sampling can
also be unequal.
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representation of landscape variables (e.g. 80% of land
cover is of one class) (Figure 1h). Any of the previously
mentioned sampling designs can be applied within each
stratum. Stratified random sampling is particularly
appropriate for gradient analysis and the impact of
landscape configuration when variables (e.g. rainfall)
are unequally represented across the study area, when
the sampling area is large compared to the number of
feasible observations, or when the process (e.g. gene
flow) is non-stationary. Stratification guarantees a spread
of observations across defined conditions in the study
area, while randomization leads to a wide range of
distances among pairs of points.

Analysis methods

Analysis techniques in landscape genetic studies have
utilized several statistical approaches including: assign-
ment tests, tests of matrix correlations, dispersal route
analysis and autocorrelation. Other well-developed
methods in landscape ecology, spatial statistics and
geographical genetics that have received less attention
are: ordination, landscape metrics and spatial interpola-
tion. These methods can be applied using a wide variety
of statistical software (see Appendix A) and are
discussed in detail below.

Assignment tests
While traditional population genetic statistics (e.g. FST,
RST, y, Nei’s D) often require a priori population
delineation, assignment test approaches (Pritchard
et al., 2000; Manel et al., 2005) can be used to gain insight
into landscape genetic patterns without a priori delinea-
tion of populations. For example, Proctor et al. (2005)
sampled brown bears (Ursus arctos) on both sides of
highways in southern British Columbia and Alberta,
Canada, and an ecologically similar ‘control’ valley not
impacted by a transportation corridor. Using assignment
tests, they detected lower levels of gene flow across the
highway than in the control valley.

Another approach is to identify spatial genetic
discontinuities. Manni et al. (2004) used Voronoi poly-
gons to build geometric relationships between popula-
tions and then applied a modified version of
Monmonier’s algorithm (1973) to identify genetic dis-
continuities to infer a barrier to gene flow. Monmonier’s
algorithm creates a break line through the vectors
between observations (i.e. the lines of the Voronoi
polygons) based on the greatest slope, which reflects
higher genetic distances.

Spatial assignment tests try to identify genetic dis-
continuities in populations that are spatially contiguous
(Guillot et al., 2005a, b; Corander et al., 2006; Francois
et al., 2006; Manel et al., submitted). GENELAND is a
spatial-assignment test that combines Voronoi tesselation
with a Bayesian assignment approach to identify genetic
spatial discontinuities (Guillot et al., 2005b). Populations
are specified conditionally on the spatially weighted
variance structures identified within each Voronoi poly-
gon (Guillot et al., 2005b). Manel et al. (submitted) used a
moving window approach to apply a local assignment
test (Rannala and Mountain, 1997) and generate a
spatially referenced probability map for finding an
individual’s genotype across the landscape. Genetic
discontinuities are identified by calculating the mean

slope for all individual probability maps and identifying
areas of high mean slope as putative population
boundaries (Manel et al., submitted). Note, however,
that all the above spatial assignment methods perform
best with a relatively continuous distribution of
sample locations, such as generated by unaligned/random
start systematic sampling or dense random sampling
(Figure 1).

Matrix correlations
Mantel tests (Mantel, 1967) and partial Mantel tests
(Smouse et al., 1986; Legendre et al., 2002) have been
widely used in landscape genetic studies. For example,
Keyghobadi et al. (1999) used Mantel tests to demonstrate
that meadows facilitated higher gene flow among alpine
butterfly (Parnassius smintheus) populations than forests.
Mantel tests have also been used to explain difference in
flowering time of three species of alpine meadow plants
based on approximate date of snowmelt across a range of
elevations (Hirao and Kudo, 2004).

Partial Mantel tests have been used to expand analyses
to incorporate multiple landscape variables. For exam-
ple, the relative importance of partial Mantel variables
was evaluated using Akaike’s Information Criterion
(AIC) and showed that distance measured along drai-
nages and age of the colony were the most important
predictors of genetic distance among black-tailed prairie
dog (Cynomys ludovicianus) colonies (Roach et al., 2001).
In addition, Spear et al. (2005) included landscape
variables (including 10 cover types) in their analysis of
tiger salamander gene flow and showed that including
topographic distance, rivers and shrub habitat improved
the overall model fit by 50% compared to using straight-
line Euclidean distance. It is noteworthy that there
has been recent controversy about the statistical validity
of partial Mantel tests (Raufaste and Rousset, 2001;
Castellano and Balletto, 2002; Rousset, 2002), particularly
given their widespread use in landscape genetic studies.
However, variations of the partial Mantel test may
circumvent certain bias and autocorrelation problems
(Legendre, 1993, 2002).

Dispersal route analysis
Dispersal route analyses (including alternate paths, least-
cost paths and some network analyses) test the correlations
of alternative paths with genetic distance to infer the
most likely path of gene flow based on either pre-defined
paths or a priori weights along a vector or a friction
surface (e.g. Michels et al., 2001; Spear et al., 2005).
Alternate path approaches have included distances along
rivers for aquatic or riparian associated species (Michels
et al., 2001; Funk et al., 2005; Poissant et al., 2005; Vignieri,
2005) or the shortest straight-line path through suitable
habitat (Pfenninger, 2002; Arnaud, 2003; Coulon et al.,
2004). Least-cost models have been based on water flow
for passive dispersal (Michels et al., 2001), topography
and moisture (Spear et al., 2005; Vignieri, 2005) and
thermal cover (Scribner et al., 2005). For example, Arnaud
(2003) calculated a least-cost path between snail sam-
pling sites that followed canal embankments considered
good habitat for snail dispersal. Using Mantel correlo-
grams, least-cost distance had a stronger correlation with
genetic distance than did straight-line distance, and thus,
reserve design may focus on conservation of canal
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embankments. These studies demonstrated that pre-
defined paths and least-cost paths usually explain more
variation in gene flow than straight-line Euclidean
distance as estimated in traditional isolation-by-distance
studies.

Autocorrelation
Typical spatial analyses of genetic variation involve
quantifying genetic variation over distance (conceptually
similar to isolation-by-distance) based on spatial auto-
correlation such as a Moran’s I statistic (Epperson and Li,
1996; Arnaud, 2003) or semivariograms (Liepelt et al., 2002;
Wagner et al., 2005). A semivariogram provides a
graphical description of the variance between binned
observations at different distance classes (e.g. o5, 5–
10 m, etc) across the landscape (Fortin and Dale, 2005).
Thus, semivariogram values (in the presence of autocorre-
lation) are generally small when distance between
observations is close, and become larger as distances
increase (Fortin and Dale, 2005). For example, Wagner
et al. (2005) used directional semivariograms to show
distinct anisotropy (i.e. directionality) in genetic variation
as influenced by mode of reproduction (clonal or sexual)
and wind direction in the epiphytic lichen, Lobaria
pulmonaria. Semivariogram modeling mathematically
describes spatial autocorrelation, and by fitting a
variogram model to the empirical semivariogram, the
population variance can be estimated accounting for
spatial autocorrelation. Thus, semivariogram modeling
provides parameter estimates that are comparable
between studies (Wagner et al., 2005).

Spatial autocorrelation approaches are also useful for
defining the scale of genetic neighborhoods. Peakall et al.
(2003) used spatial autocorrelation incorporating multi-
ple microsatellite loci to identify the scale of genetic
variation over a 1 km transect in bush rats (Rattus
fuscipes), categorized by age and sex. They found that
subadult bush rats had a larger extent of genetic
similarity than adults (400 versus 200 m) and that
females had higher similarity over a larger area than
males (400 versus 300 m). Additional methods exist for
examining effects of multiple scales, such as hierarchical
analysis of variance and delineation of semivariance
(Cressie, 1993; Liburne et al., 2004). These methods can be
coupled with simulation techniques to examine the
expected genetic neighborhood size, or testing how
variability or pattern changes at different spatial scales
(Gardner et al., 1987; Saura and Martı́nez-Millán, 2001;
Wu, 2004).

Ordination
Ordination is another powerful tool that can be applied
to identify the influence of continuous variables and
gradients on genetic variation. Ordination is used to
elucidate the pattern of the spatial arrangement of
individuals using canonical correlation, principal com-
ponents analysis or multidimensional scaling (Jongman
et al., 1995). Canonical correspondence analysis (CCA) is a
type of ordination especially suited for investigating
relationships between species and their environment to
effectively identify gradients in environmental variables
(ter Braak and Verdonschot, 1995); space can be explicitly
incorporated as a covariate in CCA (Borcard et al., 1992).
CCA was applied to genetic data to determine that

genetic variation of the brook charr (Salvelinus fontinalis)
was influenced by drainage pattern, lake altitude, stock-
ing history and number of fish species (Angers et al.,
1999). Genetic data were incorporated in the model by
constructing a matrix of allele frequencies at each locus
in each lake in the study area. In a recent landscape
genetic analysis of cougars (Puma concolor) (McRae et al.,
2005), non-metric multidimensional scaling of shared
allele distances (Bowcock et al., 1994) was used to detect a
spatial discontinuity associated with desert and grass-
land habitats in the southwestern USA.

Landscape metrics
Landscape metrics can be applied to landscape genetics
studies to quantify landscape structure in multivariate
models that explore genetic variation. Landscape metrics
quantify the spatial arrangement of landscape patches
representing three levels: landscape, class and patch (for
reviews, McGarigal and Marks, 1995; Haines-Young and
Chopping, 1996). Landscape-level metrics quantify a
cumulative structural measure (e.g. mean patch size) of
all patches. Class metrics quantify a particular level (e.g.
specific vegetation type), and patch metrics describe each
individual patch (e.g. amount of edge relative to
interior). Landscape metrics can be particularly powerful
in metapopulation analysis where patch dynamics (e.g.
connectivity and/or fragmentation) can greatly influence
demography and gene flow. While methods for under-
standing influences of patch dynamics on ecological
process have been well-developed in landscape ecology
(O’Neill et al., 1988; McGarigal and Marks, 1995;
Gustafson, 1998), they have been used less often in
landscape genetics. However, Keyghobadi et al. (2005b)
used landscape metric analysis of mean patch size and
distance to edge to demonstrate that habitat fragmenta-
tion was associated with higher genetic differentiation
and lower gene flow in an alpine meadow-dwelling
butterfly (Parnassius smintheus) than in more contiguous
landscapes.

Spatial interpolation
A relatively promising but underutilized methodology
for landscape genetics is spatial interpolation, which can
be particularly useful for continuously distributed
species and derived data (as collected under systematic
or dense random sampling designs). Interpolation
techniques can be used to represent allele frequency
data across a landscape surface. Interpolation provides a
way to predict values and corresponding levels of
uncertainty for the variable of interest between points
where observations have been made. Previous studies
that applied interpolation typically used mitochondrial
DNA markers (Barbujani et al., 1989; Dupanloup et al.,
2002), which generally lack the resolution to reveal fine
scale-structure necessary for landscape genetic analysis.
However, Piertney et al. (1998) interpolated a map of
allelic composition by kriging the scores from the first
axis of a principle component analysis of allele frequen-
cies to examine spatial trends in a microsatellite study of
genetic variation of the red grouse (Lagopus lagopus
scoticus). Kriging uses a modeled semivariogram to create
an interpolated continuous surface from the observed
data (Isaaks and Srivastava, 1989). When a kriged
principal component surface was overlaid with habitat
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in a GIS, barriers to gene flow were visually found to
coincide with areas of unsuitable habitat.

Future directions

Future advances in this field will depend on the
development of new methods for translating genetic
data into a form that can be analyzed with well-
developed techniques from spatial analysis and land-
scape ecology. There are currently several future direc-
tions that could improve our ability to better integrate
landscape level analyses with population genetic data.
These include: improvements in the representation of
genetic data for spatial analysis, improving power for
analysis of noisy ecological data, expanding available
techniques to include multivariate approaches, model
validation, and simulation of landscape and species
distribution changes.

Representation of genetic data
It is critical to recognize that genetic data are different
from ecological data typically collected for spatial
analysis. In population genetics, data most often take
the form of a multilocus genotype, which is not a
direct measurement of a result of a spatial process
(e.g. microclimate). These multilocus genotypes are only
meaningful in relation to other individuals or popula-
tions, while most ecological field measurements are
meaningful as independent data points (e.g. soil moist-
ure at point y). However, spatial analysis methods
typically require data to be collected as comparable
point values that are geographically referenced to
sampling locations on the landscape (Epperson, 2003).

If multilocus genetic data can be represented as point
data, point pattern statistics are a powerful set of spatial
statistics for identifying local autocorrelation structure
(Anselin, 1995), clustering and spatial dependence
(Diggle, 2003). For example, point pattern statistics have
been used to map risk of sudden oak death according to
landscape position, topography and solar insolation
(Kelly and Meentemeyer, 2002). Two recent studies have
demonstrated the potential for using point pattern
statistics with spatially referenced genotypic data
(Shimatani, 2002; Shimatani and Takahashi, 2003). For
example, Shimatani (2002) used point pattern statistics to
show that a secondary growth beech (Fagus crenata)
forest patch contained trees from both the seed source
population and the harvested population, suggesting
that reproduction before harvest had provided important
recruitment and genetic diversity to the population. A
promising future direction would be to use point pattern
statistics to identify clusters of closely related individuals
and then map potential dispersal corridors based on
associated landscape variables.

A second major consideration of the use of genetic
data with landscape or ecological variables is that genetic
variation results from both historic and contemporary
processes. Therefore, current genetic variation may be
more representative of processes that occurred as a result
of a previous landscape configuration. If sufficient data
are available, genetic data should be tested with both
past and present landscapes to determine the strongest
association. For example, Keyghobadi et al. (2005a) found
that while genetic differentiation had the strongest
correlation with contemporary habitat fragmentation,

heterozygosity was better explained by fragmentation
that existed 40 years in the past. These results are
supported by recent work in the bush-cricket, Metrioptera
roeseli, where landscape changes have occurred on a
faster timescale that which resulting genetic changes can
be detected (Holzhauer et al., 2006).

Noisy data
Both ecological and genetic data can have a high level of
noise relative to statistical signal. One possible approach
to addressing this challenge is the application of
algorithmic models, powerful analysis tools for complex
data sets that can incorporate numerous independent
and dependent variables. Algorithmic models have
been used to describe the complex relationship between
environmental conditions, spatial arrangement and
species abundance (Déath and Fabricius, 2000; Aitken-
head et al., 2004). Classification and Regression Trees
(CART; Breiman et al., 1984) and randomforests (Brei-
man, 2001) are non-parametric models that partition
independent variables into levels that span the range of
the dependent variable, and are particularly robust with
variables that are categorical or ranked (e.g. land cover
type, soil type). Finally, classification tree type models
are robust to overfitting (Breiman, 2001) and are capable
of dealing with multiple non-linear relationships. These
types of models could be applied in landscape genetics
to model multiple response variables including genetic
discontinuities, migration rates and relatedness.

Improving multivariate analyses
One of the difficulties with many of the currently applied
techniques, such as the Mantel test or Moran’s I, is the
inability to employ multiple variables and interaction
terms in a single model. Spatial regression models, such
as autoregression, have been widely used in landscape
ecology to evaluate the association between abundance
and multiple environmental variables. Keitt et al. (2002)
tested a variety of conditional (CAR) and simultaneous
(SAR) autoregressive models, as well as exponential (ER)
and Gaussian (GA) geostatistical models to account for
spatial autocorrelation in species-habitat relationships.
CAR and SAR models build on traditional linear models
by incorporating a local spatial autocorrelation term,
while ER and GA model the correlation between errors
as a function of distance, thus accounting for spatial
pattern. In one of their three case studies of bank vole
(Clethrionomys glareolus) habitat selection among five
environmental variables, vole abundance increased with
vegetation height (which provided shelter from preda-
tors) and decreased with lichen and moss cover
(indicative of dry habitats) (Keitt et al., 2002). Autore-
gressive analyses are preferable over standard regression
analyses when there is significant spatial autocorrelation
(Fortin and Dale, 2005), which is often the case with
genetic data. Autoregressive and geostatistical models
could be applied in a landscape genetic context after
converting multilocus genotypes into a measure of a
spatial process.

Model validation
Once sampling has occurred, genotypic data have been
generated, and a model has been constructed, it is
important to test the significance of the selected land-
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scape genetic model(s). Ideally, researchers could repli-
cate study areas and analyses when evaluating models;
however, logistics may prevent replication due to the
nature of ecological systems and financial and/or time
constraints. One way to assess generalization of results is
to implement permutation or simulation tests to dis-
criminate whether observed relationships between land-
scape variables and genetic variation are not due to
random chance alone (Gardner et al., 1987; Turner, 2005).
Neutral landscapes are random realizations of the
landscape and can be used to rule out correlations due
to chance or extraneous influences (Gardner et al., 1987).
Simulated neutral landscapes that follow a function of
statistical similarity represented in the empirical land-
scape (e.g. autocorrelation) (Gardner et al., 1987; Saura,
2002) can be used to generate a null distribution and
p-values can be obtained via permutation (Li and Wu,
2004). By using this approach, researchers can determine
if observed relationships fall outside the 95% confidence
interval of the distribution, thus suggesting statistical
significance of model variable(s). Monte Carlo simulation
can also be used to quantify uncertainty in a random
field when using an interpolation model such as kriging
or when testing the uncertainty of a particular landscape
variable used in a model. The null hypothesis that all
genetic observations are spatially independent of one
another can be empirically rejected by bootstrapping or
other randomization tests.

Predicting landscape and species distribution changes
Predicting the effects of landscape change on genetic
variation is an important future application of landscape
genetics. For example, one may simulate the effect of
different proposed road widths or alternative forest
harvest plans on spatial patterns of genetic variation for a
species of concern. This type of study may allow
managers to choose a management alternative that
minimizes impacts on the focal species while allowing
some development to take place. Using landscape
change simulation models, such as LANDIS (Mladenoff,
2004), in conjunction with habitat suitability and meta-
population models, such as RAMAS (Akçakaya, 2002),
researchers can model population viability across differ-
ent hypothetical (or alternative proposed) landscapes.
While these models require demographic data for the
species of interest, genetic data could greatly inform
dispersal and habitat suitability parameters of the
models.

Landscape genetic studies also hold promise for
application to predicting and controlling spread of
invasive species (Sakai et al., 2001) or escape of
transgenes (Pilson and Prendeville, 2004; Marvier and
Van Acker, 2005). For example, identification of land-
scape barriers may allow researchers to predict locations
of barriers to invasive species spread and thus the
potential extent of the damage. At a broader scale,
researchers could use spatial data to investigate the
landscape-level distribution of invasive species to simu-
late possible spread. Similarly, simulation modeling may
allow researchers to determine the type and size of
barrier that could be implemented to contain invasive
species or transgenes. For example, when planting
transgenic crops, simulations could be conducted to
determine the appropriate buffer size such that trans-

genic pollen is unlikely to escape and thus avoid
potential hybridization with native species (Rieger
et al., 2002).

Conclusions

The goals of this review are to: discuss landscape
genetics as a discipline, suggest appropriate methods
for the sampling design, and show clear benefits of
utilizing well-developed methods in landscape ecology
and spatial statistics for analysis. The diversity of
vocabulary (e.g. Table 1), methods (e.g. Tables 2 and 3)
and ideas presented in this review clearly indicate the
challenges for collaborations among experts in popula-
tion genetics, landscape ecology and spatial statistics.
Experts working in these disciplines do not communicate
regularly, and such communication is critical for ad-
vancement of landscape genetics as a discipline. The
field of landscape genetics has been moving forward
rapidly, with much recent literature devoted to using
landscape genetics as a tool (Table 3). To advance the
field, we recommend that workshops and courses be
developed to foster cross-disciplinary communication
and collaborations that will advance the methodology
and approaches used in landscape genetics. In 2005, the
International Association of Landscape Ecologists con-
tributed greatly to this effort by holding a landscape
genetics symposium at their annual meeting, and the
ideas from this conference are now shared with the
broader community in a special issue of Landscape
Ecology (Holderegger and Wagner, 2006). We look
forward to a future with increased discussion and
collaboration among geneticists, landscape ecologists
and spatial statisticians.
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Appendix A

Resources for use in landscape genetics and spatial
analysis. Italics indicate free data or software.

Spatial software
GRASS – Free extensive GIS system. (Unix/Linux)
(http://www.opengrass.org)

SAGA – Free open source GIS system with raster and
vector capabilities. (Windows) (http://www.saga-gis.uni-
goettingen.de/html/index.php)

SPRING – Free raster and vector GIS system with
robust database and modeling environment. (Windows)
(http://www.dpi.inpe.br/spring/english/)

CHIPS – Free remote sensing image processing.
(Windows) (http://www.geogr.ku.dk/chips/index.htm)

MultiSpec – Free remote sensing image processing.
(Windows/Macintosh) (http://dynamo.ecn.purdue.
edu/%7Ebiehl/MultiSpec/)

OpenSouorceGIS – Links to Free Open Source/GIS
related software. (http://opensourcegis.org/)

ArcScripts – Free ESRI download site for scripts and
utilities. (ArcInfo, ArcGIS, and ArcView) (http://
arcscripts.esri.com)

R project for statistical computing – Free statistical
analysis software with several packages for spatial
modeling. (Windows/UNIX) (http://www.r-project.org/)

Rgeo – Web pages for analysis of spatial data using R.
(Windows/UNIX) (http://sal.uiuc.edu/csiss/Rgeo/)

ADE4 – Ecological data analysis using exploratory and
Euclidean methods. (Windows) (http://pbil.univ-
lyon1.fr/ADE-4/ADE-4.html)

GeoDA – ESDA, autocorrelation, spatial regression,
and LISA. (Windows) (http://www.csiss.org/clearing-
house/GeoDa/)

Geographically Weighted Regression – Inexpensive,
software for GWR. (Windows) (http://ncg.nuim.ie/ncg/
GWR/)

OpenBUGS – Bayesian analysis using MCMC. (Win-
dows) (http://mathstat.helsinki.fi/openbugs/)

Fragstats – Landscape metrics (raster based). (Win-
dows) (http://www.umass.edu/landeco/research/frag-
stats/fragstats.html)

LEAP-II – Landscape metrics (raster based). (Win-
dows) (http://www.ai-geostats.org/software/Geos-
tats_software/leap.htm)

V-LATE – Landscape metrics extension for ESRI
ArcGIS with (vector based). (Windows) (http://
www.geo.sbg.ac.at/larg/vlate.htm)

STARMA/IEAST – STARMA modeling. (http://fried.-
for.msu.edu/)

SIMMAP – Landscape pattern simulation using
modified random clusters. (Windows) (http://web.u-
dl.es/usuaris/saura/)

RMLANDS – Simulation of natural and anthropogenic
disturbances (http://www.umass.edu/landeco/research/
rmlands/rmlands.html)

LANDIS-II – Simulation of forest succession, distur-
bance, and seed dispersal (http://landis.forest.wisc.edu/)

RAMAS – Landscape metapopulation models. Mod-
erately priced. (Windows) (http://www.ramas.com/
software.htm)

CrimeStat – Point pattern statistics. (Windows) (http://
www.icpsr.umich.edu/CRIMESTAT/)

Point Pattern Analysis (PPA) – Web based point pattern
analysis. (http://www.nku.edu/~longa/cgi-bin/cgi-tcl-
examples/generic/ppa/ppa.cgi)

Genetic software
Alleles in Space – Joint spatial and genetic analysis
(http://www.marksgeneticsoftware.net/)

BAPS – Baysian Assignment of Population Structure –
Bayesian identification of population sub-division and
population assignment, 4.1 includes a spatial model
(http://www.rni.helsinki.fi/~jic/bapspage.html)

Barrier – Identifies genetic barriers using Monmonier’s
algorithm (http://www.mnhn.fr/mnhn/ecoanthropolo-
gie/software/barrier.html)

BayesASS – Bayesian assignment test, identifies migrants
(http://www.rannala.org/labpages/software.html)

Circuitscape – Identifies genetic breaks based on circuit
theory (http://www2.for.nau.edu/SOFArchive/Graduate-
Research/bhm2/circuitscape.htm)

GenAlEx – Genetic Analysis in Excel including related-
ness, F-stats, Mantel tests, autocorrelation (http://www.
anu.edu.au/BoZo/GenAlEx/genalex_download.php)

Geneland – Population assignment incorporating geo-
references data (http://www.inapg.inra.fr/ens_rech/
mathinfo/personnel/guillot/Geneland.html)

IBD – Analyses genetic isolation by geographic
distance (http://phage.sdsu.edu/~jensen/)

IMMANC – Detect immigration/dispersal (http://
www.rannala.org/labpages/software.html)

McMantel – Mantel test between genetic and geo-
graphic distance matrixes dbmcd@uwyo.edu (Contact
author)

Migrate – Detect immigration/dispersal using coales-
cent modeling (http://evolution.genetics.washington.
edu/lamarc/migrate.html)

Partition – Identifies population sub-division and
assigns individuals to populations (http://www.univ-
montp2.fr/~genetix/partition/partition.htm)

PCAGEN – Principal components analysis (http://
www2.unil.ch/popgen/softwares/pcagen.htm)

SPAGei – Spatial genetic structure of individuals and/
or populations (http://www.ulb.ac.be/sciences/ecoe-
vol/spagedi.html)

Structure – Bayesian identification of population sub-
division and population assignment (http://pritch.bsd.
uchicago.edu/software.html)

SGS – Autocorrelation of microsatellite data (ftp://
ghd.dnsalias.net/degen/software.html)

TFPGA – Mantel tests (http://www.marksgeneticsoft-
ware.net/)

Miscellaneous resources
AI-GEOSTAT – A geostatistics resource web site with a
mail list server, FAQ, and software resources (http://
www.ai-geostats.org/)

Center for Spatially Integrated Social Sciences (CSISS)
– Extensive spatial literature search engine (http://
www.csiss.org/)

Brian Epperson’s web site – Resources for geogra-
phical genetics (http://www.for.msu.edu/faculty/
fmembers/epperson.htm)

Pierre Legendre’s web site – Resources for spatial
ecology (http://www.bio.umontreal.ca/legendre/index-
English.ht)
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