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Random forests and stochastic gradient boosting for predicting
tree canopy cover: comparing tuning processes and model
performance1

Elizabeth A. Freeman, Gretchen G. Moisen, John W. Coulston, and Barry T. Wilson

Abstract: As part of the development of the 2011 National Land Cover Database (NLCD) tree canopy cover layer, a pilot project
was launched to test the use of high-resolution photography coupled with extensive ancillary data to map the distribution of tree
canopy cover over four study regions in the conterminous US. Two stochastic modeling techniques, random forests (RF) and
stochastic gradient boosting (SGB), are compared. The objectives of this study were first to explore the sensitivity of RF and SGB
to choices in tuning parameters and, second, to compare the performance of the two final models by assessing the importance
of, and interaction between, predictor variables, the global accuracy metrics derived from an independent test set, as well as the
visual quality of the resultant maps of tree canopy cover. The predictive accuracy of RF and SGB was remarkably similar on all
four of our pilot regions. In all four study regions, the independent test set mean squared error (MSE) was identical to three
decimal places, with the largest difference in Kansas where RF gave an MSE of 0.0113 and SGB gave an MSE of 0.0117. With
correlated predictor variables, SGB had a tendency to concentrate variable importance in fewer variables, whereas RF tended to
spread importance among more variables. RF is simpler to implement than SGB, as RF has fewer parameters needing tuning and
also was less sensitive to these parameters. As stochastic techniques, both RF and SGB introduce a new component of uncer-
tainty: repeated model runs will potentially result in different final predictions. We demonstrate how RF allows the production
of a spatially explicit map of this stochastic uncertainty of the final model.

Key words: tree canopy cover, predictive mapping, classification and regression trees, random forest, stochastic gradient boosting.

Résumé : Dans le cadre de l'élaboration de la couche cartographique du couvert forestier de la National Land Cover Database
2011, un projet pilote a été lancé pour tester l'utilisation de la photographie haute résolution couplée à de multiples données
accessoires pour cartographier la distribution du couvert forestier dans les états contigus des États-Unis. Deux techniques de
modélisation stochastique, les forêts aléatoires (FA) et le « gradient boosting » aléatoire (GBA) sont comparées. Les objectifs de
cette étude consistaient : premièrement à explorer la sensibilité des deux techniques face aux choix pour le réglage des
paramètres; et deuxièmement à comparer la performance des deux modèles finaux en évaluant l'importance des variables
prédictives et leurs interactions, les mesures d'exactitude globale dérivée d'un dispositif de test indépendant, de même que la
qualité visuelle des cartes du couvert forestier qui sont produites. L'exactitude des prévisions des deux techniques était remar-
quablement similaire dans les quatre régions pilotes. Dans les quatre régions, l'EQM du dispositif de test indépendant était
identique à trois décimales près; le plus grand écart était au Kansas où la technique FA produisait un EQM de 0,0113 tandis que
la technique GBA produisait un EQM de 0,0117. Avec des variables prédictives corrélées, la technique GBA avait tendance à
concentrer l'importance des variables sur moins de variables alors que la technique FA avait tendance à répartir l'importance
parmi davantage de variables. La technique FA est plus simple à appliquer que la technique GBA étant donné qu'elle compte à
la fois moins de paramètres qui ont besoin de réglage et qu'elle est aussi moins sensible à ces paramètres. En tant que techniques
stochastiques, tant la technique FA que la technique GBA introduisent une nouvelle composante d'incertitude : des simulations
répétées vont potentiellement produire différentes prédictions finales. Nous illustrons comment la technique FA permet de
produire une carte spatialement explicite de cette incertitude stochastique du modèle final. [Traduit par la Rédaction]

Mots-clés : couvert forestier, cartographie prédictive, classification et arbres de régression, forêts aléatoires, « gradient boosting »
aléatoire.

1. Introduction
The tree canopy cover in a given area is a primary structural

characteristic of both forested and nonforested landscapes. Un-
derstanding and quantifying the spatial distribution of tree can-
opy cover is relevant to many applications, including forest
management (Jennings et al. 1999), fire modeling (Rollins and

Frame 2006), air pollution mitigation (Nowak et al. 2006), stream
and water temperatures (Webb and Crisp 2006), and carbon stor-
age (Kellndorfer et al. 2006). Because of the importance of tree
canopy cover, Homer et al. (2007) developed a 30 m geospatial
dataset of percent tree canopy cover in the United States as part of
the 2001 National Land Cover Database (NLCD, http://www.mrlc.
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gov/). As part of the development of the updated 2011 NLCD tree
canopy cover layer, a national pilot project was launched to test
the use of high-resolution photography acquired though the
National Agriculture Imagery Program (NAIP) coupled with exten-
sive ancillary data layers through alternative sampling and mod-
eling methodologies (Coulston et al. 2012).

Nationwide mapping of tree canopy cover posed numerous tech-
nical questions: alternative means to observe tree canopy cover
(Frescino and Moisen 2012), the relationship between photo-based
tree canopy cover and canopy modeled from extant forest inventory
plots (Toney et al. 2012), repeatability in photo-interpretation
(Jackson et al. 2012), efficient sampling strategies (Tipton et al. 2012),
and choice of appropriate subpopulations over which to construct
predictive models (Moisen et al. 2012). Related to modeling method-
ologies, Coulston et al. (2012) compared the parametric modeling
technique beta regression with the nonparametric technique of ran-
dom forest (RF) and found that the RF modeling technique outper-
formed the beta regression approach, based on pseudo R2, root mean
squared error, and slope versus intercept of the observed verses pre-
dicted regression line. In addition, they found that the degree to
which RF outperformed beta regression was related to model
quality. In regions with high-quality models, RF only slightly out-
performed beta regression, whereas in regions with low-quality
models, RF offered a more marked improvement. Now, in this
study, two nonparametric modeling techniques, both involving
an ensemble of classification and regression trees, are compared:
RF and stochastic gradient boosting (SGB).

There has been little direct comparison of RF and SGB for con-
tinuous response models, although previous work by Chirici et al.
(2013) looking at categorical response models found that SGB out-
performed RF, particularly for the rare categories.

RF (Breiman 2001) has received considerable attention in the
ecological literature. Prasad et al. (2006) gave an overview of the
use of RF for ecological prediction. Baccini et al. (2008) used RF to
map aboveground biomass in tropical Africa from satellite imag-
ery. Chan and Paelinckx (2008) compared RF with Adaboost for
mapping ecotopes from airborne hyperspectral imagery and
found both models to work well, with RF having the advantage of
faster training time and greater stability and robustness, while
Adaboost had a slight advantage in accuracy. Evans and Cushman
(2009) used RF to produce continuous probability of occurrence
maps for four conifer species in northern Idaho, USA, based on a
combination of climactic, topographic, and spectral predictor
variables. Gislason et al. (2006) found that RF performed well com-
pared with basic classification and regression tree (CART) models,
as well as other bagging and boosting models, for landcover clas-
sification based on Landsat and topographic predictors. Lawrence
et al. (2006) found that RF outperformed CART models for map-
ping invasive plants using hyperspectral imagery and also found
that the out-of-bag (OOB) accuracy assessments provided by RF
were reliable when compared with withheld test data. Powell
et al. (2010) compared RF with reduced major axis regression and
gradient nearest neighbor imputation for mapping biomass from
Landsat satellite imagery and found that RF performed favorably
in terms of RMSE, although poorly in terms of variance ratio.

SGB (Friedman et al. 2000; Friedman 2001, 2002) is now gaining
recognition in ecological modeling. De'ath (2007) summarized the
benefits that SGB can offer ecologists and provides an introduc-
tion to its use with ecological datasets, while Elith et al. (2008)
provided guidelines for its use in ecological modeling. However,
little attention has been paid to tuning SGB models in ecological
applications. For example, Güneralp et al. (2014) and Filippi et al.
(2014) compare SGB, multivariate adaptive regression splines
(MARS), and cubist for mapping aboveground floodplain biomass
and found that both SGB and MARS outperformed cubist. Both
papers examined mapping at a relatively small spatial scale —
their map area was a single river bend of 0.219 km2. Their general
results may be applicable at all scales, but they did not look at

the practical issues of tuning SGB models for large-scale maps.
Güneralp et al. (2014) sets tuning parameters empirically, whereas
Filippi et al. (2014) does not examine tuning in detail but states
that they tested other learning rates and found poorer perfor-
mance.

Leathwick et al. (2006) found SGB to offer superior predictive
performance to generalized additive models (GAM) for predicting
and mapping fish species richness. They looked at three values for
the interaction depth parameter and left the other parameters at
their default values. Sankaran et al. (2008) used SGB not to pro-
duce maps, but rather to investigate the relationship between
predictor variables in regulating the woody cover in African sa-
vannas. They used the default shrinkage parameter and cross val-
idation to determine optimal values of interaction depth and
number of trees. Lawrence et al. (2004) compared SGB and classi-
fication tree analysis (CTA) for classification of remotely sensed
imagery for use in forestry and found that SGB improved accu-
racy, although the strength of the improvement was dataset de-
pendent. They do not describe how their SGB parameters were set.
Moisen et al. (2006) compared the performance of SGB, GAM, and
proprietary tree-based methods for predicting tree species pres-
ence and basal area in Utah and found that for the majority of
species, SGB models were the most accurate at predicting species
presence and competitive with the other techniques for predict-
ing basal area. Parameters were set based on a related dataset, but
the tuning process is not described. Baker et al. (2006) found SGB
more effective than CTA for mapping wetlands and riparian areas
from Landsat data supplemented with topographic and soils data,
although model parameter selection is not mentioned. Pittman
et al. (2009) found that SGB worked well to predict the diversity
and abundance of fish and corals from underwater Lidar bathym-
etry with parameters left at their default values.

In addition to the issues of model tuning, stochastic techniques
such as RF and SGB also introduce a new component of uncertainty:
repeated model runs will potentially result in different final predic-
tions. This uncertainty can be reduced by careful model tuning, and
in the case of RF models, it is possible to produce a spatially explicit
map based estimate of the stochastic uncertainty remaining in the
final model. In RF, the individual trees are independent, allowing the
standard deviation of the individual-tree predictions to be calculated
for each pixel in the map, providing a measure of the stochastic
variability in the map's predictions.

Stochastic models such as RF and SGB are powerful modelling
techniques that have been shown to provide superior predictive
performance to parametric methods in a variety of applications
(e.g., Moisen and Frescino 2002, Prasad et al. 2006, Powell et al.
2010), as well as for the specific datasets examined here (Coulston
et al. 2012). RF has been used extensively in ecological and remote
sensing applications, whereas SGB is beginning to gain recogni-
tion. However, there has been little direct comparison of these
two techniques for continuous ecological data, which this paper
provides. In addition, the nonparametric modeling literature calls
attention to the importance of tuning in the modeling process.
Yet, in the applied ecological and natural resource literature, par-
ticularly predictive modeling of forest attributes, this important
phase of the modeling process is often ignored. Consequently, we
explore the sensitivity of RF and SGB to choices in tuning param-
eters in modeling tree canopy cover over four diverse study re-
gions in the conterminous Unites States (US). Second, the study
sought to compare the performance of the two final models in
each study area by assessing the importance of, and interaction
between, predictor variables under each modeling technique, the
global accuracy metrics derived from an independent test set, and
the visual quality of the resultant maps of tree canopy cover.
Finally, for the RF model, we produce a map of the stochastic
uncertainty remaining in the final tuned model and illustrate the
value of this metric for map users by examining in detail two areas
of this map that show particularly high levels of uncertainty.
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2. Materials and methods

2.1. Study regions
Four study regions in the US were used in this pilot study:

Georgia (GA), Kansas (KS), Oregon (OR), and Utah (UT). These loca-
tions provide a contrast between high crown cover (GA and OR)
and lower crown cover (KS and UT). Kansas, in particular, posed a
challenge to model tuning as over half of the study region has zero
tree canopy cover. These locations also provide a contrast in the
types of tree cover present. Georgia has a higher proportion of
broad-leaf tree species, whereas Oregon has a high proportion of
conifer species. Utah includes large areas of pinyon–juniper wood-
lands (Table 1).

Each study region was approximately the size of one Landsat
scene and were selected to cross local ecological gradients. For
example, the GA study area ranged from the Piedmont region in
the south, through the Atlanta metropolitan area, to the heavily
forested Appalachian Mountains in the north.

2.2. Data
An intensive (approximately 1 km × 1 km) grid of photo-

interpretation plots was established over the four pilot regions.
The imagery is provided by the National Agriculture Imagery Pro-
gram (NAIP) (U.S. Department of Agriculture (USDA) 2009) col-
lected during the growing season in 2009. The grid for locating the
photo plots is adopted from the Forest Inventory and Analysis
(FIA) sample design (Bechtold and Patterson 2005) of a quasi-
systematic sample based on White et al. (1992). This design is
assumed to produce a random equal probability sample (McRoberts
et al. 2005). The FIA sample design has a nominal sampling inten-
sity of approximately one sample location per 2400 ha across all
land covers and types. For this pilot study, the FIA sample design
has been intensified 4× (1 plot per 600 ha) as described by White
et al. (1992).

Each photo plot consisted of a 105-point triangular grid distrib-
uted in a 90 m × 90 m square area surrounding the sample loca-
tion. Each dot was characterized as “tree canopy” or “no tree
canopy”. The response variable of percent tree canopy cover was
defined as the proportion of tree canopy dots identified on the
photo plot. The design-based estimators of proportion canopy
cover in each photo plot, mean proportion canopy cover in each
study region, and standard error of the estimate were obtained
following Cochran (1977) (Table 2).

Predictor variables included transformed aspect, slope, eleva-
tion, topographic positional index (Moore et al. 1991), Bailey's
ecoregions (Bailey 1995), land cover and tree canopy cover from
the 2001 NLCD (Homer et al. 2004), and Landsat-5 reflectance
bands (Table 3). The Landsat data were also leaf-on and from either
2008 or 2009, depending on cloud cover. Because many of the
predictor variables originated from 30 m pixel resolution prod-
ucts, assignment to each 90 m × 90 m plot was accomplished by
taking a focal mean over a 3 pixel × 3 pixel window for continuous
variables and a focal majority for the categorical variables. See
Coulston et al. (2012) for more details on data used in this study.

This study is part of a larger mapping project whose goal is
updating and improving the 2001 NLCD. This drove the selection
of a number of the predictor variables used in this study.

Because we have relatively large data sets (approximately 4000 data
points per region), we were able to use independent tuning and
test data to build and evaluate both RF and SGB models. We ran-
domly assigned 25% of the data from each region as a tuning set
and 25% as independent test data, leaving 50% for model training,
as suggested by Hastie et al. (2009).

2.3. Models
CART models (Breiman et al. 1984) are flexible and robust tools

that are well suited to the task of modeling the relationship

Table 1. Percentage of photo plots per National Land Cover Database
(NLCD) land cover class for the four study regions.

Percentage of photo plots

Code Land cover class Georgia Kansas Oregon Utah

11 Open water 2 2 1 0
12 Perennial ice/snow 0 0 0 0
21 Developed open space 11 4 2 1
22 Developed low intensity 6 2 1 0
23 Developed medium intensity 2 0 0 0
24 Developed high intensity 1 0 0 0
31 Barren land 1 0 1 4
41 Deciduous forest 39 8 0 4
42 Evergreen forest 19 0 45 35
43 Mixed forest 1 0 2 2
52 Shrub/scrub 1 0 36 45
71 Grassland/herbaceous 3 41 2 3
81 Pasture/hay 12 17 5 3
82 Cultivated crops 0 24 4 1
90 Woody wetlands 2 1 0 0
95 Emergent herbaceous wetlands 0 0 1 0

Table 2. Mean percent tree canopy cover (TCC) and the standard error of
the mean (SE(TCC)) for each study area for NLCD2001 forest land cover
urban land cover and across all land cover classes based on photo inter-
pretation. (Table from Coulston et al. (2012), reproduced with permission
from the American Society for Photogrammetry & Remote Sensing,
Bethesda, Maryland (asprs.org)).

Percent tree canopy
cover

Study region Land cover class Mean SE(TCC)

Georgia Forest 84.1 0.45
Urban 41.1 0.94
All 66.0 0.53

Kansas Forest 71.0 1.57
Urban 14.5 1.28
All 12.8 0.40

Oregon Forest 66.5 0.60
Urban 26.4 2.33
All 41.6 0.51

Utah Forest 52.0 0.68
Urban 9.1 1.68
All 27.4 0.47

Table 3. Predictor variable for models.

Predictors Description

NORTHNESS Northness — cos(aspect)
EASTNESS Eastness — sin(aspect)
SLOPE Slope
CTI Compound topographic index
ELEV Elevation
ECOREG Bailey's ecoregions
LC Land cover class from 2001 NLCD
TCC2001 Tree canopy cover from 2001 NLCD
BAND1 Landsat-5 band 1 — blue
BAND2 Landsat-5 band 2 — green
BAND3 Landsat-5 band 3 — red
BAND4 Landsat-5 band 4 — near IR
BAND5 Landsat-5 band 5 — shortwave IR
BAND7 Landsat-5 band 7 — shortwave IR

Note: For predictor variables originated from 30 m products, assignment to
each 90 m plot was accomplished by taking a focal mean or focal majority over
a 3 × 3 window for continuous variables and focal majority for the categorical
variables. NLCD, National Land Cover Database; IR, infrared. See Coulston et al.
(2012) for more details on the predictor variables.
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between a response and a set of explanatory variables for the
purposes of making spatial predictions in the form of a map.
These are intuitive methods, often described in graphical or bio-
logical terms. A CART model begins at its root. An observation
passes down the tree through a series of splits, or nodes, at which
a decision is made as to which direction to proceed based on
values of the explanatory variables. Ultimately, a terminal node,
or leaf, is reached and a predicted response is given, which is
typically the mean of observations in the terminal node for a
continuous response, or a plurality vote for a categorical re-
sponse. See De'ath and Fabricius (2000) for a thorough explana-
tion and Moisen (2008) for a simple overview.

Although CART models are powerful tools by themselves, much
work has been done in the data-mining and machine-learning
fields to improve the predictive ability of these models by com-
bining separate tree models into what is often called a committee
of experts, or ensemble. Two such ensemble techniques consid-
ered here are RF and SGB models.

As discussed earlier, RF is receiving increasing attention in the
ecological and remote sensing literature. In this technique, a boot-
strap sample of the training data is chosen. At the root node, a
small random sample of explanatory variables is selected and the
best split is made using that limited set of variables. At each
subsequent node, another small random sample of the explana-
tory variables is chosen, and the best split is made. The tree con-
tinues to be grown in this fashion until it reaches the largest
possible size and is left unpruned. The whole process, starting
with a new bootstrap sample, is repeated 500 or more times. The
final prediction is a vote (for categorical responses) or average (for
continuous variables) from the predictions of all of the trees in the
collection. Because each tree is built from a subsample of the
training data, the unsampled portion of the data can be used to
produce OOB model predictions for that tree. In addition, these
independent trees allow a pixel by pixel estimate of the variability
in the predictions of the individual trees in the final model. The
standard deviation of these predictions can be calculated for each
pixel. This is not to be misconstrued as a prediction interval, but
instead is a useful measure of uncertainty in the resultant maps.

Unlike RF, which is an ensemble of independent trees, SGB
sequentially builds many small classification or regression trees
sequentially from “pseudo”-residuals (the gradient of the loss
function) of the previous tree. At each iteration, a tree is built
from a random subsample of the “pseudo”- residuals (selected
without replacement), producing an incremental improvement in
the model. In SGB, the trees are not grown to completion (as in
RF); instead, the maximum tree size is specified by a model
parameter.

2.4. Software
Analysis was conducted in the R software environment

(R Development Core Team 2008) using the package ModelMap
(Freeman and Frescino 2009). Many of the diagnostic and graphi-
cal tools available in the current version of this package were
developed concurrently with this study to address questions that
occurred while comparing these models. ModelMap constructs
predictive models of continuous or discrete responses by calling
the R packages randomForest (Liaw and Wiener 2002) and gbm
(Ridgeway et al. 2013), respectively. These models are then ap-
plied to image files of predictors to create detailed prediction
surfaces.

2.5. Tuning process

2.5.1. Tuning RF
RF, as implemented by the R package randomForest, only re-

quires the user to make decisions about two tuning parameters.
The first, mtry, controls the number of predictor variables ran-
domly sampled to determine each split. RF models are relatively
insensitive to the choice of mtry (Breiman 2001; Liaw and Wiener

2002), although higher values of mtry tend to work better in cases
where only a few of the predictors contribute to the model and
there are a lot of “noise” predictors containing no useful informa-
tion (Liaw and Wiener 2002; Prasad et al. 2006). The second tuning
parameter, ntrees, controls the total number of independent
trees. The number of trees required to stabilize variable impor-
tance (Liaw and Wiener 2002) and variable interaction (Evans and
Cushman 2009, referencing personal communication of Adele
Cutler) may be larger than the number required to stabilize pre-
diction accuracy.

For mtry, a suggested starting point for tuning continuous
response models is the number of predictor variables divided
by three, followed by checking half this number and twice this
number. Our models had 14 predictor variables, and thus we
considered three possible values for mtry: 2, 4, and 8. Using the
50% training data set, we built 20 models for each value of mtry,
with 2500 trees each.

From each model, predictions were made on the 25% tuning
data set from subsets of increasing numbers of trees (100 trees,
200 trees, …, 2500 trees). Three error measures (mean squared
error (MSE) and Pearson and Spearman correlations) were plotted
against number of trees, with the mtry value of each model indi-
cated by line color.

2.5.2. Tuning SGB
SGB, implemented by the R package gbm (Ridgeway et al. 2013)

requires the user to make choices about a larger number of tuning
parameters, including shrinkage, bagging fraction, interaction
depth, and number of trees. Note that the names used for these
parameters differ throughout the literature. This is just differing
terminology for describing the same parameters, but these differ-
ing terminologies can be daunting for new users. Even the name
of the technique itself varies in the literature. Table 4 provides a
cross reference for translating among the terminologies used by
different authors.

Tuning SGB models is complicated by the fact that changing any
one of the parameters can affect the optimal values of the other
parameters. Shrinkage, also known as the learning rate, controls
the influence of each successive tree on the final predictions. A
lower shrinkage (i.e., a slower learning rate) increases the number
of trees required and thus increases computing time but also
reduces the chance of overfitting. Bagging fraction, also known as
sampling fraction, controls the fraction of the training data ran-
domly selected to build each tree. Smaller bagging fractions re-
duce the chance of overfitting but result in increased variability
between model runs, i.e., increased model uncertainty (Friedman
2002). Interaction depth, also known as tree size or tree complex-
ity, controls the maximum size of each tree. As in RF, number of
trees controls the total number of trees. Unlike in RF, using too
many trees in SGB does result in overfitting and poorer model
performance on independent test data. Ridgeway (2007) recom-
mended balancing shrinkage and number of trees to result in
models with between 3000 and 10 000 trees and shrinkage rates
between 0.01 and 0.001. Elith et al. (2008) recommended models
have at least 1000 trees.

As in RF, we built models using the 50% training data and then
used accuracy statistics calculated on the 25% tuning data to
optimize model parameters. We started by building 10 models of
6000 trees each, for combinations of shrinkage (0.008, 0.004,
0.002, 0.001), bagging fraction (0.1 to 0.9), and interaction depth (1,
2, 4, 8), for each of the four regions. We calculated the three error
measures (MSE and Pearson and Spearman correlations) using
the tuning data and then averaged these error measures over the
10 models for each combination of model parameters. We then
followed this with a separate fine tuning for each individual re-
gion. For example, in pilot regions that seemed to still be improv-
ing at an interaction depth of 8, we tried interaction depths of 10
and 12. After optimizing bagging fraction and interaction depth,
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we selected a shrinkage that resulted in a model that met our goal
of having the optimum number of trees lie between 3000 and
5000 to balance model accuracy with reasonable computational
efficiency.

2.6. Model comparisons
One final RF and one final SGB model were run for each of the

four pilot regions using the 50% training data and tuning param-
eters optimized through the tuning process described above.
Comparisons were then made in each pilot area between the two
final models by assessing the predictor variables for relative vari-
able importance and interaction effects under each modeling
technique, the map accuracy metrics derived from the 25% test
set, and the quality of the resultant maps of tree canopy cover.

2.6.1. Role of predictor variables
Unlike simpler model structures such as linear models, tree-

based ensemble models do not have a straightforward formula
linking predictor variables to model predictions. There are, how-
ever, several techniques that can be used to shed some light on the
underlying relationships.

Variable importance
Both RF and SGB provide estimates of the relative importance of

each predictor variable to the final model. The randomForest
package offers two options for calculating variable importance,
first by permuting OOB data, and second by calculating the de-
crease in node impurities from splitting on the variable. The gbm
package calculates the relative influence of each variable in reduc-
ing the loss function. With continuous response (modeled with a
Gaussian loss function), this is the reduction of squared error
attributable to each variable. For this study, we compare the per-
mutation importance for our RF models with the relative influ-
ence of our SGB models.

Variable interactions
We also examined two-way interactions between predictor vari-

ables graphically using the three-dimensional partial dependency
plots presented in Elith et al. (2008). The “model.interaction.plot”
function from the ModelMap package further developes these
plots to include the ability to investigate both continuous and
categorical predictor variables. In these plots, the predictor vari-
ables are examined two at a time. An x–y grid is created of possible
combinations of predictor values over the range of both variables.
The remaining predictor variables are fixed at either their means
(for continuous predictors) or their most common value (for cat-
egorical predictors). Model predictions are generated over this
grid and plotted as the z axis.

2.6.2. Accuracy measures
Histograms were made of the distribution of tree canopy cover

(TCC) for the observed test data within each pilot area and com-
pared with the histograms of the RF and the SGB predictions. In
these histograms, the vertical bars represent the number of photo
plots in the test set that have a given value of percent canopy
cover. Comparing the observed distribution of plots as a function
of crown cover with that of the model predictions allows an as-
sessment of how well the model predictions capture the range of

the observed data, in particular, how well they predict the ex-
tremes of the data — does each model predict an accurate propor-
tion of very low and very high canopy cover?

In addition, for each pilot area, we examined final model accu-
racy in terms of MSE and Pearson and Spearman correlation coef-
ficients, the difference between the mean of the observed TCC and
the mean of the predicted TCC, and the slope and intercept of the
observed versus predicted TCC regression line. Pearson correla-
tion coefficient is a measure of the linear relationship, whereas
Spearman correlation coefficient is a measure of the monotonic
relationship (Hauke and Kossowski 2011). Although it is common
to use Pearson correlation for ordinal data and Spearman correla-
tion for ranked data, Spearman correlation can also be useful even
for ordinal data if there are outliers or to identify a nonlinear but
monotonic relationship.

2.6.3. Map quality
We used the final RF and SGB models for Utah to produce maps

for that region, with predictions for each 90 m pixel. The maps
were generated using the same scales and colors and were exam-
ined visually for spatial structures that differed between the RF
and SGB predictions. Histograms of number of pixels predicted by
percent predicted TCC over all map pixels in the Utah pilot region
were compared for the final RF and SGB models.

A map of the stochastic uncertainty remaining in the final RF
model for Utah was also created. This map was built by calculating
the standard deviation for each pixel from the predictions of each
of the independent randomly generated trees that compose the
RF model. If the individual trees are in agreement, the uncertainty
is low. If the trees are not in agreement, with some trees predict-
ing low TCC and others predicting high TCC, then the uncertainty
is higher. In SGB, the trees are not independent, thus this uncer-
tainty map is not available.

3. Results

3.1. Tuning process

3.1.1. Tuning RF models
As suggested by Breiman (2001) and Liaw and Wiener (2002), RF

proved to be relatively insensitive to the choice of mtry (Fig. 1).
Figure 1 illustrates how accuracy metrics are affected by the ntree
and mtry parameters for two of our study regions. The lines rep-
resent each independent model run, with the shade of the lines
indicating the value of mtry used for that particular model run.
The vertical spread of a given color indicates the variation be-
tween independent model runs, in other words, the stochastic
uncertainty. This uncertainty is highest when the models have
relatively few trees and decreases as more trees are added. The
influence of mtry can be seen by the distance between the three
shades of the lines once the model runs have stabilized at higher
values of ntree. In this figure, Georgia shows greater stochastic
uncertainty for a given value of the mtry parameter (a greater
spread within the lines of a given color), particularly for low val-
ues of ntree, whereas Kansas shows a slightly greater sensitivity to
the mtry parameter (a greater distance between the three colors),
particularly at higher values of ntree.

Table 4. Terminology for stochastic gradient boosting (SGB) model parameters as used by various authors.

Friedman (2002) Elith et al. (2008) Ridgeway (2007) gbm package

Stochastic gradient boosting Boosted regression trees Generalized boosted models Generalized boosted models
Error distribution Response type Distribution Distribution
M — iterations nt — number of trees T — number of iterations n.trees
L — tree size/number of terminal nodes tc — tree complexity/number of nodes K — interaction.depth interaction.depth
� — shrinkage lr — learning rate � — learning rate shrinkage
f — sampling fraction Bag fraction p — subsampling/bagging rate bag.fraction
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In most regions, MSE and correlation stabilized at between 1000
and 1500 trees, and there was no evidence of overfitting with the
larger number of trees. As trees are added to the models, both the
training and the tuning MSEs initially decrease and then stabilize at
higher numbers of trees (overfitting would have led to the tuning
data MSE increasing with higher numbers of trees and the training
MSE continuing to decrease). Keeping in mind that stabilizing vari-
able importance (addressed later) may require more trees than sta-
bilizing model accuracy (Liaw and Wiener 2002), we used 2000 trees
for our final models. The four study regions exhibited similar effects.

The RF models were relatively insensitive to the mtry parameter. Of
the four study regions, Kansas showed the greatest sensitivity to
mtry, but even in that region, the effects of varying mtry were minor:
when the tuning set error statistics were compared for the three
values of mtry, MSE ranged from 0.014 to 0.015, Pearson correlation
ranged from 0.868 to 0.865, Spearman correlation ranged from 0.63
to 0.64, and the predicted mean ranged from 0.129 to 0.130. An mtry
of 4 performed best overall in Georgia and Oregon, whereas an mtry
of 8 performed best in Kansas and Utah, but in all four regions, the
improvements from tuning mtry were very slight.

Fig. 1. Tuning RF — effect of mtry and ntree on RF models for Georgia and Kansas. Each line indicates one model as the number of trees is
increased. In each region, 20 models were fit for each of three values of mtry (line shading indicates different mtry values). The error is
plotted as a function of the number of trees in each model. As ntree increases, the stochastic uncertainty of the models decreases and the
lines for a given value of mtry converge. Good models have a low MSE and high Pearson and Spearman correlations. MSE is shown both on
the tuning data and on the training data. In Georgia, mtry values of 2 and 4 had lowest MSE, with mtry of 2 having highest Pearson
correlation and mtry of 4 having highest Spearman correlation. In Kansas, mtry of 8 was best by all three measures. These RF models do not
show evidence of overfitting with increasing numbers of trees, as both the tuning and the training MSE initially decrease and then remain
stable as trees are added to the models.
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3.1.2. Tuning SGB models
For each value of shrinkage, we plotted the average error mea-

sures (from the optimal number of trees for that combination of
parameters) as a function of bagging fraction, with interaction
depth represented by point size (Fig. 2). Better models have lower
MSE and higher correlation.

The SGB models do show overfitting for higher numbers of
trees, and the number of trees that leads to overfitting varies with
the values of the other parameters. The tuning error initially de-
creases as trees are added, but then as more trees are added, the
tuning error begins to rise again. The number of trees used in the
final SGB models was chosen to minimize this overfitting.

Fig. 2. Tuning SGB — effect of interaction depth (tree complexity) and bagging fraction on SGB models of Georgia. Points represent best
number of trees for each combination of parameters. Final model was constructed with shrinkage = 0.002, bagging fraction = 0.40, and
interaction depth = 10.

Pagination not final (cite DOI) / Pagination provisoire (citer le DOI)

Freeman et al. 7

Published by NRC Research Press



With larger values of shrinkage (shrinkage = 0.05 and 0.01),
models begin to overfit before reaching optimum model accuracy
(Fig. 3). However, we found that for the smaller values of shrink-
age (shrinkage ≤ 0.005), the models all reached similar accuracy
before overfitting was observed. For these smaller shrinkage val-
ues, we found the relationship between model quality, bagging
fraction, and interaction depth was generally stable as shrinkage
was changed, given that the number of trees was increased to
compensate for the lower shrinkage (slower learning rate). It just
took more trees to reach optimal model accuracy at lower (slower)
shrinkages (Fig. 3). Therefore, we began by picking the optimal
combination of bagging fraction and interaction depth and then
selected the shrinkage that resulted in 3000–5000 trees. Notice
that the same shrinkage rate requires more trees to reach the best
model performance in Georgia than in Kansas (Fig. 3). Our goal of
3000–5000 trees required a shrinkage rate of 0.001 in Kansas,
whereas Georgia, Oregon, and Utah required the slightly faster

shrinkage rate of 0.002 to have the final number of trees in the
preferred range.

We expected to find that the best models had bagging fractions
near 0.5. Ridgeway (2007) suggests starting with bagging fractions
near 0.5, and Elith et al. (2008) found bagging fractions between
0.5 and 0.75 worked best. Friedman's data (Friedman 2002) was
best modeled with a bagging fraction of 0.4. In some of our re-
gions, bagging fractions near 0.5 did give the best results. For
example, in Georgia, the test MSE and the Pearson correlation
were best at a bagging fraction of 0.4, whereas Spearman correla-
tion was optimized at the slightly higher bagging fraction of 0.6
(Fig. 3). Utah performed best with a bagging fraction of 0.5. In
Oregon, bagging fraction had little effect on model quality, but a
quite low bagging faction of 0.2 seemed to very slightly improve
model fit. Smaller bagging fractions introduce more stochasticity
into the model and, therefore, can counteract overfitting (Friedman
2002). This increased stochasticity can be observed in Fig. 3, where

Fig. 3. Tuning SGB — effects of shrinkage (learning rate) and bagging fraction on tuning set error rates in Georgia and Kansas. All other
model parameters optimized for each region. Notice that the same shrinkage rate requires more trees to reach the best model performance in
Georgia than in Kansas. Our goal of 3000–5000 trees required a shrinkage rate of 0.002 in Georgia and 0.001 in Kansas. In Georgia, the best
bagging fraction is between 0.3 and 0.5 (we used 0.4 in the final model). In Kansas, 0.7 and 0.9 tie for best bagging fraction (we used 0.7 is the
final model). Notice also that the error line for models with low bagging fractions (0.1 and 0.3) jitters slightly due to increased stochastic
uncertainty. The SGB models show evidence of overfitting with increasing number of trees, particularly with higher values of shrinkage. The
tuning error initially decreases as trees are added, but then as more trees are added, the tuning error begins to rise again. This illustrates why
it is essential with SGB models to optimize the number of trees used for the final model.
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the lines representing very low bagging fraction show a jitter. In
contrast, Kansas (where 53% of plots have zero TCC) did better
with a larger bagging fraction of 0.7 (Fig. 3). This is probably due to
the fact that with a higher bagging fraction of 0.7, it is more likely
that each tree with be based on a subset containing at least some
nonzero responses.

To balance computational complexity with model improve-
ment, we settled on an interaction depth of 10 for the four regions.
Some of our regions showed slight improvement with even higher
interaction depths, but we seemed to be reaching a point of di-
minishing returns. For example, increasing interaction depth
from 10 to 12 had much less of an effect than the change from 8 to
10. An interaction depth of 10 was a compromise between model
improvement, computation time, and risk of overfitting. We then
selected a shrinkage rate slow enough to maintain the desired
3000–5000 trees. The numbers of trees for the final models ranged
between 3500 and 4500.

3.2. Role of predictor variables

3.2.1. Predictor variable importance
We expected the most important predictors to be similar be-

tween the SGB and the RF models. This proved true in two of our
regions (Kansas and Utah), but in the other two regions (Georgia
and Oregon), RF and SGB differed in their choice of most impor-
tant variable (Fig. 4). In both of these regions, the most important
SGB predictor was a remote-sensing band (band 3 in Georgia, band
6 in Oregon). These remote-sensing bands were highly correlated
with several of the other bands (between-band correlation up to
0.92 in Georgia and 0.93 in Oregon) and moderately negatively
correlated with TCC2001 (correlation with TCC2001 of –0.55 in
Georgia and –0.75 in Oregon). RF models spread the importance
among the correlated predictors, whereas SGB models concen-
trated the importance in a single band.

For both RF and SGB models, most of the variable importance is
split between two predictors in Kansas. Unlike SGB importance, in
RF, when the importance is concentrated in a small number of
variables, it does suggest that the other predictors are noise vari-
ables. In such cases, using a higher value of mtry can often im-
prove the model, as it is more likely that the randomly selected

variables for each split will contain at least one non-noise variable.
This may explain why Kansas was the pilot region that performed
better with a higher than default value for mtry (mtry = 8 instead
of mtry = 4).

3.2.2. Predictor variable interactions
We did not find dramatic interaction effects in this dataset, but

we did find subtle interactions. For example, in the RF model for
Utah, there are some interactions between land cover class and
elevation (Fig. 5); in particular, there are some interesting differ-
ence in the effect of elevation in land cover classes 41 (deciduous
forest) and 42 (evergreen forest). This figure shows the predicted
TCC for each land cover class across the range of elevations found
in the training dataset for Utah. In class deciduous forest, TCC is
moderate at the lowest elevations, increases at mid elevations,
and drops slightly to moderate levels at high elevations. In class
evergreen forest, TCC starts slightly higher than class 41 at low
elevations, rises at mid elevations, but then drops to near zero at
high elevations.

Also, in Fig. 5, notice the differences between the RF model and
the SGB model. Although overall accuracy of the two models is
similar, the interaction plots highlight subtle differences in the
relationships of TCC to the predictor variables. For example, al-
though both RF and SGB models show a peak crown cover at low
to mid elevations (1600 m to 2400 m), the SGB model also has a
small bump in crown cover at a higher elevation (3000 m).

Another example of differing predictor effects in Utah is illus-
trated in Fig. 5 by the predicted TCC in land cover class 11 (open
water). The SGB model is predicting high TCC for points landing in
open water in Utah, particularly at low to mid elevations, al-
though the difference can be seen to some extent at all elevations.
A possible explanation may be seen in the variable importance
plot for Utah (Fig. 4). The SGB model concentrated importance in
TCC2001, whereas the RF model spread the importance between
multiple predictors.

The interaction plots examine the effects of the two selected
predictors with the remaining variables fixed at their mean value
(or most common value for categorical predictors). Therefore,
Fig. 5 shows the theoretical predictions for pixels at each land

Fig. 4. Variable importance for the RF and SGB models of the four pilot regions (RF on the left in gray, and SGB on the right in black). RF
importance is measured by the percent increase in MSE (%IncMSE) with random permutation of each variable. SGB importance is measured
by the decrease in squared error (DecSqError) attributed to each variable in the gradient of the loss function. Variable importance of each
model is scaled to sum to 1.
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cover class and elevation with average values of TCC2001 (and all
other predictors.) In the training data, all points with land cover
class 11 have TCC2001 of zero, whereas the overall mean value of
TCC2001 is 16.8. So the interaction plot is showing how the RF and

SGB models would extrapolate a combination of variables not
found in the training data.

In this case, the RF model extrapolation, where importance is
shared among multiple predictors, is more sensible than that of

Fig. 5. Interaction plots for elevation (ELEVATION) and land cover class (LC) for final Utah models. These figures show the effect of changes in
two predictor variables on predicted TCC, with all other variables held at their mean (or majority). To see an example of interaction, look at
the RF model and the effect of elevation in land cover classes 41 (deciduous forest) and 42 (evergreen forest). In class 41, TCC is moderate at
the lowest elevations in the Utah region, increases at mid elevations, and drops slightly to moderate levels at high elevations. In class 42, TCC
starts slightly higher than class 41 at low elevations, again rises at mid elevations, but then drops to near zero at high elevations. Also notice
the differences between the RF model and the SGB model. Although overall accuracy of the two models is similar, the predicted TCC in
class 11 (open water) is very different.
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the SGB model, where a single variable is driving the predictions.
Because TCC2001 is based on canopy cover predictions from a
previous model, if that model had erroneously classified some
water as forest, the error would disproportionately affect the SGB
model, as the SGB model for Utah is relying almost exclusively on
that single variable (Fig. 4).

3.3. Accuracy measures

3.3.1. Histograms of plot frequency by percent canopy cover
We created histograms of plot frequency by percent canopy

cover (1% classes) for the photo plots in the independent test set.
The height of the vertical bars represents the number of plots
found in each 1% of TCC. These histograms were created for both
the observed TCC and the TCC predicted by the RF and SGB models.

For all four regions, the RF and SGB predictions for the test set
had plot frequency histograms similar to the observed data, and
when the predictions failed to match the observed histograms,
both RF and SGB failed in similar ways (Fig. 6).

The observed distribution of plots across low, medium, and
high canopy cover varies across the four regions. The observed
data in several regions had spikes at zero and (or) 100% canopy
cover. Georgia and Oregon include plots across the full range of
possible canopy cover, with spikes in the number of plots at 0%
and 100%. Utah is similar, except that it has a higher proportion of
low canopy cover plots and fewer plots with 100% canopy cover. In
Kansas, the majority of the plots have very low canopy cover, with
only a small number of plots at higher canopy cover.

Fig. 6. Histograms illustrating number of photo plots in the independent test sets by percent tree canopy cover (1% classes). The observed plot
distribution varies across the four regions. Georgia and Oregon include plots across the full range of possible canopy cover, with spikes in the
number of plots at 0% and 100%. Utah is similar, except that it has a higher proportion of low canopy cover plots and fewer plots with 100%
canopy cover. In Kansas, the majority of the plots have very low canopy cover, with only a small number of plots at higher canopy covers.
Both RF and SGB models had difficulty capturing the observed spikes in number of plots at 0% and 100%.
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Both models miss the canopy cover spike at zero in Oregon and
severely underestimate it in Utah. Both models do capture the
spike at zero canopy cover in Kansas, although they do not predict
quite as much low canopy cover as observed in the test data and
tend to place the spike at very low canopy cover rather than at
zero canopy cover. In Kansas, SGB places the spike at 2% cover and
RF spreads the spike between zero and 3% canopy cover.

Both models do an even worse job at capturing the observed
spikes at 100% canopy cover. In Oregon, the 100% canopy cover
spike is reduced to a slight bump in frequency of plots with high
canopy cover. The models do better in Georgia, but the spike is
still reduced slightly in amplitude and shifted down from 100%
canopy cover and spread between 95% and 98% cover for RF and
95% and 97% cover for SGB.

3.3.2. Error statistics from the independent test set
There was very little difference in model performance between

RF and SGB as measured by global accuracy metrics (Table 5). In all
four study regions, the independent test set MSE was identical to
three decimal places, with the largest difference in Kansas where
RF gave an MSE of 0.0113 and SGB gave an MSE of 0.0117. Pearson
correlation coefficient was identical to two decimal places, with
Kansas again showing the largest difference in that RF had a cor-
relation coefficient of 0.905 and SGB had 0.901. The Spearman
correlation coefficient for RF was slightly worse than that for SGB
in Kansas, but only by 0.01. The largest difference in the predicted
mean TCC was in Georgia, but even there the difference was only
0.004. The largest difference in slope of the regression line was
0.03 in Oregon, and the largest difference in intercept was 0.01 in
Georgia, Oregon, and Utah.

Not only were the differences between RF and SGB models
small, but also there was no clear pattern to which type of model
performed best. In terms of MSE, RF was slightly better in Kansas
and Oregon, whereas SGB was slightly better in Georgia and Utah.
In terms of Pearson correlation, RF was slightly better in Kansas,
whereas SGB was slightly better in Georgia, Oregon, and Utah. In
terms of Spearman correlation, RF was slightly better in Utah,
whereas SGB was slightly better in Kansas, Georgia, and Oregon.
Note that some of these differences were so small as to be negli-
gible. For example, in Utah, the RF model had an MSE of 0.02976
and the SGB model had an MSE of 0.02977.

3.4. Map quality
In Utah, the final models were used to produce detailed TCC

maps with predictions for every 30 m pixel (Figs. 7 and 8). These
figures illustrate the NAIP09 imagery (USDA 2009) for portions of
the Utah region, with the corresponding RF- and SGB-predicted
TCC and the RF uncertainty.

Histograms of number of pixels predicted by percent canopy
cover for the Utah maps were nearly identical for both RF and
SGB.

The biggest difference between the RF and SGB maps was that
the SGB model extrapolated beyond the values of TCC found
in the training data. The training data for UT had TCC ranging
from 0% to 100%. The RF map predictions ranged from –0.0001% to
97%, approximately within the range of the training data. In con-
trast, the SGB map predictions ranged from –13% to 106%. In pro-
ducing the final maps, we treated predicted TCC values less than
0% as 0% and TCC values greater than 100% as 100%.

Overall, the maps for both models look similar, with RF picking
up slightly more detail in the regions of low crown cover. This
highlights the need for potentially masking out nonforest areas to
eliminate spectrally dark anomalies in rangelands from being
predicted erroneously as trees.

The map of RF uncertainty highlighted small anomalous areas
of high uncertainty. These are localized areas where the predic-
tions from individual trees varied widely, with some of the trees
in the RF predicting low TCC and other trees predicted high TCC.

Two such regions are examined in greater detail in Figs. 7 and 8.
Figure 7 illustrates a lava bed, and Fig. 8 shows a wetland.

4. Discussion
A number of lessons were learned through the course of this

study. First, we need to emphasize the importance of having an
independent tuning dataset, particularly for SGB models. We in-
creased our understanding of the selection of tuning parameters
for RF and SGB models. We also learned some interesting things
about the effect of correlated predictor variables on variable impor-
tance measures and how these effects differ between RF and SGB.

4.1. Importance of an independent tuning data set
Tuning is a sometimes overlooked step in the model building

process, both for traditional parametric models and for newer
nonparametric models. Parametric models such as beta regres-
sion depend on the choice of link function, preliminary removal
of highly correlated variables, and selection of final variables to
include in both the model and, optionally, the precision equation.
Nonparametric models do not require the elimination of nonsig-
nificant variables, but they do require optimizing model parame-
ters, SGB more so than RF.

Model production is a two-step process: first, building potential
models with a range of values of model parameters; and second,
selecting the combination of model parameters that gives the best
performance as a final model. It is obvious that assessing a model
over the data used to train the model will not give a true estimate
of performance on new independent data, as there will be no way
to distinguish overfitting from simple good performance. It is less
obvious but equally hazardous to base a final model assessment
on the data used for parameter selection. The selected model
could potentially perform best on that particular data set but not
generalize to new independent data. Therefore, particularly when
working with complex models with large numbers of parameters
that need to be tuned, it is important to set aside both a tuning set
and a separate independent test set to be used only for final model
assessment.

If the final model can be built using only the training data, then
a tuning set is not necessary. If decisions about the model are
based on how well the model predicts over a dataset, then that
dataset can no longer be used to judge final model performance.
With RF models, the default parameters generally perform well
(Liaw and Wiener 2002); therefore, it is possible to accept the
default RF parameters and use the entire dataset as training data
and use OOB for final model evaluation. If a particular study does

Table 5. Independent test set error statisticsa from
final models: stochastic gradient boosting (SGB)
and random forests (RF).

Model

Study region Error statistics SGB RF

Georgia MSE 0.0185 0.0188
Pearson 0.919 0.917
Spearman 0.882 0.881

Kansas MSE 0.0117 0.0113
Pearson 0.901 0.905
Spearman 0.673 0.662

Oregon MSE 0.0246 0.0246
Pearson 0.896 0.896
Spearman 0.850 0.880

Utah MSE 0.0298 0.0298
Pearson 0.833 0.833
Spearman 0.850 0.850

aError statistics: mean square error (MSE), Pearson cor-
relation (a measure of the linear relationship), and Spear-
man correlation (a measure of monotonic nonlinear
relationship).
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require tuning the RF parameters, then OOB errors can be used for
tuning, and an independent test set can be used for final model
evaluation. With SGB models, there is not an option for OOB evalu-
ation, and SGB models tend to be more sensitive to model parame-
ters, so having separate training, tuning, and test sets is more
important. With all types of models, the data that has been used to
optimize the model cannot be used for the final model evaluation.

4.2. Tuning process
SGB models depend on a large number of parameters, and

model performance can vary greatly depending on the values
chosen for these parameters. SGB models are also vulnerable to
overfitting. If final model assessments are made on the same da-
taset as was used to select model parameters, the true error may
be considerably underestimated.

Fig. 7. Detailed maps of the northwest portion of the Utah region, showing NAIP09 imagery, RF uncertainty, and RF and SGB predictions for
tree canopy cover (TCC). The dark patch in the upper left of the photo is a lava bed. Both RF and SGB mistook it for an area of moderate TCC
(RF predicted slightly higher cover than SGB). The RF uncertainty map shows that although the mean prediction from the 2000 trees in the
model was for moderate TCC, there was a very high level of uncertainty in these predictions, with some trees predicting low TCC and other
trees predicting much higher TCC.
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For SGB models, slower learning rates (smaller shrinkages) usu-
ally improve model performance but are computationally more
expensive. There is also a point of diminishing returns at which
dropping the shrinkage has less and less of an effect on model
performance (Ridgeway 2007). Shrinkage is inversely related to

number of trees, so smaller values of shrinkage (slower learning
rates) require more trees. Authors agree on the inverse relation-
ship, but opinions are divided on whether this relationship scales
evenly. For example, dividing the learning rate by two might or
might not double the number of required trees (De'ath 2007;

Fig. 8. Detailed maps of the eastern portion of the Utah region, showing NAIP09 imagery, RF uncertainty map, and RF and SGB predictions
for tree canopy cover (TCC). The dark triangular patch in the middle of the photo is a wetland. Both RF and SGB mistook it for an area of
moderate to high TCC. The RF uncertainty map shows that although the mean prediction from the 2000 trees in the model was for moderate
to high TCC, there was a very high level of uncertainty in these predictions, with some trees predicting low TCC and other trees predicting
much higher TCC. The adjoining agricultural area was correctly identified as low TCC by both models, most likely due to the TCC2001 and the
land cover class predictor layers.
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Ridgeway 2007; Elith et al. 2008). For most of our regions, a shrink-
age of 0.002 resulted in models with our desired number of trees
(3000 to 5000 trees), although Kansas required a lower (slower)
shrinkage of 0.001. Kansas is the region with the highest propor-
tion (53%) of study sites with tree canopy cover of zero.

It has been previously found that for presence–absence data,
species with very high or very low prevalence require lower values
of shrinkage (Elith et al. 2008). When the majority of the data are
a single value, less information is available for each tree. In an
extreme case, the random subset selected for a tree could all have
identical responses. A slower shrinkage allows a greater number
of trees to contribute to the final model before overfitting begins
to occur. For continuous response variables with high proportions
of zero or 100% values, a variation of this effect could influence
results in regions with large nonforest areas such as Kansas.

Very low prevalence could have a similar effect on bagging
fraction. When a majority of the data has a value of zero, larger
bagging fractions help make certain that the points selected for
each tree contain response values other than zero. Our results are
consistent with this reasoning, as we found that a higher bagging
fraction (0.7) improved model predictions in Kansas.

Smaller bagging fractions introduce more stochastic uncertainty
into the model and, therefore, can help counteract overfitting
(Friedman 2002). Oregon performed best with a lower bagging
fraction (0.2), which could suggest that Oregon is somewhat more
prone to overfitting. On the other hand, it is also possible that the
wide range of tree canopy cover present in Oregon meant that all
values of TCC were represented, even in the smaller bagging frac-
tions, and thus larger bagging fractions offered less of an advan-
tage in Oregon compared with regions such as Kansas where the
majority of the study sites had identical response values of zero
and larger bagging fractions may have been required to assure
that all subsamples contained at least some nonzero response
data.

There are also potential drawbacks to increased stochasticity
that need to be kept in mind when using models with low bagging
fraction. (Note that faster shrinkages can also cause increased
stochasticity.) For example, increased stochasticity can result in
higher between-model variability (Elith et al. 2008). Overall model
performance may be similar between repeated model runs, but
predictions for individual locations may show high variation.

All of our regions performed best with a fairly high interaction
depth. Shrinkage is inversely related to interaction depth (Elith
et al. 2008). A model with more complex trees will require fewer
total trees. On the other hand, complex trees make the model
more vulnerable to overfitting. Therefore, it is recommended that
as the tree complexity is increased, the learning rate (shrinkage) is
decreased so that the model fits slower and still requires a higher
number of trees. Elith et al. (2008) also notes that larger datasets
can take better advantage of more complex trees. Our dataset was
large enough that even our 50% training data contained nearly
2000 data points per region.

In contrast, RF models have only two parameters and are rela-
tively insensitive to the choice of these parameters (Liaw and
Wiener 2002). The mtry parameter usually performs well at the
suggested default (one-third the number of predictor variables for
regression models). Our data supports this. Two of our study re-
gions did best with the suggested default mtry of 4, and in the
other two, the slight improvement from the optimized mtry of 8
was only seen when the accuracy measures were taken to three
decimal places. In most cases, RF is also less vulnerable to overfit-
ting than SGB, so the only limit on number of trees is computation
time (Breiman 2001). Therefore, with RF, tuning is less imperative
than with SGB. This, combined with the possibility of using OOB
estimates of model quality, means that when faced with a small
dataset, RF can be used successfully without setting aside tuning
or test data: simply building a RF model on the full data set with

the default parameters, and using OOB estimates of model perfor-
mance.

4.3. Comparing final model performance
Our examination of relative variable importance elucidated the

differences in how RF and SGB make use of correlated predictor
variables. SGB had a tendency to concentrate variable importance
in fewer variables, whereas RF tended to spread importance
among more variables. In RF, each tree is independent, so if pre-
dictor variables are highly correlated, importance tends to be
divided between the variables, with one variable important to
some of the trees and the other variables important in other trees.
In SGB, each successive tree builds on the previous tree, so if
variables are correlated, the first variable that is randomly se-
lected is the most important, and even if other correlated vari-
ables are chosen in later trees, there is less information that they
can contribute.

Both RF and SGB models had difficulty capturing spikes in
crown cover at the extremes of the distributions, either 0% or
100%. Averaging inherent in both of these modeling techniques
will smooth the tails. This also indicates that global accuracy mea-
sures should be used with caution and more information can be
gained by examining the observed and predicted distributions.

Because this study is part of a larger project to update and
improve the 2001 NLCD product, we included tree canopy cover
from the 2001 map as a predictor layer in our model. From the
variable importance graphs in Fig. 4, it is clear that TCC2001 was
an important variable for both the RF and the SGB models. We did
experiment with models that did not include TCC2001, and sur-
prisingly (given this predictors high importance in models built
from the full set of predictors) model performance dropped only
slightly, with other predictor variables increasing in importance
when TCC2001 was not available. Kansas showed the strongest
loss of model quality from leaving out the TCC2001 predictor, and
even there, MSE from the RF model only increased from 0.0113 to
0.0156, and the MSE from the SGB model increased from 0.0117 to
0.0157.

4.4. Comparing maps
The RF uncertainty map for Utah is interesting in that several

small areas of unusually high uncertainty were found. Figures 7
and 8 examine two of these anomalies in detail. On closer inspec-
tions, both of these proved to be localized anomalies on the flat
valley floors where both the RF and SGB models had predicted
moderate to high crown cover. This was unusual as in the Utah
region flat, low-elevation areas are most commonly sagebrush or
other shrubland.

The RF uncertainty map is the standard deviation of the
individual-tree predictions from the final RF model. High values
of this standard deviation mean indicate a lack of agreement be-
tween the trees. Each tree in a RF model is built from a different
randomly selected subset of the predictor variables, as well as a
different bootstrap sample of the training locations. A high level
of uncertainty thus indicates that either particular predictors or
particular training locations are leading to high variation in the
estimates for the response variable.

The black, irregularly shaped area in the northwest portion of
Fig. 7 is a lava bed. The bright green circles to the east of the lava
bed are agricultural. Both RF and SGB mistook the lava bed for
an area of moderate TCC (RF predicted slightly higher cover than
SGB). The RF uncertainty map shows that although the mean
prediction from the 2000 trees in the model was for moderate
TCC, there was a very high level of uncertainty in these predic-
tions, with some trees predicting low TCC and other trees predict-
ing much higher TCC.

The triangular area in the center of Fig. 8 is a wetland, the Ke
Bullock Waterfowl Management Area. The rectangular green ar-
eas adjoining the wetland to the north and east are agricultural.
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Both RF and SGB mistook the wetland for an area of moderate to
high TCC. Again, the RF uncertainty map shows that although the
mean prediction from the 1500 trees in the RF model was for
moderate to high TCC, there was a very high level of uncertainty
in these predictions.

In the final maps for Utah (Figs. 7 and 8), it is also interesting to
look at the predictions and uncertainty for agricultural areas. In
Fig. 7, the RF uncertainty map shows some moderate uncertainty
in the northern portion of the adjoining agricultural areas. Al-
though the land cover class (LC) and TCC2001 predictors would
indicate that these agricultural areas are nonforest, because of the
structure of RF models, some of the trees would be constructed
from subsets of the predictors containing neither LC nor TCC2001,
leading to higher levels of between-tree RF uncertainty. In con-
trast, the southern portion of the agricultural area in Fig. 7 as well
as the agricultural area in Fig. 8 were correctly identified as low
TCC by both models, with low values of RF uncertainty.

In addition to the lava bed, the uncertainty layer in Fig. 7 also
points out a rectangular irregularity that can be traced back to the
inconsistency of the national digital elevation model (DEM) layer,
which composites information from both Lidar and large-scale
photography, depending on which is available in different parts
of the country. As a result, all of the predictors that are derivatives
from the DEM (e.g., slope, elevation, aspect, and compound topo-
graphic index (CTI)) witness these irregularities and hence influ-
ence the uncertainty in the model. These irregularities may
explain why the models ability to correctly discern agriculture
varied in different areas of the map. It was the pattern in the
uncertainty layer here that first called attention to the more sub-
tle patterning in the predictions themselves.

5. Conclusions
RF and SGB are both powerful tree-based modeling techniques.

We found that for our continuous response models, the perfor-
mance of both techniques was remarkably similar on all four of
our pilot regions, by all the accuracy measures that we examined.
Therefore, the choice of model type may come down to ease of
use.

In RF, all of the trees are independently built, whereas in SGB,
each successive tree builds on the previous trees. Both provide
importance measures for the predictor variables. RF is more user
friendly than SGB, as it has fewer parameters to be set by the user
and is less sensitive to tuning of these parameters. RF is also less
prone to overfitting than SGB. In RF, using additional trees in-
creases the time and computations but does not usually lead to
loss of model quality.

RF has an OOB option for model evaluation without the neces-
sity of setting aside an independent test set. Combine this with
RF's lack of sensitivity to model parameters and it is possible to
build and evaluate a model from the full dataset, without setting
aside tuning or test data. This can be an important advantage over
SGB, particularly for small datasets.

In contrast to RF, SGB has many parameters needing tuning,
and these parameters have stronger effects on model quality.
Also, overfitting is much more likely with SGB, and the number of
trees that will lead to overfitting changes with the values of the
other parameters.

Additionally, RF offers the possibility of a map of the stochastic
uncertainty remaining in the final model, which we found valu-
able for identifying possibly anomalous areas in the final map.

As a result of these and other analyses, RF models are currently
being used by the U.S. Forest Service Remote Sensing Applications
Center (http://www.fs.fed.us/eng/rsac/) to produce the 2011 NLCD
percent tree canopy cover dataset for the conterminous US. This
dataset is publically available at the NLCD website (http://www.
mrlc.gov/). Percent canopy cover datasets for coastal Alaska will be
finished in spring of 2015, and it is planned to have interior

Alaska, Hawaii, Virgin Islands, and Puerto Rico completed near
the end of 2015.
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