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Abstract. Modeling the behavior of crown fires is challenging due to the complex set

of coupled processes that drive the characteristics of a spreading wildfire and the
large range of spatial and temporal scales over which these processes occur. Detailed
physics-based modeling approaches such as FIRETEC and the Wildland Urban
Interface Fire Dynamics Simulator (WFDS) simulate fire behavior using computa-

tional fluid dynamics based methods to numerically solve the three-dimensional, time
dependent, model equations that govern, to some approximation, the component
physical processes and their interactions that drive fire behavior. Both of these mod-

els have had limited evaluation and have not been assessed for predicting crown fire
behavior. In this paper, we utilized a published set of field-scale measured crown fire
rate of spread (ROS) data to provide a coarse assessment of crown fire ROS predic-

tions from previously published studies that have utilized WFDS or FIRETEC.
Overall, 86% of all simulated ROS values using WFDS or FIRETEC fell within the
95% prediction interval of the empirical data, which was above the goal of 75% for
dynamic ecological modeling. However, scarcity of available empirical data is a bot-

tleneck for further assessment of model performance.

Keywords: Physics-based model, Fire behavior, HIGRAD/FIRETEC, Wildland Urban Interface Fire

Dynamics Simulator, WFDS

1. Introduction

Modeling the behavior of wildland fires is challenging due to the complex set of
coupled processes that drive the characteristics of a spreading wildfire and the
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large range of spatial and temporal scales over which these processes occur [1, 2].
Predictions of crown fire behavior, i.e., fires that involve the combustion of
canopy biomass, are particularly difficult [3, 4] but of significant importance given
that these fires have greater rates of spread, flame lengths, and increased fire
brand generation and transport compared to surface fires [5, 6]. The increased fire
behavior associated with crown fires can decrease the effectiveness of fire suppres-
sion actions [7] and can have major ecological impacts.

A number of mathematical approaches have been used in the development of
fire behavior models, ranging from empirical to theoretically-based, to account for
the various interacting processes that drive fire behavior and to overcome compu-
tational and time limitations associated with specific applications. Empirical mod-
els are those that pose mathematical functions (usually algebraic) to describe the
relationship between macro-scale fire behavior and environmental conditions
based on observed data. In contrast, theoretical or process-based models use
mathematical expressions (often partial differential equations) to describe individ-
ual processes that drive fire behavior. Sullivan [8–10] provides description and
overview of recent wildland fire models.

The most commonly used crown fire behavior models are largely empirical and
focus on point predictions of crown fire rate of spread [e.g., 7, 11] given the
importance of this variable in wildland fire management. As noted by Chandler
et al. [12], such models are primarily used for fire suppression planning purposes,
but they have also been widely applied to address a variety of research questions.
However, as suggested by U.S. National Science and Technology Council’s Sub-
committee on Disaster Reduction [13], there is a need to advance wildland fire
models so that they capture the physical processes impacting natural resources,
the environment, and physical infrastructure. This need has led several researchers
to developing more detailed physics-based models [2, 14–16]. In contrast to
empirically derived models, detailed physics-based modeling approaches attempt
to simulate the behavior of a system with a set of functional components and
their interactions with each other and with the system environment through math-
ematical representations of the physical and mechanistic processes driving fire
behavior over both space and time [17, 18]. In this paper, we use the term
detailed physics-based model to denote a computational fluid dynamics (CFD)
based numerical model that solves a set of three-dimensional time dependent gov-
erning equations which describe the evolution of and interaction between the rec-
ognized processes driving fire behavior for the application of interest (i.e., crown
fire simulation here). These models typically attempt to represent all of the critical
physical processes to some degree even though they do have to employ some
approximation to account for processes that occur at length scales below those
explicitly resolved.

Morvan [19] provides an overview and some examples of detailed physics-based
approaches for simulating wildfires. Of the four approaches discussed by Morvan
[19], we consider two here: FIRETEC [15] and WFDS [2, 20]. These two models
were chosen in part because they can simulate fire behavior in three-dimensional
domains large enough to contain a crown fire (i.e., a volume 100 s of meters on a
side) and in part because they have been utilized to predict crown fire behavior in
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a number of published studies [21–26]. The two other detailed physics-based
approaches considered by Morvan [19] have only been applied, to our knowledge,
to fires in smaller domains or are limited to two dimensions. Advantages that
three-dimensional detailed physics-based models have compared to simpler empiri-
cal models are that they can (1) represent the three-dimensional nature of the
entire fuels complex [23, 25, 27]; (2) account for potential nonlinear dynamics aris-
ing from interactions among the fire, atmosphere and fuels complex [27]; (3) pro-
vide predictions of additional fire behavior quantities (e.g. heat fluxes,
temperatures, gas velocities) beyond the rate of spread without linkages to addi-
tional models; and (4) be used to predict fire behavior outside the environmental
conditions for which we have experiments [25]. Although detailed physics-based
models provide the user with a great deal of flexibility to investigate a variety of
wildland fire behavior questions, there is a need to assess model performance,
especially in terms of crown fire behavior, to identify potential model errors and
establish model credibility.

In this paper, we develop an empirical relationship between the 10-m open wind
speed and crown fire rate of spread using previously published field-scale data
[28], and conduct a coarse assessment of crown fire rate of spread predictions
from previously published FIRETEC and WFDS results. Given the limited infor-
mation available in the empirical data set, we assessed model performance by
examining the proportion of simulated predictions that fall within our empirically
derived 95% prediction bands. We assumed that reasonable model performance
was achieved based on criteria proposed by Rykiel [29] for dynamic ecological
models. This approach is conceptually consistent with recommended standards for
deterministic fire model evaluation in that we determined the degree to which
ROS is an accurate representation of the real world from the perspective of the
intended uses of ROS [30]. We then discuss challenges associated with assessment
of detailed physics-based models, the potential sources of error in crown fire rate
of spread measurements and predictions, and future research needs.

2. Overview of Detailed Physics-Based Modeling
Approaches for Wildland Fire

Detailed physics-based models simulate fire behavior in a predictive manner by
numerically solving, to an acceptable approximation, a coupled set of partial dif-
ferential equations (PDEs). These PDEs govern the conservation of total mass,
momentum, energy and chemical species. The intent of the set of coupled equa-
tions is to simulate the physical phenomena driving fire behavior, and their inter-
actions, that control the behavior of a wildland fire. This approach allows for the
evolution of various gas-phase quantities such as temperature, velocity and gas-
eous species mass fractions. Other quantities, such as smoke generation and trans-
port can be predicted in three dimensions through time.

A large range of characteristic scales, both spatial and temporal, are relevant to
turbulent combustion, conjugate heat transfer, and thermal degradation of the
vegetation (i.e., drying, pyrolysis, and char oxidation). Detailed physics-based
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simulations of stand- and field-scale wildland fires are conducted with computa-
tional grids that are too coarse to directly resolve the small-scale processes or fine
scale variability in the fuels complex (i.e., gaps between needles within a tree
crown). Thus, the development of detailed physics-based modeling approaches
must by necessity employ approximations to the governing equations to account
for temporal and spatial scales that cannot be explicitly resolved. The numerical
modeling of physical processes coupled to turbulent flow, on computational grids
that are too coarse to resolve small-scale processes, has been an area of active
research for decades [31, 32]. Although the modeling approaches in FIRETEC
and WFDS differ in how they handle simplifications to the governing equations,
both models use a finite-volume, large eddy simulation approach to model turbu-
lence, where the large-scale eddies are explicitly resolved in numerical grids and
small eddies are simulated with sub-grid scale models. The fuel complexes in both
of these models are described as a highly-porous medium within the 3D numerical
grids and are characterized by mean or bulk quantities (e.g. surface area to vol-
ume ratio, moisture content, and bulk density) of the thermally-thin vegetation
components of the overall fuel complex. Because FIRETEC and WFDS were pri-
marily developed to predict the evolution of the flaming front, they require the
spatial and thermo-physical characteristics of the thermally thin component of the
vegetative fuel; non-thermally thin fuels are assumed to not significantly con-
tribute to the flaming front

Both FIRETEC and WFDS are based on the physical principals of conserva-
tion of mass, momentum and energy and use finite-volume, large-eddy approxima-
tions in space and time to predict the relevant dependent variables. Unresolved
quantities are parameterized through closure schemes. The dependent variables
reside at grid points that represent adjacent hexahedral volumes referred to as grid
cells. The union of all grid cells determines the domain volume that is modeled.
Although FIRETEC and WFDS both have similar capabilities there are subtitle
differences in their solution techniques and parameterizations.

FIRETEC is primarily based on a fully explicit, compressible, atmospheric
dynamics model. Because this model was designed for high-resolution simulation
of atmospheric flows, the appropriate conservation of energy equation is posed in
terms of potential temperature, a conserved quantity closely related to tempera-
ture [1, 15]. The turbulence model implemented in FIRETEC was developed by
Linn [33]. This approach uses transport equations for turbulent kinetic energy at
multiple specified length scales with a Boussinesq approximation to estimate the
Reynolds stresses associated with these length scales. The Reynolds stress terms
are used to close the momentum equations. As mentioned above FIRETEC repre-
sents vegetative fuels as porous media, which are described using bulk properties.
Combustion is represented through a mixing-limited single-step model. This model
requires sufficient quantities of heat, fuel and oxygen for fire to manifest. This for-
mulation recognizes that for numerical cells at coarse scales the mean temperature
is not adequate for determining if there is some material in the cell that is hot
enough to burn. A probability distribution function of temperature accounts for
the fraction of fuel in the cell that is of a high enough temperature to burn. The
radiation model in FIRETEC is a Monte-Carlo algorithm that emits packets of
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photons in a random direction until the relative spatial distribution of the absor-
bed energy emitted at a given point in time is converged. The emitted energy from
each hot cell is deposited according to the distribution. For more details on the
description of FIRETEC, the reader is referred to [1, 15, 21, 22, 33, 34].

WFDS [20] is an extension of the Fire Dynamic Simulator (FDS), a fire engi-
neering model developed at the National Institute of Standards and technology
[35]. WFDS can utilize either a direct numerical simulation or a large-eddy approx-
imation for the solution of the conservation equations. Unlike FIRETEC, the
energy equation in WFDS is posed in terms of enthalpy rather than potential tem-
perature. WFDS uses a low Mach-number approximation, which allows for ther-
mally driven flow without the small time step restriction of a fully compressible
model. With the low Mach number approximation, the pressure field is determined
by formulating a Poisson equation from the momentum equations. The use of a
low Mach-number approximation represents one the major differences between the
two models. WFDS has a variety of LES turbulence schemes to choose from. For
these simulations presented in this manuscript the Deardorff turbulence model [36]
was used. The wildland fuels in WFDS are modeled as a porous media described
by bulk characteristics in a similar fashion to FIRETEC. However, thermal degra-
dation of solid fuel is modeled as a two step process where drying of the solid fuel
occurs first followed by pyrolysis [20]. The gas phase combustion model in WFDS
is also simulated as a mixing limited model; however in WFDS the temperature
field within each grid-cell is obtained using the equation of state. Differences in the
pyrolysis and combustion models between WFDS and FIRETEC represent
another significant point of divergence among the two models. The radiation pack-
age determines the heat flux with a finite-volume scheme that decomposes solid
angles in spherical coordinates with symmetry about the source. Additional details
of WFDS model formulation are found in [2, 20, 35].

To date, both FIRETEC and WFDS have had a limited amount of model
assessment in part due to a lack of field-scale experimentation or observation in
which data collection is adequately complete for detailed physics-based model
evaluation. Detailed information about the verification and validation of WFDS
and FDS (the parent model of WFDS) can be found in [37, 38], whereas specific
evaluation studies of WFDS for vegetative fuels can be found in [2, 20, 39–43].
Comparisons between FIRETEC and observations or field-scale data can be
found in [1, 26, 34, 44, 45]. However, to date there have been very few compar-
isons between either of these models and measured crown fire rates of spread;
Linn et al. [46] and Hoffman et al. [26] are exceptions.

3. Methods

3.1. Empirical Crown Fire Database

Alexander and Cruz [28], hereafter referred to as AC06, compiled a total of 57
wildfire observations from North American forests. The data set consisted of 43
fires from Canada, primarily occurring in boreal forest fuel types and 14 fires
from the United States that occurred in pine dominated fuel types in the interior
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Rocky Mountains, the Lake States and the southeastern U.S (Table 1). All fires
were categorized as either active or passive crown fires in AC06. During the devel-
opment of this data set, any case study that occurred in areas with a mix of fuel
types that do not support crown fire or occurred in areas with complex topogra-
phy (>10% slope, or cross slope fire spread), were removed [28]. For the remain-
ing observations, they reported the major fuel type, the ambient temperature (�C),
the relative humidity (%), the effective fine fuel moisture (%), the canopy bulk
density (kg m-3) (CBD) and the 10 m open wind speed (km h-1). Although AC06
compiled a relatively large amount of detailed information regarding the rate of
fire spread during crown fires, several calculations were performed to modify the
data set to meet their purpose. Specifically, they: (1) increased the 6.1-m open
wind speed for all data from the U.S. by 15% to approximate the 10-m open
wind speed, (2) assumed a constant CBD for a given forest type and thus did not
consider the actual fuel loads or the horizontal and vertical distribution of fuels,

Table 1
Empirical Data Set Compiled from AC06 [28]

Data source Fuel typea Number of observations

Alexander and Lanoville [47] BS 3

Lanoville and Schmidt [48] BS 2

Quintilio et al. [49] BS 5

Alexander et al. [50] BS 1

Hirsch and Flannigan [51] BS 6

Alexander et al. [52] JP 1

DeGroot and Alexander [53] JP 1

Stocks and Flannigan [54] JP 2

Stocks [55] JP 2

Hirsch [56] JP 7

Hirsch [57]; Quintilio et al. [49] JP 1

Stocks and Walker [58] JP 1

Van Wagner [59] JP 1

Stocks [60] JP 1

Stocks [61]; Stocks [55] JP 4

Stocks [60]; Stocks [55]; Street and Stocks [62] JP 1

Hirsch and Flannigan [51] JP 1

Alexander [63]; NFPA [64] JP 1

Simard et al. [65] JP 1

Kiil and Grigel [66]; Alexander [50] LPP 1

Rothermel and Mutch [67]; Alexander [68] LPP 1

Rothermel [7] LPP 3

Windisch and Good [69] PIP 1

Wade and Ward [70] POP 2

McAlpine et al. [71] PP 1

McAlpine et al. [72] PP 1

Graham [73] PP 4

DeCoster [74] SP 1

a Fuel type: BS, black spruce (Picea mariana); JP, jack pine (Pinus banksiana); LPP, lodgepole pine (Pinus contorta);

PP, ponderosa pine (Pinus ponderosa); PIP, Pitch Pine (Pinus rigida) and POP—Pond Pine (Pinus serotina)
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and (3) estimated the effective fine-fuel moisture content using equations published
by Rothermel [5], assuming that all fuels were shaded from solar radiation.
Despite the need for such assumptions and the use of estimated values and addi-
tional calculations, AC06 remains the largest empirical data set assembled to date
on crown fire rate of spread (ROS).

3.2. Crown Fire ROS Predictions from FIRETEC and WFDS

Using a combination of online database searches and personal communications,
we identified simulations conducted with WFDS and FIRETEC that: (1) were in
North American and European forest types, (2) reported both the 10-m open
wind speed and the crown fire ROS, (3) had at least 25% crown fuel consump-
tion, and (4) simulated fire spread over at least 2 ha. We identified a total of 66
simulations, 38 of which were conducted using FIRETEC and 32 of which were
conducted using WFDS. Identified simulations were from a combination of peer-
reviewed publications and non-peer reviewed reports including conference pro-
ceedings and theses/dissertations (Table 2). Unlike the AC06 dataset the simulated
fuels complexes were based on field measurements and published tree level bio-
mass equations and include to some extent the vertical and horizontal distribution
of canopy fuels at the measured sites. The details of the scenarios being modeled
and the configuration of the simulations as well as a richer set of results can be
found in each of the respective manuscripts. It is important to note that none of
the simulations conducted in these studies were developed using data from the
AC06 data set and instead relied on a combination of field measurements, pub-
lished values and user assumptions to initialize the simulations. In no cases, was
any form of calibration performed using the AC06 data sets, thus making these
data a useful set of values to compare against empirical data set of AC06.

3.3. Analysis

Because the AC06 data did not contain data needed for detailed physics-based
model initialization, point- to-point comparisons between model predictions and

Table 2
Source of the Physics-Based Modeling Data Used in Comparisons

Data source Fuel typea Model used Number of simulations

Linn et al. [22] PP FIRETEC 4

Sieg et al. [75] PP FIRETEC 2

Pimont et al. [45] BS FIRETEC 4

Linn et al. [46] BS FIRETEC 20

Hoffman et al. [26] LPP FIRETEC 2

Linn et al. [25] PJ FIRETEC 4

Pimont et al. [21, 45] AP FIRETEC 2

Ziegler [76] PP WFDS 32

a Fuel type: BS, black spruce (Picea mariana); LPP, lodgepole pine (Pinus contorta); PP, ponderosa pine (Pinus

ponderosa); AP, Aleppo pine (Pinus halepensis); PJ, Piñon-Juniper (P. edulis-Juniperus spp.)
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the empirical data reported by AC06 were not possible. Instead, we used linear
regression to assess the relationship between the 10-m open wind speed and the
crown fire ROS for the data set reported by AC06 and estimated non-simultane-
ous 95% prediction intervals for a new observation. Since the other variables con-
tained in the AC06 data set (i.e. canopy bulk density and effective fine-fuel
moisture) were estimated by AC06 without knowledge of the actual conditions
rather than directly measured or inferred from field collected data, we only inclu-
ded the 10-m open wind speed in our final regression (Eq. 1) and we have not
included vertical canopy distribution or moisture levels in this regression.

CROS ¼ 24:5þ ð0:669 � 10 UÞ þ ð0:0373 � 10 U 2Þ ð1Þ

where CROS is the crown fire rate of spread and 10 U is the open 10-m above
tree height wind velocity. The overall R2 value of our regression was 0.56. We
then compared the simulated crown fire ROS from FIRETEC and WFDS to the
95% prediction intervals and assessed the number of points for each model that
fell within these intervals. Based on an initial proposal for assessing model perfor-
mance for dynamic ecological models [29], we assumed reasonable agreement
between the simulations and the experimental data would occur if at least 75% of
the simulated points were within the 95% predictions bounds.

4. Results

Figure 1 compares the simulated crown fire rates of spread from both FIRETEC
and WFDS to the AC06 data. The AC06 data is represented by gray crosses;
black triangles represent ROS simulated with FIRETEC, and the black circles
represent ROS simulated with WFDS. Overall, 59% of 69%, or 85.5% of all sim-
ulated ROS values fell within the 95% prediction interval. Of the 10 crown fire
ROS predictions that were outside the 95% predictive intervals, four were from
WFDS and six were from FIRETEC. This corresponded to 87.5% and 84.2% of
the predicted crown fire rates of spread falling inside of our predictive intervals
for WFDS and FIRETEC respectively (Table 3; Figure. 1). All ten points that fell
outside the 95% predictive intervals had greater rates of spread than expected for
the given open wind speeds suggesting the potential for over-prediction from both
WFDS and FIRETEC (Table 3).

Further analysis of the points that fell outside the predictive bounds was limited
due to a lack of information regarding many of the independent variables known
to influence crown fire behavior. However, four of the six FIRETEC points that
showed an over-prediction bias were from a study conducted by Linn et al. [22].
In this study, the authors represented the initial atmospheric boundary conditions
as a constant no shear wind profile. Comparisons of the normalized wind profile
in these simulations to measured and theoretical profiles suggests that this
assumption resulted in higher near-surface and within-canopy wind speeds than
would be expected and could explain the increased rate of spread predictions in
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these cases. Mueller et al. [40] recently demonstrated that the use of a forced pro-
file was not appropriate for accurate wind simulations above the forest and has
not been used in recent FIRETEC publications. The remaining two FIRETEC
points and the four WFDS points that were outside our predictive bounds were
simulated to represent a piñon (Pinus edulis)/juniper (Juniperus spp.) woodland, a

Figure 1. Crown fire ROS curve (black line) as a function of open
10-m wind speed with 95% confidence intervals (gray lines), deter-
mined from the data set of AC06 [28]. Points represent crown fires
from: AC06 data set (gray crosses), FIRETEC (black triangles), and
WFDS (black circles).

Table 3
Overview of WFDS and FIRETEC Simulations Used in Comparisons

WFDS FIRETEC

Number of simulated fires 32 38

Range of 10-m wind velocities (km h-1) 6.7–43.8 6.5–50.0

Forest typesa PP AP,BS, PJ, LPP, PP

Number of points outside 95% prediction bands 4 6

% Of points outside of 95% prediction bands 12.5% 15.7%

% Over prediction 100% 100%

% Under prediction 0% 0%

a Forest type: PP, ponderosa pine (Pinus ponderosa); BS, black spruce (Picea mariana); LPP, lodgepole pine

(Pinus contorta); AP, Aleppo pine (Pinus halepensis); PJ, Piñon-Juniper (P. edulis-Juniperus spp.)
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black spruce (Picea mariana) forest and a ponderosa pine (Pinus ponderosa) for-
est. In all these cases, except for the FIRETEC point that represented a black-
spruce forest, the canopy bulk densities used in the simulations were greater than
those reported by AC06, which might explain the high rates of predicted crown
fire spread. For example the three WFDS simulations had simulated canopy bulk
densities that ranged from 0.21 to 0.25 kg m-3, while the FIRETEC piñon/juniper
woodland simulation had a mean canopy bulk density of 0.25 kg m-3. In con-
trast, AC06 used a canopy bulk density value of 0.13 to represent ponderosa pine
dominated forests and had a maximum canopy bulk density value of 0.20 kg m-3

to represent other forest types. However, these potential differences should be
interpreted with caution since the reported AC06 values were not based on actual
on-site data and thus may not provide an accurate estimate of the actual canopy
bulk densities of these fires.

5. Discussion

Our findings show that, generally speaking, both FIRETEC and WFDS produced
crown fire rate of spread predictions within the range of a large empirical crown
fire dataset. More specifically, over 80% of the FIRETEC and WFDS predictions
of crown fire rate of spread fell within the 95% prediction bands of crown fire
rate of spread as predicted by 10-m open wind speed. As noted by Cruz and
Alexander [77], there are no generally agreed upon criteria for assessing wildland
fire behavior modeling performance. However, Rykiel [26] suggested that in cases
without explicit performance criteria the best that can be done is to state the
model performance criteria and leave it to the end user to judge if these criteria
are adequate for a given purpose. In the current study, our ability to test the
model was limited by a lack of environmental and fuels data in AC06 such that
we were not able to estimate the errors associated with point-to-point or concur-
rent comparisons. However, as suggested by Rykiel [26], an appropriate conven-
tion for performance criteria may include not only how close to observed data the
simulation is, but also how often. Based on his initial recommendations for crite-
ria in dynamic ecological modeling that model predictions should fall within the
95% prediction bounds 75% of the time, the two detailed physics-based models
we tested provide reasonable agreement with the experimental data. In cases
where WFDS and FIRETEC did not predict rates of spread within our predictive
bounds, both models appear to over-predict the crown fire rate of spread. As sug-
gested by Alexander and Cruz [28], under-predictions have severe implications for
public and firefighter safety and fire operations planning; whereas over-predictions
can be easily dealt with.

Although our comparisons provide some indication that detailed physics-based
models produced reasonable estimates of crown fire rates of spread, these compar-
isons are significantly limited in scope for a variety of reasons. As indicated
above, the comparisons made here rely on data from experiments that often have
insufficient environmental and fuels information for a more complete evaluation
of detailed physics-based models. The lack of detailed information had three
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important outcomes. First, we were not able to directly simulate experiments
reported by AC06. This restricted our evaluation to simple statistical comparisons
based on the development of 95% prediction bounds around the relationship
between the measured 10-m wind velocity and the crown fire rates of spread.
While this allowed us to determine how often simulated results were similar to the
observations, it did not allow us to quantify the error associated with the predic-
tions, if the model produces outputs with the same statistical properties of the
observational data set or to assess the simulated relationships between other fuels
and environmental variables and crown fire ROS.

Secondly, insufficient data limited our ability to further evaluate any discrepan-
cies between the model simulations and our expectations based on our prediction
bounds. In particular, many of the experiments contained within the AC06 data
set lack sufficient information regarding the spatial and temporal variability of the
fuels complex and the atmospheric boundary layer to fully assess discrepancies.
For example, often an investigator will provide a single number when describing
the wind speed near the fire or the fuels complex, despite both wind speed magni-
tude and canopy fuel loading having a strong dependence on the height above
ground and significant horizontal variability. Recent numerical simulations have
shown that rate of spread predictions from detailed physics-based models are sen-
sitive to small variations in both the spatial pattern of the fuels complex [22, 23]
and assumptions regarding the atmosphere boundary layer [46]. Clearly, further
assessment of detailed physics-based models would benefit from additional data
regarding spatial and temporal variability of key fuel and environmental charac-
teristics (i.e. wind). However, new approaches may have to be developed to make
such data collection logistically possible at the scales over which crown fire spread
occurs. For example, quantifying the pattern of surface and canopy fuel loading
could potentially be characterized using both active and passive remote sensing
technologies. However, there are still limitations within the temporal and spatial
availability of these technologies.

Finally, the only fire behavior data reported in the AC06 data set was the head-
fire rate of spread which is the end result of many coupled physical processes. Ide-
ally, detailed physics-based models should be validated at both the sub-model
level and the system level. Assessment of both system and sub-level model behav-
ior are important as they can provide checks against incorrect conclusions, indi-
cate if the model is conceptually consistent with reality, and identify specific
components of the model that need to be improved [78].

In addition, insufficient data limiting assessment of model performance, the
comparisons made here assumed that the field-collected data are without error. In
reality, there are inaccuracies and imprecisions of both the dependent and inde-
pendent data collected during field-scale wildland fire experiments, which place
additional limits on the level of precision and accuracy that can be expected from
a model. As suggested by Belloccie et al. [78], the accuracy of a model is deter-
mined in part by the ability of the model equations to describe the real world and
in part by the quality of both the input data used to initialize the model and the
dependent parameter data used to evaluate model outputs. In many cases, the
errors associated with both the estimated input parameters used to initialize
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detailed physics-based models and the dependent output parameters are rarely
reported and often are unknown. Although the uncertainty in measured data used
to assess model performance is frequently acknowledged [78, 79], it is rarely con-
sidered in model performance evaluation.

Although the empirical data from past experiments is useful for coarse-scale com-
parisons, such as those made here, it is often insufficient for a more complete assess-
ment of detailed physics-based models in part due to the reasons discussed above.
The lack of empirical data that has been collected with the intention to assess
detailed physics-based models is currently acting as a bottleneck for further assess-
ment of model performance and development. In addition, since detailed physics-
based models are often used for investigation of phenomenology or hypothesis
development regarding cause and effect relationships, it is important that future
studies strive to provide better and more inclusive initialization parameter esti-
mates, including the temporal and spatial dynamics associated with the wind field
and fuels complex, but also evaluate a broader range of fire behavior measures
beyond just the head-fire rate of spread. For example, there is little information
available regarding the heterogeneous nature of the rate of fire spread, rate of mass
consumption, heat fluxes or fire depth through time for crown or surface fires at
field-scales. Although there have been a number of model performance assessments
of both FIRETEC and WFDS, additional experimentation that is specifically
designed to assess a broader array of detailed physics-based model outputs com-
bined with a wider range of statistical analysis of model performance could help
identify any potential errors and limitations, enhance model credibility, and expand
the robustness of model assessment and model application.
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