
Forest Ecology and Management 355 (2015) 109–123
Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier .com/locate / foreco
Review and synthesis
The role of remote sensing in process-scaling studies of managed forest
ecosystems q
http://dx.doi.org/10.1016/j.foreco.2015.05.032
0378-1127/Published by Elsevier B.V.

q This article is part of a special issue entitled ‘‘Carbon, water and nutrient cycling
in managed forests’’.
⇑ Corresponding author.

E-mail address: Jeffrey.G.Masek@nasa.gov (J.G. Masek).
Jeffrey G. Masek a,⇑, Daniel J. Hayes b,c, M. Joseph Hughes c, Sean P. Healey d, David P. Turner e

a Biospheric Sciences Laboratory (Code 618), NASA Goddard Space Flight Center, Greenbelt, MD, United States
b Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
c Department of Ecology and Evolutionary Biology, University of Tenn., Knoxville, TN, United States
d USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, United States
e Department of Forest Ecosystems and Society, Oregon State Univ., Corvallis, OR, United States
a r t i c l e i n f o

Article history:
Received 22 January 2015
Received in revised form 19 May 2015
Accepted 23 May 2015
Available online 24 June 2015

Keywords:
Remote sensing
Forest ecology
Scaling
a b s t r a c t

Sustaining forest resources requires a better understanding of forest ecosystem processes, and how man-
agement decisions and climate change may affect these processes in the future. While plot and inventory
data provide our most detailed information on forest carbon, energy, and water cycling, applying this
understanding to broader spatial and temporal domains requires scaling approaches. Remote sensing
provides a powerful resource for ‘‘upscaling’’ process understanding to regional and continental domains.
The increased range of available remote sensing modalities, including interferometric radar, lidar, and
hyperspectral imagery, allows the retrieval of a broad range of forest attributes. This paper reviews the
application of remote sensing for upscaling forest attributes from the plot scale to regional domains, with
particular emphasis on how remote sensing products can support parameterization and validation of
ecosystem process models. We focus on four key ecological attributes of forests: composition, structure,
productivity and evapotranspiration, and disturbance dynamics. For each attribute, we discuss relevant
remote sensing technologies, provide examples of their application, and critically evaluate both strengths
and challenges associated with their use.
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1. Introduction

Forests provide critical ecosystem services to society, including
provision of food and fiber, maintaining water availability and qual-
ity, and regulating climate (Krieger, 2001; Millennium Ecosystem
Assessment, 2005). Sustaining these services under increasing soci-
etal demand depends on effective forest management, which in
turn relies on solid scientific understanding of the natural processes
of carbon, water, and nutrient cycling. Historically, much of our sci-
entific knowledge on key ecological processes and management
impacts has come from field-based studies and experimental
manipulations. To extrapolate this understanding to larger domains
in both time and space, however, requires scaling techniques often
based on forest inventories and ecological modeling. Upscaling
plot-level measurements of carbon, water and nutrient cycling in
forests to broader spatial and temporal scales can be accomplished
by different approaches including measure-and-multiply, or
‘‘book-keeping’’, techniques (e.g., Houghton et al., 1983), formal
national-level resource inventories (e.g., Heath et al., 2011), and
mechanistic modeling of biogeochemical processes (e.g., Thornton
et al., 2009). Across these various scaling approaches are common
data requirements for initializing, calibrating, driving and validat-
ing these methods.

Remote sensing observations and derived products fill a critical
role in meeting these data requirements, particularly where
spatially- and temporally-explicit information is needed for inputs
and evaluation (Turner et al., 2004). In theory, remote sensing is
straightforward. Energy from either the sun or the sensor itself
can be interpreted as it interacts with the Earth’s surface to infer
forest attributes or, as observations are combined over time,
change. These inferences can be made over different spatial scales
and frequencies, with consistent records going back decades in
some cases. From this simple concept however come a large vari-
ety of sensors that vary by platform, passive or active systems,
spectral wavelengths, spatial resolution and coverage, and repeat
frequency and available historical record (Jensen, 2009). The choice
of system, or combination of systems, depends on the scale of the
application or process of interest and the particular forest attribute
of interest (e.g., composition, structure, productivity, water bal-
ance, or disturbance).

Here we review current remote sensing capabilities that can be
used to characterize carbon, water, and nutrient cycling in man-
aged forests. Our particular focus is describing remote sensing data
and products describing key ecosystem attributes that can be used
to parameterize process-based models, or scale inventory and field
measurements to regional or even global extents. Despite the wide
differences across the various scaling approaches, there are com-
mon spatio-temporal data requirements that can be addressed by
remote sensing. Accordingly, we discuss the application of remote
sensing to four key ecological aspects of forests: composition,
structure, productivity and evapotranspiration, and disturbance
dynamics.

Our emphasis is not exclusively on data sources that directly
inform forest management (which often requires spatial resolution
at the scale of individual stands), but more broadly on data sources
useful for studying the ecological impact of forest management as
a land use practice. We also note that the definition of ‘‘managed
forest’’ itself is ambiguous, encompassing management goals as
diverse as maximizing extraction (rapid rotation harvest, fertiliza-
tion, thinning) and minimizing disturbance (fire suppression, pro-
tection from development). For example, large swaths of forest in
the US and Canada are designated as ‘‘managed’’, although their
composition and structure do not differ substantially from ‘‘natu-
ral’’ forests with similar land use history. Most of the discussion
in this paper focuses on extractive management, including
clear-cutting, partial harvest, and planting, by which human activ-
ities rapidly alter forest attributes. Given the increased societal
attention to forest resource pressures and environmental uncer-
tainty, we also discuss emerging challenges and opportunities in
the use of remote sensing to inform forest science, management,
and policy.
2. Remote sensing and scaling approaches

To support sustainable management of forest resources, we
need to understand the broader implications of our local-scale
knowledge of ecological processes. Most any scaling approach will
first require at least one – or more typically many – geospatial map
product(s) describing forest attributes across the landscape of
interest. Whether using a simple spreadsheet or ‘‘book-keeping’’
approach (e.g., Houghton, 2003) or more sophisticated
process-based simulation modeling (e.g., Melillo et al., 1993), the
basic premise of a scaling approach is to associate a particular
parameter with the land cover or forest type where it was mea-
sured, and then extrapolate its local value according to the areal
extent and spatial pattern of that type across the mapped land-
scape. For example, in their book-keeping approach to estimate
the forest-sector greenhouse gas budget of Mexico, de Jong et al.
(2010) developed a nation-wide initial biomass estimate by
extrapolating measured, per area carbon stock density values to
the spatial extent of the main forest cover types based on medium
spatial resolution (30 m) satellite data classification. In U.S. forests,
higher spatial resolution maps of composition and structural attri-
butes have been achieved using statistical scaling techniques that
integrate inventory plot data with optical- and laser-based remote
sensing (e.g., Blackard et al., 2008; Ohmann et al., 2014; Zald et al.,
2014). At the global-scale, process-based simulations by biogeo-
chemical and land surface models require initialization with maps
of plant functional types (PFTs) that are typically based on coarse
resolution (�1 km) remote sensing data products (e.g., Jung et al.,
2006; Huntzinger et al., 2013; Wullschleger et al., 2014). Where
data products are available at finer scales (�1 m–30 m), some
process-based modeling applications can be directly initialized
with spatially-explicit data on forest biomass (e.g., Kimball et al.,
2000), structural characterizations (e.g., Hurtt et al., 2004) or foliar
chemistry (Ollinger and Smith, 2005) (Fig. 1).

Repeat remote sensing imagery that captures forest dynamics
through multiple observations over time is also used to explicitly
drive inventory and modeling approaches for quantifying changes
in carbon, water and nutrient cycling at landscape to regional
scales. While model initialization data incorporate the spatial vari-
ability of a particular parameter, remote sensing driver data are
used to represent the temporal dynamics of that parameter. In
the greenhouse gas accounting example cited above, de Jong
et al. (2010) calculated the change in Mexico forest-sector carbon
stocks by updating their initial area-based biomass estimate with
two time-periods of spatially-explicit land cover change maps clas-
sified from Landsat imagery. The national carbon accounting sys-
tem in Canada is also largely driven by modeling the components
of change based in part on remote sensing of forest disturbances,
such as wildfires and insect outbreaks (Kurz et al., 2009).
Similarly, these components of change can be incorporated into
simulation modeling frameworks to capture the impacts of distur-
bance and land use change on ecosystem processes (e.g., Galford
et al., 2010; Hayes et al., 2011; Turner et al., 2011). Remote sensing
indices are also used in empirical and explicitly diagnostic scaling
approaches, such as the global estimation of vegetation productiv-
ity based on the light-use efficiency (LUE) approach (Running et al.,
2004) and the upscaling of site-level observations of carbon, water
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Fig. 1. Key variables needed to scale ecosystem studies or parameterize process models, and the relevant remote sensing approaches for their retrieval. Remote sensing
modalities (passive optical, radar, etc.) are shown in the left column together with common sensor examples. Green = modality is strongly relevant for retrieving variable;
yellow = modality can support variable retrieval, subject to limitations in accuracy. Note that additional geographic and temporal limitations may limit application (e.g. the
lack of a global hyperspectral system limits the ability to retrieve canopy pigments globally, despite the relevance of the technology). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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and energy fluxes based on eddy-covariance techniques (Jung
et al., 2011). There are also many examples of numerical modeling
frameworks that directly incorporate satellite-derived productivity
indices as key drivers in diagnostic simulations of ecosystem pro-
cesses (e.g., Potter et al., 1993; Coops and Waring, 2001; Turner
et al., 2006a,b).

A final data requirement for ecosystem scaling approaches is a
set of known target values to both calibrate and validate the empir-
ical or numerical simulation model. These cal/val data are often
subsets of the same type and source, and historically have primar-
ily come from plot-based measurements. These site-level data can
be used to parameterize and verify ecosystem process models for
particular forest types (e.g., Medvigy et al., 2009; Richardson
et al., 2010), but available data are limited in both space and time.
To capture broader spatio-temporal variability in model evalua-
tion, studies of forest carbon, water and energy exchange have
made use of regional-scale networks of eddy-covariance towers
(Fisher et al., 2008; Schaefer et al., 2012). Still, the spatially and
temporally limited observations from these networks can under-
represent important forest regions and associated ecological pro-
cesses (Hargrove et al., 2003; Hayes and Turner, 2012). Remote
sensing data have the potential to provide spatially and temporally
explicit, consistent and comprehensive benchmarks for model
evaluation (Luo et al., 2012; Mao et al., 2012a,b). Remote sensing
data can also be directly assimilated into process-based models
as a constraint on system dynamics (e.g., Luo et al., 2011; Quaife
et al., 2008; Rayner et al., 2005).

The various scaling approaches each offer advantages and dis-
advantages depending on the science or management question
being addressed. Because each approach might focus on a different
aspect of carbon, water and nutrient cycling, the choice of
approach is important and any cross-evaluations must be careful
to consider ‘‘apples-to-apples’’ comparisons (Hayes and Turner,
2012). Although there are benefits in retaining independence for
such comparisons, progress can also be made in scaling questions
by considering multiple constraints (Hayes et al., 2012) as well
as more formally integrating across approaches (Turner et al.,
2013). Remote sensing can serve as a key integrator in this effort,
where opportunities exist to use repeat coverage, spatially
-explicit data to calibrate, initialize, drive and validate both inven-
tory and modeling approaches to scaling forest ecosystem pro-
cesses. Along with these opportunities, however, come significant
challenges with the use of remote sensing in managed forests.
There are methodological limitations and various sources of error
in remote sensing data themselves that need to be overcome. In
most cases, it is not possible to remotely sense the ecological pro-
cess of interest directly, and thus to produce the desired output
some level of model (which itself needs calibration and validation)
is required. At the foundational level, though, remote sensing data
and methods have demonstrated the ability to inform scaling stud-
ies of ecological processes by characterizing their underlying indi-
cators. Here, we review the state-of-the-art in remote sensing of
these indicators in managed forests, namely composition, struc-
ture, productivity and evapotranspiration, and disturbance dynam-
ics, and discuss the opportunities and challenges going forward for
this important field of research.

3. Forest composition

To accurately represent ecological processes, models require
some depiction of vegetation composition. Typically, models
parameterize rate constants (e.g. mortality, carbon allocation,
plant-atmosphere fluxes) by assigning values based on vegetation
type (e.g. Hudiburg et al., 2009). Historically, vegetation type was
assigned at coarse resolution using fixed land cover classes based
on climate regimes or field observations (Matthews, 1983). With
the advent of reprocessed global AVHRR satellite data in the
mid-1980s, researchers began to construct global land cover repre-
sentations at finer scales, and with additional information derived
from seasonal observations of vegetation greenness (Tucker et al.,
1985; Justice et al., 1985; Loveland et al., 2000). Remote sensing
classification schemes for land cover have typically relied on strat-
ification among a few key structural and functional variables,
including leaf type (needle, broadleaf), leaf longevity (deciduous,
evergreen), stem structure (herbaceous vs. woody), and stature
(shrub vs. treed). Biogeochemical and ecological models have been
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parameterized using global land cover maps derived from AVHRR,
MODIS, and SPOT-Vegetation (Jung et al., 2006; see also references
in Section 5), ranging in spatial resolution from 500 m to 8 km,
although other models specify vegetation types internally in
response to local edaphic conditions, climate, and competitive
dynamics (Quillet et al., 2010).

For global models operating at 1/4 to 1 degree, a challenge has
been to adequately represent the heterogeneity of land cover classes
within a single grid cell. In many cases models simply adopt the most
common, or modal, land cover type to represent the entire cell.
However this practice tends to underestimate the biophysical
impacts of small, disaggregated land cover types such as urban
areas, small-scale agriculture, wetlands, and riparian forests. More
sophisticated parameterizations incorporate observed mixtures of
land cover within each cell, essentially running separate model sim-
ulations for each land cover fraction, and then aggregating the com-
ponent fluxes and stocks (Koster and Suarez, 1992; Bounoua et al.,
2006; Melton and Arora, 2014) or tracking them as individual but
not spatially-explicit ‘‘cohorts’’ (Hayes et al., 2011).

Identifying managed forests as a specific class often requires
combining information on both composition and temporal dynam-
ics. Large plantation monocultures, such as oil palm and eucalyptus
have been successfully mapped using MODIS time series data. In
the case of Eucalyptus, short-rotations (6–7 years) provide a diag-
nostic NDVI signature (le Maire et al., 2014; Marsden et al., 2010).
Oil palm has been mapped via diagnostic phenology compared to
surrounding forest (Gutiérrez-Vélez and DeFries, 2013), as well
as visual interpretation of high-resolution data (Thenkabail et al.,
2004) and application of traditional classification approaches to
radar and optical data (Santos and Messina, 2008). In other cases,
identifying managed forests relies less on unique phenology or
spectral signatures, and more on the relative level of disturbance
activity compared to ‘‘natural forests’’. For example, the prevalence
of stand-clearing disturbance in the southern United States is read-
ily ascribed to pine forestry across much of the region (Masek et al.,
2008; Hansen et al., 2010). In regions with less intensive manage-
ment practices, including selective harvest and partial harvest, it
may be difficult to separate the temporal signature of management
from natural disturbances such as storm damage and insect mor-
tality (Thomas et al., 2011).

The use of remote sensing derived land cover within ecological
models is by now well established, and recent attention within the
remote sensing community has focused on creating more ecologi-
cally relevant descriptions of composition. In particular, the con-
cept of mapping vegetation functional types, rather than land
cover types, has gained currency. While the precise definition of
functional type has been debated (Gitay and Noble, 1997), the term
refers to plant communities that either share a common ecosystem
function, or share a common response to a perturbation such as
disturbance or stress. In theory a landscape unit can have multiple
descriptions incorporating function, response to stress, structure,
and temporal behavior. Thus, rather than simply stratifying vegeta-
tion into fixed classes, a given patch could (for example) fix nitro-
gen, feature serotinous reproductive strategies, and be a woody
perennial.

Derivation of functional types has commonly centered on the use
of fine spectral resolution (hyperspectral) data in order to discrimi-
nate among different plant attributes. Physically, the use of hyper-
spectral data allows retrieval of specific biochemical compounds
associated with plant function and structure, including foliar nitro-
gen, C/N ratios, chlorophyll concentration, and structural com-
pounds (lignin, cellulose) (Kokaly et al., 2009; Ustin et al., 2009).
Numerous studies have used hyperspectral imagery to map specific
plant communities (Roberts et al., 1998; Clark et al., 2005) and func-
tional traits (e.g. Asner and Vitousek, 2005; Asner et al., 2015).
However, reliably translating leaf-level reflectance spectra to the
canopy scale remains challenging. While foliar chemistry and struc-
ture control leaf-level spectra, canopy spectra are strongly affected
by forest structure (eg. leaf-area, branch area, shadowing), composi-
tional mixing among multiple species, and non-vegetated compo-
nents such as soil visible through canopy gaps (Asner, 2008). Thus
care must be taken to consider the role of canopy structure as well
as leaf biochemistry in interpreting observed reflectance spectra
(e.g. Knyazikhin et al., 2013). In addition, there are currently no oper-
ational hyperspectral observatories in orbit that provide routine glo-
bal coverage. Limited data have been collected by the EO-1 Hyperion
sensor since 2000, and new data are planned from the German
EnMAP satellite beginning in 2018.

4. Forest structure

Forest structure refers to the three-dimensional organization of
individual trees on the landscape, as well as the way that canopy
elements fill space. Specific structural attributes derived from
remote sensing include stand height, stem density, fractional
canopy cover, canopy vertical distribution, and biomass.
Knowledge of forest structure is critical for ecosystem modeling
for several reasons. First, structural elements such as height and
stem density are directly related to above-ground biomass and
thus carbon storage (Hall et al., 2011). Ecosystem models can use
observed biomass data to constrain productivity and wood turn-
over so that, for example, potential biomass within the model does
not exceed maximum observed biomass (Williams et al., 2012,
2014). In addition, models that explicitly include size or age
cohorts benefit from knowing the distribution of tree sizes within
a model grid cell. For example the Ecosystem Demography (ED)
model accounts for the growth and aging of individual trees, and
can adjust aggregate productivity based on observed height distri-
butions (Hurtt et al., 2004; Thomas et al., 2008; Antonarakis et al.,
2011). Finally, at the scale of individual trees, the distribution of
leaf area and canopy gaps controls the radiation balance at various
levels within the canopy. In principle such information could be
used to drive explicit models of photosynthesis within the canopy,
although to date most models do not approach that level of detail
(Loew et al., 2014).

4.1. Remote sensing of structure

A variety of remote sensing technologies have been used to
retrieve vegetation structural attributes (Fig. 1). Passive optical
techniques rely on reflected solar radiance to provide information.
Active techniques probe vegetation canopies using energy emitted
from the remote sensing platform itself, and include radar and lidar
approaches.

Passive optical methods have been used for over four decades to
retrieve vegetation structure and biomass, but have met with
inconsistent results (Lu, 2006; Powell et al., 2010). Canopy reflec-
tance tends to be dominated in the visible and near-infrared by
the outer layer of the canopy foliage. In the visible wavelengths,
too little light passes through the leaves to probe deeper structural
levels, while in the near-infrared multiple scattering among leaves
leads to an asymptotic saturation of the signal regardless of struc-
ture (Asner, 1998). As a result, there is little information provided
on vertical structure in closed canopy forests. However, passive
optical data are sensitive to the spatial arrangement of shadowing
and ‘‘background’’ (e.g. soil, litter) exposure across the landscape.
Passive optical data are thus useful for determining canopy cover,
and, in sparse forests where cast shadows are diagnostic of tree
heights, passive optical data have been used to retrieve biomass
with relatively high accuracy (Cohen and Spies, 1992; Hall et al.,
2006). In addition, for younger stands where both height and
reflectance are changing rapidly, time series analysis of reflectance



Fig. 2. Example of airborne lidar canopy height measurements from the Parker Tract, North Carolina, using the NASA Goddard’s Lidar, Hyperspectral, and Thermal (G-LiHT)
instrument package (Cook et al., 2013). The site consists of a mosaic of planted loblolly pine with known stand age (a–c), as well as patches of older, unmanaged forest (d).
Indications of management practice (row planting, strip thinning) are visible in the insets a–c.
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trajectories have been successfully correlated with current-year
biomass (Pflugmacher et al., 2012).

Radar and lidar methods tend to perform better than passive
optical methods in higher biomass, closed canopy forests (Zolkos
et al., 2013). Radar backscatter using longer wavelengths (e.g.
L-band, P-band) provides penetration of the canopy branch struc-
ture, but tends to saturate at biomass levels higher than
�100 Mg ha�1 AGB (Imhoff, 1995). More recent studies have used
radar interferometry (based on converting the phase shift between
spatially separated radar signals to calculate distance to the recei-
ver) to characterize the surface and the interior ‘‘topography’’ of
canopies (Treuhaft et al., 2004). Interferometric techniques have
been shown to be sensitive to biomass up to 300–400 Mg ha�1

AGB for X- and P-band (Treuhaft et al., 2015; Minh et al., 2014).
Current or upcoming radar missions include the Japanese
PALSAR-2 (L-band), the European Sentinel-1 mission (C-band),
the European BIOMASS mission (P-band, to be launched in 2020),
and the US/Indian NISAR (S- and L-band, to be launched in 2020).

Lidar is often considered to be the optimal remote sensing
approach for retrieving structural attributes in higher biomass for-
ests where other methods saturate, since it provides a direct mea-
sure of both the vertical and spatial distribution of canopy
elements. In particular, lidar can directly measure stand height,
which correlates strongly with biomass (Hall et al., 2011).
Discrete return lidar systems collect the timing of the first (or first
and last) reflected pulse (Lim et al., 2003). Airborne discrete
returns often provide very dense sampling, with detection of up
to 20 returns per square meter, generating point clouds that visu-
ally depict individual tree crowns, terrain, and understory (Fig. 2).
As noted below, such information can be used to parameterize
individual-based ecosystem models (Hurtt et al., 2004; Thomas
et al., 2008; Antonarakis et al., 2011). Waveform lidar systems col-
lect the full distribution of reflected energy from the canopy,
essentially providing a vertical profile of the canopy density (Lim
et al., 2003). Various studies have reported success in retrieving
biomass levels of up to 300–400 Mg ha�1 using full-return lidar,
although site characteristics (including species composition and
local topography) may reduce retrieval accuracy (Ahmed et al.,
2013).

4.2. Applications

With the increase in satellite-based radar and lidar systems (e.g.
ICESat GLAS, ALOS PALSAR), a number of recent studies have used
remote sensing observations in conjunction with field data to cre-
ate map-based estimates of above-ground biomass for the
pan-tropics (Saatchi et al., 2011; Baccini et al., 2012), the United
States (Kellndorfer et al., 2004); and the circum-Arctic (Neigh
et al., 2013). These efforts have typically used multiple remote
sensing inputs, and statistical modeling techniques to ‘‘train’’
regression models based on available field data, and provide map
estimates with spatial resolution of 30 m to 1 km. The high uncer-
tainty associated with these products (often 20–40%) reflects lim-
itations in the amount of field-measured biomass available
across the globe, as well as limitations in current radar and lidar
datasets. For example, although ICESat GLAS has been used in
many recent studies, its spatial resolution (�60–80 m) is not opti-
mal for measuring vegetation structure in complex terrain. When
implemented on the International Space Station (ISS) in 2018, the
NASA Global Ecosystem Dynamics Investigation (GEDI) vegetation
lidar should improve the quality of biomass datasets by providing
denser laser sampling, as well as finer spatial resolution (20 m) for
each laser spot. Due to the ISS orbit, only land areas between 52
degrees north and south will be mapped during the GEDI mission.

One complication, however, is that traditional modes of infer-
ence do not easily support uncertainty analysis of forest population
parameters derived by simply adding up modeled pixel values.
This is evident, for example, when the ecoregion-level biomass
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values implied by alternative maps do not intersect each other’s
confidence intervals (Mitchard et al., 2014). There are, however,
straightforward ways to integrate lidar measurements as discrete
observations in a formal sample/survey framework (Wulder
et al., 2012), an approach which has been pursued using both air-
borne (Ståhl et al., 2010) and spaceborne (Healey et al., 2012) lidar
data. GEDI will likely incorporate these principles in order to
improve population estimates. The improved sampling density of
GEDI should allow biomass estimates with <20% absolute error
within cells finer than 25 ha, a scale approaching that at which
individual forest tracts may be managed.

A number of studies have successfully used active remote sens-
ing to retrieve structural attributes in managed and disturbed for-
ests, and to distinguish structural differences associated with
forest extraction. Dolan et al. (2011) found a significant change
in regional stand height before and after Hurricane Katrina using
ICESat GLAS data. Similarly, Margono et al. (2012) found a statisti-
cally significant difference in GLAS-derived canopy height between
primary intact and primary degraded forests in Indonesia. Ryan
et al. (2012) used three-years of L-band radar from ALOS PALSAR
to identify changes in carbon stocks in degraded Mozambique
woodland as small as 12 Mg ha�1 with 95% confidence. These
results indicate the potential of active remote sensing to quantify
specific levels of forest extraction or degradation apart from simply
stand clearing events such as clearcutting. An innovative study by
d’Oliveira et al. (2012) used airborne lidar to identify subcanopy
logging roads and skid trails in a degraded section of Amazonian
forest (Brazil). A key finding was the ability of lidar to map specific
management practices that would otherwise be hidden by the
overstory canopy.

In addition to characterizing the current state of forests, active
remote sensing can be used to monitor long-term changes in struc-
ture. The most direct approach is to use the same instrumentation
to acquire repeated lidar or radar datasets over a period of years.
Particularly in the case of lidar, there have been relatively few
experiments of this nature to date. Dubayah et al. (2010) used
repeated measurements from the LVIS airborne lidar system over
La Selva, Costa Rica to map height and biomass change between
Fig. 3. Anthropogenic and natural disturbances can be characterized across a
press–pulse spectrum in terms of the spatial and temporal scale of their impact on
managed forests. The choice of the spatial and temporal scale of remote sensing
data used to detect and characterize different disturbance types varies with these
press–pulse characteristics.
1998 and 2005. In addition to recording losses due to clearing
and disturbance, they were able to identify areas of increasing
height and biomass within growing, secondary forests. Similarly,
Rosette et al. (2015) used repeated measurements from LVIS
(2009–2013) to identify structural changes associated with forest
management in Howland, Maine. Since comparable, repeat-pass
lidar datasets remain rare, a number of studies have combined
one-time structure information from lidar with disturbance history
from passive optical sensors such as Landsat or MODIS. For sec-
ondary forests, knowing the time since clearing (from historic
Landsat imagery) and current biomass from lidar, the mean rate
of biomass accumulation across a region may be obtained
(Helmer et al., 2009; Dolan et al., 2009).
5. Forest dynamics and disturbance

Disturbance processes that result in tree growth decline and/or
mortality are a ubiquitous and constant feature of managed forest
landscapes (Fig. 3). Disturbances can be caused by natural pro-
cesses such as wildfires, insects and disease, and wind-throw and
storm events, or from anthropogenic processes such as logging,
pollution, deforestation, and the introduction of invasive species.
The broader landscape patterns of forest composition, structure
and function are a reflection of the regional disturbance regime,
defined by the dominant type, extent and frequency of distur-
bance. Superimposed on climate and landscape characteristics, dis-
turbance is a key determinant of forest heterogeneity at regional
scales (Sousa, 1984).

Disturbance events change the composition and structure of the
forest, alter carbon, water and nutrient cycling, and reset succes-
sional processes (Goward et al., 2008; Williams et al., 2014;
Hicke et al., 2012; Chambers et al., 2007). The impacts of distur-
bance on forests are both direct, as with short-term tree mortality
and the mass transfer of carbon, and indirect through modifying
the physical environment that influences longer-term successional
trajectories of carbon, water and nutrient cycling (Kasischke et al.,
2013). At the local-scale, the amount and nature of mortality, car-
bon transfers and physical impacts are all dependent on the type
and severity of disturbance (Keeley, 2009; Goetz et al., 2012).
The broader-scale impacts over time and space depend on the fre-
quency and extent of disturbances over larger areas.
Characterization and quantification of these key attributes of forest
disturbances (i.e., type, severity, frequency and extent) are
required for estimating or simulating the ecological impacts of for-
est disturbances in scaling frameworks and process models (Liu
et al., 2011).

Here we review and discuss the opportunities and challenges in
employing different remote sensing technologies and methods for
creating the disturbance data products needed for informing pro-
cess scaling studies in managed forest ecosystems. Although there
are many different definitions of disturbance (Sousa, 1984;
Scheffer et al., 2002; Godron and Forman, 1983; Pickett and
White, 1985; Bender et al., 1984), we define forest disturbance
here as those processes, both anthropogenic and natural, that
result in a loss of forest biomass and redistribution of carbon
within the ecosystem. Conversely, those processes that result in
post-disturbance changes in vegetation growth we refer to as ‘‘re-
generation’’, which should be contrasted with ‘‘recovery’’ in that it
does not imply a return to the initial state.
5.1. Characteristics of disturbance

Individual disturbance events can be described by parameters
representing cause (or ‘‘agent’’), spatial extent, severity, duration,
and selectivity. In general, the range of disturbance types can be
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categorized according to more localized and immediate pulse distur-
bances causing abrupt change versus press disturbances that result in
more gradual impacts over broader areas and longer periods of time
(Fig. 3). The choice (and effectiveness) of particular remote sensing
data and techniques to detect and characterize different disturbance
types varies with these press–pulse characteristics.

Disturbance events with small spatial extents, relative to the
spatial grain of remotely-sensed imagery, are substantially more
difficult to reliably discriminate from noise than larger events.
For example, when using satellite imagery with a 30 m resolution,
detection of a large harvest unit is a straightforward detection task
whereas identifying tree-fall gaps would require higher resolution
imagery with a spatial grain of a few meters. Stand clearing events
such as clear-cuts, land-use conversion, and severe fires generate
strong signals that can easily be detected through optical remote
sensing, whereas subtle changes from nutrient deposition, drought
stress, or thinning can be difficult to differentiate from phenologi-
cal differences or errors in surface-reflectance corrections, particu-
larly if they are over large areas on the order of kilometers and
have with indistinct borders.

In addition to varying in size and severity, events can vary in the
species-selectivity of the agent (Frolking et al., 2009). The hemlock
wooly adelgid, for example, is a species-specific invasive insect
that attacks and kills only Eastern hemlocks (Orwig et al., 2012),
whereas the Asian gypsy moth is a generalist parasitoid that affects
many deciduous species (Townsend et al., 2012). Additionally,
wildfires can affect a range of individuals with varying impacts
depending on species and size (Garren, 1943). Species-selective
harvesting, as opposed to simply choosing mature trees or
clear-cutting, can have similar effects. Though species-selective
disturbances always have the same detection challenges as
low-severity disturbance, they introduce the additional issue of
tracking a shifting spectral signal as forest species-composition
shifts. Similarly, other disturbances which leave a mostly intact
overstory canopy, such as understory fires or harvest, controlled
burns, and construction of narrow roadways (<�6 m), pose detec-
tion problems for spectral sensors (Peres et al., 2006).;
lidar-derived structural information is useful for identifying these
types of events (Azizi et al., 2014).

Finally, both pulse and press disturbance events require appro-
priate techniques for detection. Pulse disturbances may go unde-
tected if the spectral signal returns to pre-disturbance values
within span of the detection technique’s temporal window though
Townsend’s (2012) method for quantifying Gypsy Moth defoliation
in the Eastern United states was broadly successful, with a single
fixed-effects model producing a mean absolute error of 10.8% defo-
liation from a cross-validated sample. Conversely, remote sensing
methods to detect press events, such as from progressive insect
and disease outbreaks, remains challenging since many algorithms
are based around the concept of detecting discrete events, rather
than long-term decline (Holmgren and Thuresson, 1998;
Goodwin et al., 2008; Frolking et al., 2009; Oumar and Mutanga,
2011).

5.2. Remote sensing methods for disturbance

Remote sensing methods to characterize forest disturbance typ-
ically rely on first deriving a spectral signature of vegetation
through which changes can be detected. A commonly used signa-
ture, the normalized difference vegetation index (NDVI, Tucker,
1979), subtracts the red reflectance from near-infrared reflectance
to exploit the ’red cliff’ in the chlorophyll absorption spectra and
thereby estimate chlorophyll concentration. Other common signa-
tures include the normalized burn ratio (NBR, van Wagtendonk
et al., 2004), which is used to detect wildfire disturbance
(Eidenshink et al., 2007), and the normalized difference moisture
index (NDMI), which has been shown to better correlate with bio-
mass by also capturing information about forest canopy shadowing
and structure (Wilson and Sader, 2002).

The satellite imagery products most suitable for monitoring
managed forest disturbances are constrained by those that are con-
tinually acquired, rather than tasked, and are openly available to
the public at low- (or no) cost. As such, for forest monitoring pur-
poses, the most common datasets used are those generated from
the MODIS sensors onboard the Aqua and Terra satellites (Justice
et al., 2002) and the sensors aboard the Landsat family of satellites
(Vogelmann et al., 2009). MODIS imagery is available since 2000,
and new views are acquired every one to two days. NDVI products
can be generated at 250 m resolution from MODIS imagery, though
other spectral bands are sampled at coarser resolution. Though the
large spatial grain can subsume smaller managed forest plots, the
high temporal resolution facilitates continuous monitoring,
thereby alerting managers of potential problems that can be spa-
tially pinpointed by other means. Landsat Thematic Mapper data
at 30 m resolution are available since 1982, with an opportunity
for new acquisitions every 16 days for each satellite; though, due
to data constraints, a new image is not acquired at every opportu-
nity. Additionally, the Multispectral Scanner (MSS) instrument
aboard early Landsat satellites can extend views back to 1972,
though at a resampled spatial resolution of 60 m, a 4-band spectral
resolution, and an 18-day return time for Landsat 1 through 3.
Despite its potential, though, only a few disturbance detection
applications have utilized this legacy Landsat data (e.g. Healey
et al., 2008) because its use in time series analysis currently
requires significant additional radiometric and geometric process-
ing beyond standard archived formats. In the future, the European
Global Monitoring for Environment and Security (GMES)
Sentinel-2 mission promises to provide free and open 10–60 m res-
olution imagery every imagery every-five days at the equator by
using two satellites, with orbit characteristics that complement
connecting data with observations from SPOT and Landsat
(Drusch et al., 2012), thereby gaining some of the temporal advan-
tages of MODIS at much higher spatial resolution.

Early methods to detect forest disturbance from remotely
sensed imagery would typically compare two images representing
vegetation acquired on two different dates with the difference
between the images expressing change (Hayes and Sader, 2001;
Garcia-Haro et al., 2001; Masek et al., 2008). Most often, these
would be acquired before and after known disturbance events to
assess the extent and magnitude of the event of interest
(Chambers et al., 2007; White et al., 1996; Wimberly and Reilly,
2007). Like other methods, the magnitude of the spectral change
correlates with the disturbance severity.

To a large extent two- or three-date comparisons to find forest
disturbance were necessitated by the expense of individual
Landsat scenes. With open access to the archive since 2008, meth-
ods that incorporate much more data have become popular
(Vogelmann et al., 2009) (Fig. 4). These methods can provide both
the location and times of disturbance events to create historical
baselines of disturbed areas or for ongoing monitoring. The
Vegetation Change Tracker (VCT) finds disturbances by detecting
deviations in the vegetation index time-series and labeling these
years as disturbed (Huang et al., 2010). LandTrendr (Kennedy
et al., 2007) finds disturbances by fitting a piecewise linear trend
to the vegetation index time-series and then labels segments with
negative slope as disturbances. Both of these methods use Landsat
imagery and generate a single clear-sky composite image for each
year which is then used to detect change. To increase temporal res-
olution, the methods of Zhu and Woodcock (2012), utilize all avail-
able Landsat data to model and remove phenology.

To increase temporal resolution even further, one approach is to
combine daily observations from MODIS with higher-resolution



Fig. 4. Disturbances shape all landscapes, and human activity can cause significant differences in forest structure and composition across ownership boundaries. Time series
of Landsat imagery are useful for identifying the cumulative impact of human activity; Landsat was used to map clearcut harvests over three ownership classes on the
Olympic Peninsula, Washington.
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observations from Landsat (e.g. Hilker et al., 2009). The opening of
the archive has also facilitated studies with very large spatial
extents, such as the mapping of the entire globe from 2000 to
2012 using Landsat data and the Google Earth Engine performed
by Hansen et al. (2013). Using only MODIS data, the ForWarn sys-
tem groups phenological patterns into a set of clusters and then
uses deviations from the expected pattern to detect forest change
in with delays measured in weeks or days. These techniques have
shown promise in both the western United States and in more
species-rich Eastern United States forests (Hargrove et al., 2009).

5.3. Attributing disturbance events

While attribution of disturbance type is critical for inclusion of
remotely sensed change data in models of carbon dynamics (Zhang
et al., 2012) and current and future climate change impacts (Ayres
and Lombardero, 2000; Dale et al., 2001), most disturbance maps
do not specify type. A major hurdle to creating effective and reli-
able attribution algorithms is the availability of high-quality train-
ing data that labels known individual disturbances with a causal
agent. In most studies, the researchers themselves generate these
data.

Work by Schroeder et al. (2011) in the Canadian boreal forest
used Landsat imagery to distinguish between forest fires and clear-
cuts that were manually identified by analysts. Although limited to
a relatively small spatial area, agent separation rates of 93% were
achieved. The shortwave infrared bands contained the most reli-
able information and imagery acquired soon after the disturbance
event was the most effective, though separation could still be
achieved with imagery acquired up to four years after the event.
Working over the entire Canadian boreal forest, Guindon et al.
(2014) used MODIS imagery to separate disturbances caused by
fires, harvest, and floods. Using a decision tree model, separation
accuracies between 80% and 85% over the entire area were
achieved. Smaller and less-serve disturbances, though, were fre-
quently omitted (up to 50%), and the presence of other disturbance
agents, such as insect outbreaks, emphasizes the complexity of the
attribution problem. Baumann et al. (2014) explored the separa-
tion of anthropogenic harvest and natural windfalls using a sup-
port vector machine classification approach over spectral
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information in Russian temperate forests and boreal forests of the
United States. The approach generated high classification reliabil-
ity when a disturbance was detected, but omitted many distur-
bance events less than approximately 5 ha in area. These
approaches based on generating individual training data sets can
be inefficient as similar work is repeated and the comparability
of methods is limited since the set of disturbances detected and
labeled differs between studies. The human interpretation aspect
of this approach can create bias since the same researchers gener-
ate both the training data and the detection/classification tool.

Using information from the remote sensing imagery other than
just pixel-by-pixel spectral values may increase classification accu-
racy. Using a neural network approach over spectral information
and information about spatial variability and using known distur-
bance extents from the US Forest Service’s Aerial Detection Survey
(McConnel et al., 2000), eight difference disturbances were sepa-
rated in temperate forests in the eastern United States, including
insect pests and diseases. Classification accuracies ranged from
42% to 90% for different agents, with reliabilities following a similar
range and performance matching the quantity of high-quality data
available for training the classifier (Hughes, 2014). Visual examina-
tion of forest disturbance events can often reveal if the cause is
harvest or some natural disturbance by the regularity of the distur-
bance event. This follows the more general observation that more
regular landscapes are more heavily human-impacted (O’Neill
et al., 1988). Classification using the shape and regularity of distur-
bance patches is a promising approach to differentiating between
anthropogenic and natural disturbances (Antonova et al., 2013).

6. Forest productivity and evapotranspiration

Forest net primary production is an ecosystem service in the
context of both providing wood and driving carbon sequestration.
Net primary production (NPP) is the rate of carbon uptake by veg-
etation, which is the balance between photosynthesis, or gross pri-
mary production, and autotrophic respiration (Chapin et al., 2006).
Carbon sequestration considers stocks and fluxes in additional
ecosystem components (e.g., soils, wood products, aquatic sys-
tems, and disturbances) and is determined as the longer-term
net ecosystem exchange (NEE) or net ecosystem carbon balance
(NECB). Remote sensing has been applied to scaling forest produc-
tivity and carbon budget estimation for monitoring purposes using
a range of approaches. Wood production can be mapped most sim-
ply with statistical techniques that combine remote sensing data
(e.g. Landsat), and other spatially distributed datasets such as cli-
mate reanalysis, with forest inventory measurements (Ohmann
and Gregory, 2002; Ohmann et al., 2012). For more
process-based approaches, a numerical model with algorithms
for simulating some level of mechanistic detail in factors control-
ling vegetation and/or ecosystem production is employed.
Table 1
Examples of different formulations of process-based models and how remote sensing data
taken from models participating in North American Carbon Program synthesis and inter-
categorized by either enzyme kinetic (EK) or light use efficiency (LUE).

Model Photosynth.
formulation

Vegetation
distribution

Phenology Leaf area index

CASA
GFEDv2

LUE MODIS GIMMS
NDVI

Assimilated fro
sensing

CLM4 EK MODIS Prognostic Dynamically c

ISAM LUE AVHRR N/A Assimilated fro
sensing

TEM6 EK AVHRR Prognostic Dynamically c

VEGAS2 LUE Dynamic Prognostic Dynamically c
Process-based simulation models come in several varieties
(Table 1) that differ significantly in organizing structure
(Huntzinger et al., 2013; Fisher et al., 2014), which determines
their data input requirements. With respect to simulating NPP,
process models are broadly categorized into diagnostic-
formulations, in which some variant of leaf area index is prescribed
by remote sensing, and prognostic formulations, which simulate
their own leaf biomass dynamics (Huntzinger et al., 2012). This
categorization is also a fundamental determinant for whether
and how remote sensing data are used in the modeling framework.
Diagnostic models typically calculate photosynthesis based on a
light use efficiency (LUE) approach (Landsberg and Waring,
1997), which is driven directly by remotely sensed measurement
of absorbed photosynthetically active radiation (APAR). Prognostic
models, on the other hand, simulate primary productivity inter-
nally via biochemical algorithms representing carbon assimilation
or more detailed enzyme kinetics (Farquhar et al., 1980).

A key observation underlying the light use efficiency scaling
algorithm is that NPP (gC m�2 year�1) is generally correlated with
APAR (MJ m�2). Hence, LUE can be determined in terms of gC MJ�1

and NPP estimated from APAR. It is gross primary production
(GPP), as estimated from measurements of net ecosystem
exchange at an eddy covariance flux tower (Waring et al., 1995),
which is most closely related to APAR, so LUE is often expressed
in terms of GPP at a daily time step. Autotrophic respiration (sub-
tracted from GPP to get NPP) is commonly evaluated as a vegeta-
tion type specific proportion of GPP (e.g. King et al., 2011).

Remote sensing contributes to the determination of APAR by
providing an estimate of the fraction of PAR (FPAR) that is absorbed
by the vegetation canopy (Gower et al., 1999). Empirical relation-
ships of measured FPAR (or leaf area index) and spectral vegetation
indices, as well as radiation transfer theory, have been used to map
spatial and temporal patterns in FPAR (Myneni et al., 2002). Global
and regional fields for daily solar radiation and meteorological
variables are now available from reanalysis data (e.g. Zhang
et al., 2007).

The simplest elaboration of the LUE scaling approach is to
determine a maximum LUE from flux tower observations and
reduce it for stress factors related to environmental drivers such
as minimum air temperature and vapor pressure deficit. This LUE
approach has been applied globally using both AVHRR (Nemani
et al., 2003) and MODIS (Zhao and Running, 2010) imagery.
Validation studies at networks of eddy covariance flux tower sites
have helped evaluate and improve the MODIS-based GPP/NPP
algorithm (Turner et al., 2006a,b; Heinsch et al., 2006).
Applications have included attempts to estimate the proportion
of global primary production that is appropriated for human use
(Milesi et al., 2005).

Besides FPAR, remote sensing can potentially provide additional
information relevant to the LUE scaling approach. Several spectral
is used in simulating forest and ecosystem productivity. The examples shown here are
comparison activities (Huntzinger et al., 2012, 2013). Photosynthetic formulation is

Fire Land use
change

Reference

m remote Prescribed (MODIS) None van der Werf et al.
(2004)

alculated Prognostic Modeled Thornton et al.
(2009)

m remote Implicit Modeled Jain and Yang (2005)

alculated Prescribed (various RS
products)

Modeled Hayes et al. (2011)

alculated Prognostic Modeled Zeng et al. (2005)
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vegetation indices have been correlated with LUE in forest ecosys-
tems (e.g. Nakaji et al., 2008). In addition, leaf-scale (and to a lesser
degree canopy-scale) observations suggest subtle shifts in the pro-
portions of different photosynthesis-related pigments that are
detectable by way of changes in reflectance of specific wave bands
(Garbulsky et al., 2011). These features are best observed with a
high spectral resolution spectroradiometer such as AVRIS, but are
also potentially captured with MODIS wave bands (Goerner et al.,
2011). Alternatively, there is a signal associated with
photosynthesis-driven chlorophyll fluorescence (Parazoo et al.,
2014) which is retrievable from space-borne sensors such as
GOSAT and OCO-2. The application of these advanced approaches
has just begun and their operational use will require a large cali-
bration and validation effort (Grace et al., 2007).

While NPP simulation by prognostic models is not driven
directly by remote sensing data, both categories of models make
use of derived products from remote sensing (e.g., plant functional
type maps) for initialization, parameterization, extrapolation and
evaluation of productivity and carbon cycle indicator estimates
(e.g., Huntzinger et al., 2013). In some cases, prognostic models
‘predict’ spectral indices such as the normalized difference vegeta-
tion index that can be directly compared with satellite data (Mao
et al., 2012a,b). Prognostic productivity models that employ an
enzyme kinetics photosynthesis algorithm also commonly simu-
late a full carbon balance (e.g. Thornton et al., 2002). Notably, het-
erotrophic respiration (which returns carbon to the atmosphere)
must be accounted for in tracking carbon sequestration using a flux
simulation approach. Other important fluxes potentially informed
by the combination of remote sensing data and process models
include thinning/harvesting removals (Turner et al., 2011) and
wildfire emissions (Meigs et al., 2011). Potentially, all the informa-
tion that is beginning to emerge (from multi-temporal Landsat
data, for example) on disturbance timing, attribution, and magni-
tude can be input to an appropriately designed process model to
simulate carbon cycle impacts (e.g. Thornton et al., 2002).

The combination of ground-based observations, remote sensing,
process models, and top-down constraints, such as atmospheric
CO2 fields derived from the OCO-2 sensor, will provide an increas-
ing clear picture of how forests are contributing to biosphere meta-
bolism (Running et al., 1999; Schimel et al., 2015). The capacity to
monitor global forest carbon flux will thus be an important compo-
nent in understanding the degree to which forests act as a positive
or negative feedback to the rising CO2 concentration (Pan et al.,
2011).

Evapotranspiration (ET) is the combination of evaporation of
liquid water from land surfaces, transpiration of water through
plants, and the sublimation of ice or snow. The energy required
to evaporate water is the largest single heat source for the atmo-
sphere, and ET is therefore a critical link between the planet’s
energy and water cycles (Vinukollu et al., 2011), and an important
component of global hydrologic models. Significantly for monitor-
ing of forests (and vegetated systems in general), ET is central to
several drought stress indices (Anderson et al., 2010; Palmer,
1965). Resulting drought monitoring is useful in highlighting risk
of fire and other forest health problems (X?).

Process-based Land Surface Models (LSMs) can be used to solve
for ET (Chen et al., 1996), and remote sensing can provide impor-
tant inputs to these models (Mu et al., 2011; Vinukollu et al.,
2011). For example, Marshall et al. (2013) estimated ET from a time
series of vegetation indices. Alternatively, an energy balance
approach can be used with thermal imagery to infer ET. The
Landsat thermal band, present since the launch of Landsat, has
been used to estimate ET as a function of the difference between
the observed surface temperature and the heat energy in the atmo-
sphere (Allen et al., 2007; Su, 2002). This band, present since
Landsat 3 in the late 1970s, has a ground resolution of
approximately 100 m (varying to some degree across individual
sensors). This spatial resolution is useful for resolving ET trends
at scales that are relevant for management (Anderson et al.,
2012), but Landsat’s infrequent return interval, coupled with the
fact that clear-sky observations are required, places limits the
applications for which Landsat is appropriate. Thermal data from
the Geostationary Operational Environmental Satellites (GOES),
also available since the 1970s, provides a lower-resolution alterna-
tive that is available much more continuously (Anderson et al.,
2010).
7. Future directions

Given the progress over the first four decades of remote sensing
applications, it is of interest to consider current developments that
will lead to enhanced capabilities in the future. The multispectral
data sets at moderate (e.g. Landsat) and coarse (e.g. MODIS) reso-
lution represent the backbone for assessing the dynamics and com-
position of managed forests. One emerging trend is the
‘‘MODIS-izing’’ of moderate resolution observations, that is, the
ability to construct near-daily time series observations at <50 m
resolution using multiple Landsat-type systems (e.g. Zhu et al.,
2012). Data are now acquired by an international constellation of
moderate-resolution systems including Resourcesat, CBERS,
Sentinel-2, and Landsat. Harmonizing and merging just the
Sentinel-2 and Landsat observations will provide �2–3 day cover-
age of the entire globe by mid-2016. While data availability
remains a thorny issue, the technical means to provide daily,
<50 m multispectral data exists today. A benefit of such a record
would be the ability to derive biophysical variables (including veg-
etation phenology) at the scale of individual forest management
units, as well as the ability to characterize short-term disturbances
such as defoliation events or thinning.

New approaches for characterizing photosynthesis, productiv-
ity, and stress from remote sensing are gaining currency. As noted
above, solar-induced fluorescence has been linked to photosyn-
thetic uptake and light-use efficiency in laboratory measurements
(Bilger et al., 1995; van der Tol et al., 2015), and more recently has
been retrieved from satellite data (Joiner et al., 2011). The
Photochemical Reflectance Index (PRI) has been shown to be
indicative of vegetation stress (Drolet et al., 2005), and
multi-angle approaches to retrieval appear promising (Hilker
et al., 2011). Taken together, these findings suggest that we are
on the cusp of being able to measure the canopy photosynthetic
energy budget via remote sensing. While this capability would be
useful for understanding primary productivity of forests, the real
payoff might well be in understanding how climate variability lim-
its productivity through stress. For example, tracking the response
of SiF and PRI to evolving drought conditions may prove informa-
tive as we consider the vulnerability of managed forests to future
climate conditions.

Structural measures from space are likely to evolve over the
next decades as well. The trio of upcoming lidar and radar missions
(NASA GEDI, NASA/ISRO NISAR, and ESA BIOMASS) should dramat-
ically improve our knowledge of global biomass and forest struc-
ture during the �2020 era. A key opportunity, however, will be
the extension of this one-time coverage to periodic inventories,
at a resolution sufficient to derive stand-scale changes. Such a pro-
gram would allow direct estimates of forest growth and losses for
individual parcels globally. To date, however, no country has an
operational program to conduct repeated surveys of forest struc-
ture from space.

More broadly, advances in information technology and minitur-
ization of detector hardware are leading to connected ‘‘sensor
webs’’ that span in-situ, airborne, and satellite platforms.
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Networked phenocams (Richardson et al., 2007; Sonnentag et al.,
2012), low-cost terrestrial lidar, and UAV-based hyper spectral
and lidar systems (Watts et al., 2012) are starting to blur the lines
between ‘‘field observation’’ and ‘‘remote sensing’’. As small, inex-
pensive UAV and autonomous in-situ sensors become ubiquitous,
forest remote sensing will encompass continuous observations
throughout the canopy.
8. Conclusion

In this paper we have reviewed some of the many opportunities
provided by remote sensing to scale key forest ecosystem parame-
ters over time and space, specifically those related to composition,
structure, productivity, and disturbance. Forest management alters
all of these parameters individually or (more commonly) in con-
cert. The availability of diverse remote sensing modalities includ-
ing multispectral, hyperspectral, radar, and lidar has steadily
increased, and has led to improved ability to quantify multiple for-
est attributes, and understand how they are affected by manage-
ment regimes. Some technologies (e.g. photosynthetic
productivity estimated via solar-induced fluorescence) are only
now emerging and may prove to be powerful tools in coming years.

As described in Section 2, the scaling of forest attributes may
rely on interpolating inventory or plot data, process-based model-
ing, or novel combinations of each approach. Remote sensing has
relevance to each approach and is often relied upon to produce
landscape-to-global estimates of key forest ecosystem parameters.
Plot measurements remain the ‘‘gold standard’’ for measurement
accuracy, and when deployed as a systematic sample (e.g. in a
well-designed forest inventory) such data provide unbiased area
estimates with known sampling uncertainties. They do not, how-
ever, provide geospatial representation at the scale of forest man-
agement (i.e. the scale of individual stands). A challenge is to
combine the measurement accuracy of plot and inventory data
with the spatial breadth of remote sensing. A variety of approaches
have been proposed to harmonize inventory and image-based
attribute data, including the widespread k-Nearest Neighbor
(k-NN) imputation approach, which preserves the statistical prop-
erties among sets of inventory-derived forest attributes (Tomppo,
1991; McRoberts and Tomppo, 2007). Additional complexity is
introduced when the remote sensing measure itself is a geographic
sample, as is the case for current global lidar datasets. In such
cases, care must be taken to account for the sampling uncertainty
of both the lidar dataset and the forest inventory, as well as the
measurement error of lidar-derived structural variables (Healey
et al., 2012; Wulder et al., 2012; Nelson et al., 2012).

Ecosystem models have leveraged a diverse range of remote
sensing datasets in order to initialize parameters and provide vali-
dation of retrospective simulations. As discussed above,
satellite-derived land cover and fPAR or NDVI are commonly used
to parameterize vegetation composition and productivity, respec-
tively, in biogeochemical models (Potter et al., 1993; Running
et al., 2004; Zhao and Running, 2010). The Ecosystem
Demography (ED) model is height structured, and can be initialized
using lidar-derived forest heights to constrain carbon uptake (Hurtt
et al., 2004). Disturbance information has been incorporated into
some ecosystem models. Global fire datasets derived from AVHRR
and MODIS have been used to provide CO and CO2 fluxes for carbon
balance studies (van der Werf et al., 2009). Finer-scale disturbance
associated with forest management has been used in regional-scale
modeling studies (Cohen et al., 1996; Masek and Collatz, 2006) or
on a sampling basis for the United States (Williams et al., 2012).
The recent publication of global maps of forest change at 30 m res-
olution (Hansen et al., 2013) allows for global-scale ecosystem
models that include actual management dynamics. These observa-
tional data sets could be combined with moderate resolution,
remotely-sensed vegetation and functional type maps to model
ecosystem process dynamics at the level of individual, sub-grid
cohorts of unique vegetation type and disturbance history.

One example of a model which explicitly combines maps of dis-
turbance history with mapped forest structure and composition is
the Forest Carbon Management Framework (ForCaMF), employed
by the National Forest System to assess the carbon storage impact
of management and different types of natural disturbance. The
stand dynamics implied by these layers are linked to empirically
calibrated carbon storage functions (Raymond et al., 2015) to
enable modeling of storage under historical and hypothetical dis-
turbance regimes. Monte Carlo simulation of error in each of the
remote sensing products driving ForCaMF is calibrated directly
from inventory data, providing integrated uncertainty estimates
(Healey et al., 2014).

In principle, a new generation of diagnostic and prognostic
models could be envisioned that would fully leverage the geospa-
tial data available from contemporary remote sensing. Such mod-
els operating in a diagnostic mode might operate at the stand, or
even the individual scale, and parameterize physiology based on
species type and observable functional traits. Photosynthesis could
be calculated directly from energy budget approaches via radiative
transfer through the canopy, informed by information on canopy
structure, canopy chlorophyll concentration, vegetation fluores-
cence, and stress indices (including thermal state, activation of
the xanthophyll cycle, and pigments indicative of nutrient state).
Long-term disturbance dynamics, including attribution of distur-
bance type and severity, could be parameterized from multispec-
tral time-series combined with three-dimensional structure.
Prognostic models of forest response to future climate or manage-
ment scenarios could also harness remote sensing by confronting
model hindcasts with observed, recent changes in vegetation attri-
butes. When combined with in-situ inventory and plot data, such
modeling approaches could provide rigorous, physically-based
methodologies for scaling forest processes.
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