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Abstract

Context The ability of landscapes to impede species’

movement or gene flow may be quantified by resis-

tance models. Few studies have assessed the perfor-

mance of resistance models parameterized by expert

opinion. In addition, resistance models differ in terms

of spatial and thematic resolution as well as their focus

on the ecology of a particular species or more

generally on the degree of human modification of the

landscape (i.e. landscape integrity). The effect of these

design decisions on model accuracy is poorly

understood.

Objectives We sought to understand the influence of

expert parameterization, resolution, and specificity

(i.e. species-specific or landscape integrity) on the fit

of resistance model predictions to empirical landscape

patterns.

Methods With genetic and observational data col-

lected from Greater Sage-Grouse (Centrocercus

urophasianus) in Washington State, USA, we used

landscape genetic analysis and logistic regression to

evaluate a range of resistance models in terms of their

ability to predict empirical patterns of genetic differ-

entiation and lek occupancy.

Results We found that species-specific, fine resolution

resistance models generally had stronger relationships

to empirical patterns than coarse resolution or landscape

integrity models, and that the expert models were less

predictive than alternative parameterizations.

Conclusions Our study offers an empirical frame-

work to validate expert resistance models, suggests the

need to match the grain of the data to the scale at which

the species responds to landscape heterogeneity, and

underscores the limitations of landscape integrity

models when the species under study does not meet

their assumptions.
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Introduction

Landscapes resist the movement of individuals and

thereby impose demographic and genetic isolation

within populations (Wright 1943; McRae 2006).

Limited isolation may be beneficial over evolutionary

time scales because it creates potential for local

adaptations and speciation (Dobzhansky 1940). Over

shorter time scales, however, populations isolated by

strong barriers experience reduced heterozygosity due

to inbreeding, lower allelic diversity due to genetic

drift, and increased vulnerability to stochastic events

like extreme weather or disease outbreaks (Frankham,

Briscoe and Ballou 2002). For these reasons, the

extirpation risk of small isolated populations is high.

Understanding how landscapes impose isolation on

populations is therefore a primary focus of landscape

ecology and conservation biology.

A landscape’s influence on demographic and

genetic isolation may be represented by resistance

models, which quantify how landscape features affect

movement or gene flow. Resistance models vary in

terms of their spatial resolution, number and com-

plexity of landscape features represented (i.e., the-

matic resolution), and how resistance is assigned to

features (Spear et al. 2010). Resistance model pa-

rameters may be designed to reflect specific responses

of a species (or groups of species with similar ecology)

to landscape heterogeneity (e.g. Shirk et al. 2010).

Alternatively, landscape integrity (LI) models attempt

to quantify connectivity patterns based on anthro-

pogenic modifications to the landscape (Baldwin et al.

2012). Importantly, LI models assume natural land-

scape variability does not resist movement and all

anthropogenic modifications impose isolation on

populations. Both species-specific and LI resistance

models are now widely used to predict rates of

movement and gene flow, yet no study has explored

the relative predictive performance of these two

approaches.

Many species threatened by extinction or range

contractions require immediate conservation action,

but the time and resources required to empirically

parameterize resistance models to inform connectivity

assessments are deemed prohibitive. Instead, species

experts often parameterize resistance models. How-

ever, few of these expert-opinion models have been

subsequently tested with empirical analysis (but see

Shirk et al. 2010; Castillo et al. 2014), raising the

possibility they may not optimally inform (or even

misinform) conservation planning. For this reason,

studies that quantify the ability of expert models to

adequately reflect empirically observed relationships

are needed.

In addition to poorly understood tradeoffs between

species-specific and LI models, or expert versus

empirically derived models, few studies have explored

the influence of spatial and thematic resolution on

resistance model accuracy (but see Galpern and

Manseau 2013). For studies conducted over broad

extents, computational requirements and limited avail-

ability of fine resolution data often necessitate resistance

models based on spatial data layers of low spatial and

thematic resolution. Conversely, studies over limited

extents often make use of fine resolution data more

tractable. If the species under study responds to

landscape heterogeneity at a grain that differs from the

grain of the resistance model, a suboptimal model may

be identified that does not capture the true connectivity

patterns on the landscape and thereby misinform

conservation planning (Cushman and McGarigal 2002).

Recent connectivity analyses of Greater Sage-

Grouse (Centrocercus urophasianus) in the Columbia

Plateau, Washington, USA, provide an opportunity to

evaluate the relative performance of species-specific

versus LI resistance models, parameterizations based

on expert opinion or empirical data, and the influence

of resolution (both spatial and thematic) on model

accuracy. Sage-grouse are a species of conservation

concern range-wide, and recovery efforts in the

Columbia Plateau are currently focused on increasing

habitat suitability, connectivity, and establishing new

populations. Three resistance models parameterized

by expert opinion (coarse resolution sage-grouse, fine

resolution sage-grouse, and fine resolution LI) have

been used to inform these conservation efforts, but

their ability to predict empirical rates of movement

and gene flow has not been assessed.

In this study, we sought to validate expert sage-

grouse resistance models with empirical data and

compare alternative approaches to modeling land-

scape resistance that differed by parameterization as

well as by the spatial and thematic resolution of input

data layers. Specifically, we had four objectives: (1)

use empirical landscape patterns derived from genetic

and lek occupancy data to evaluate the expert coarse

resolution (100 m; low thematic resolution) and fine
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resolution (30 m; high thematic resolution) sage-

grouse resistance models as well as the LI model; (2)

validate the expert sage-grouse resistance models by

exploring alternative parameterizations focused on

components of resistance with the greatest expert

uncertainty; (3) ascertain whether greater spatial and

thematic resolution improved model predictions; and

(4) compare the predictive power of species-specific

models (both coarse and fine resolution) to LI models.

Sage-grouse are thought to respond to fine-scale

landscape heterogeneity and factors that resist move-

ment are not limited to anthropogenic modification of

the landscape. Therefore, we anticipated fine resolu-

tion, sage-grouse specific models would provide more

accurate predictions than coarse resolution models or

models based solely on LI.

Methods

Study area

All three resistance models under evaluation encom-

passed the same study area boundary, which included

the historical and current range of Greater Sage-

Grouse in Washington. The empirical data used in this

analysis were collected over different extents within

this study area, such that the genetic data extent was

nested within the lek occupancy data extent (Fig. 1).

Most of the Columbia Plateau is a semi-arid desert.

Precipitation varies from about 18 cm in the lowest

elevations to more than 120 cm in the forested

mountains near the periphery. Elevation ranges from

100 m to over 2400 m. Average temperature varies

from 3 �C in winter to over 20 �C in summer at the

lowest elevations, but is cooler in both seasons at

higher elevations (Whiteman et al. 1994). This region

was historically dominated by perennial grassland

with an overstory of sagebrush (Artemisia spp.).

Today, the lower elevations of the Columbia Plateau

are dominated by irrigated agriculture, intermixed

with small cities and towns. At higher elevations,

dryland wheat fields predominate. At the periphery of

the plateau, the sagebrush biome transitions to conifer

forest. A vast network of local roads spans the region,

with one interstate highway (I-90) and several other

major highways bisecting the study area. The remain-

ing sagebrush habitat is generally limited to scablands

where the soil is too shallow and rocky for agriculture.

A notable exception occurs in dryland wheat fields that

have been replanted with native vegetation as part of

the federal Conservation Reserve Program (CRP) or

related projects.

Resistance models

We evaluated three expert resistance models in terms

of their ability to predict rates of sage-grouse gene

flow and lek occupancy. These included a coarse

resolution (both spatial and thematic) expert sage-

grouse-specific model (CE), a fine resolution expert

sage-grouse-specific model (FE), and a fine resolution

landscape integrity model (LI). The CE model was

derived by expert assignment of resistance values to

different pixel types in several categorical raster data

layers representing land cover, elevation, slope, inter-

state highways, major highways, secondary highways,

local roads, and housing density. These model input

rasters were derived from source data produced

between 2000 and 2008, and resampled to 100 m

resolution (sources and methods are described in

WHCWG 2010). Resistance values assigned to each

of these layers ranged from 0 to 1000 (Supplemental

Table 1, CE is model 2). Parameterization was based

on considerable local expert knowledge of sage-

grouse ecology, the Columbia Plateau landscape, and

limited empirical analysis (WHCWG 2010). Reclas-

sifying each spatial data input layer based on these

resistance parameters, summing them, and adding one

to all grid cells produced the final CE resistance model

with values ranging from 1 to 2088.

The FE and LI model inputs and parameterization

were described in a previous analysis by the same

group (WHCWG 2012). The FE model was derived in

the same way as the CE expert model, but using spatial

data input layers with greater spatial resolution (30 m

grid cell size) and thematic resolution (e.g., 30 land

cover classes compared to 11 in the CE model). In

addition, the FE model included additional data layers

representing wind turbines, transmission lines, canals,

and railroads that were not used in the CE model. The

LI model was based on the same fine-scale spatial data

layers as the FE model, but resistance was only

assigned to categories associated with human modifi-

cation of the landscape. These included roads, agri-

culture, urban areas, population density, transmission

lines, wind turbines, canals, and railroads. All fine-

scale input raster layers were derived from source data
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produced between 2000 and 2010 (sources and

methods are described in WHCWG 2012). The FE

and LI model parameters are provided in Supplemen-

tal Table 2 (FE is model 53 and LI is model 82).

We produced alternative sage-grouse resistance

models at both coarse and fine resolution using the

same spatial input data and approach as described

above for the expert models. The alternative models

were parameterized by the same biologists that

parameterized the three expert models. These bi-

ologists were initially asked which CE and FE model

parameters they were most uncertain about, and then

asked to produce alternative models that varied the

uncertain parameters alone or in combination with

other uncertain parameters. In most cases, alternative

resistance values for these uncertain parameters were

either set to zero, doubled from the original value, or

quadrupled. In total, we produced 49 alternative

models using coarse resolution data (Supplemental

Table 1) and 28 alternative models using fine resolu-

tion data (Supplemental Table 2). As a null hy-

pothesis, we also evaluated an alternative resistance

model that assigned a resistance of one to all cells.

This reflects the concept of isolation by distance

(Wright 1943), where movement or gene flow between

individuals is a function of the Euclidean distance

between them, rather than gradients of resistance

arising from landscape heterogeneity.

Landscape genetic analysis

Genetic samples were obtained from blood, feathers,

egg shells, or remains at mortality sites (predations or

accidental deaths) from 1992–2011 throughout the

occupied portion of the study area. In the Douglas

county population (the northern cluster of genetic

Fig. 1 The study area in the Columbia Plateau of eastern Washington State, USA, including locations of Greater Sage-Grouse genetic

samples (black triangles) and the extent of lek surveys (black dashed line; lek locations not shown due to sensitivity restrictions)
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samples, Fig. 1), genetic sampling occurred from

1992 to 2010 (N = 218). In the Yakima Training

Center population (the southern cluster of genetic

samples, Fig. 1), genetic sampling occurred from

1999–2011 (N = 107). Blood samples were collected

from sage-grouse trapped for a radio telemetry study.

Feathers, egg shells, and remains were collected from

leks and nests. In total, we collected 325 genetic

samples.

It is possible genetic differentiation in the Douglas

County population could be driven by drift (rather than

the landscape, as assumed in our analysis) occurring

over the relatively long period of sample collection

(18 years, or about six generations). To assess the

relative degree of temporal and spatial differentiation

in the population, we calculated pairwise FST values

among genetic samples divided into two temporal

groups (Douglas County samples collected during the

1990s and the 2000s) and two spatial groups (Douglas

County and the Yakima Training Center). We calcu-

lated FST values with the adegenet package (Jombart

et al. 2008) in R (R Development Core Team 2013).

DNA extraction and genotyping was performed by

the Washington Department of Fish and Wildlife

Molecular Genetics Laboratory, Olympia, Washington.

Blood and egg shell samples were extracted using the

Qiagen DNeasy Kit. Feather samples were extracted

using QIAamp Micro kit (Qiagen). We used polymerase

chain reaction to amplify 19 microsatellite loci chosen

based on successful amplification in other studies

(marker names and references are listed in Supplemen-

tal Table 3). PCR products were visualized using an

ABI-3730 DNA Analyzer with internal size standards

(GS500LIZ 3730) and scored using GeneMapper 3.7

software.

We used a causal modeling approach (Cushman

et al. 2006; Cushman and Landguth 2010b; Shirk et al.

2010; Cushman et al. 2013a, b) to evaluate the relative

support for each resistance model based on the

relationship between pairwise individual genetic dis-

tances (calculated from the microsatellite genotypes)

and effective landscape distances (calculated as cost-

weighted distances along the least-cost path, given the

resistance hypothesis). We used the adegenet package

(Jombart et al. 2008) in R (R Development Core Team

2013) to quantify pairwise individual genetic dis-

tances (as a matrix) based on the proportion of shared

alleles between all pairs of sampled individuals (a

value of 1 would indicate identical alleles and a value

of 0 would indicate no shared alleles). To quantify

landscape distances for each resistance model, we

used ArcGIS 10.0 (ESRI 2008) to calculate matrices

with values corresponding to the cost-weighted dis-

tance between individuals given the least cost path.

We then compared models based on the Mantel

correlation (Mantel 1967; Smouse, Long and Sokal

1986) between the genetic and landscape distance

matrices while partialling out in turn the effect of each

alternative model. A model was deemed causal if two

criteria were met. First, it must retain a significant

(a B 0.05) correlation with genetic distance after

partialling out the effect of all other models in turn,

and second, all other models must have no significant

correlation with genetic distance after partialling out

the effect of the candidate model.

Recently, there has been some controversy

regarding the use of partial Mantel tests for model

selection in landscape genetics. Some studies contend

have found this approach suffers from high rates of

Type I error (Balkenhol et al. 2009; Guillot and Rouset

2013; Graves et al. 2013). However, other studies

demonstrate partial Mantel tests are able to identify

the causal model from spurious alternatives, even

when correlations between models are high (Legendre

and Fortin 2010; Cushman and Landguth 2010a, b;

Diniz-Filho et al. 2013). The approach we describe

above (based on Cushman et al. 2013a, b) is an

evolution of the causal modeling with partial Mantel

tests that postdates recent criticisms and is designed to

reduce Type I error rates.

Lek occupancy analysis

Male sage-grouse congregate on lek sites in the spring

to breed. Because lek sites tend to be traditional,

occupancy of these locations reflects the broader

distribution of sage-grouse. Lek locations can move

slightly and satellites may occasionally form, there-

fore, we combined lek locations into ‘‘lek complexes’’

that accounted for this variability and decreased biases

associated with sampling intensity (Schroeder et al.

2000). Lek surveys were conducted at 70 complexes

across the region in 1954, 2009, and 2010 (Fig. 1;

exact locations are sensitive information and are not

shown). Each lek was visited at least three times per

year, and the presence or absence of sage-grouse was

recorded. Leks are generally located in open areas

with high visibility. In addition, the male vocalizations
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and frequent movements during displays and courtship

facilitate detection. For these reasons, the accuracy of

determining presence or absence at leks was likely to

be very high, though detection rates were not

measured.

We evaluated resistance models in terms of their

ability to predict whether a historically active lek

(based on the 1954 survey) was still currently active in

either of the most recent lek surveys in 2009 and 2010.

A lek complex was deemed active if at least one sage-

grouse was observed during the survey (53.8 % of leks

remained active by this definition). The relationship

between resistance and lek occupancy is based on two

assumptions. First, an active lek complex requires a

permeable landscape in adjacent areas so that females

can move to nesting sites near leks; the larger the area

available for nesting the greater the potential for the

lek to be active. Second, leks isolated from the rest of

the population by low landscape permeability experi-

ence reduced immigration and gene flow, lowering the

probability of lek occupancy (Frankham et al. 2002).

We quantified the available area surrounding each

lek and the centrality of each lek within the broader

population for each resistance hypothesis. First, we

used the costdistance function in ArcGIS 10.0 (ESRI

2008) to calculate a cost-weighted distance surface

(i.e. the cumulative cost to move from any given pixel

to the nearest lek). We then calculated the 95th

percentile of cost-weighted distance for those pixels

corresponding to 323 nesting sites (observed through-

out the study area from 1992–2010) proximate to leks

occupied in the most recent surveys of 2009–2010.

Calculating the area (km2) surrounding each lek based

on a boundary drawn at the 95th percentile of nest site

cost-weighted distance provided an estimate of the

area available for nesting around each lek, given the

resistance hypothesis under evaluation. To quantify

the centrality of each lek, we calculated the mean cost-

weighted distance to all other leks active in the 1954

survey, given the resistance model under evaluation.

The lower the mean cost-weighted distance, the more

central the lek was in the network of leks that comprise

the population.

We modeled the relationship between lek occu-

pancy, available nesting habitat area, and centrality

using logistic regression in R (R Development Core

Team 2013). For each resistance hypothesis, we fit

three models based on available nesting habitat area

only, centrality only, or both available nesting habitat

area and centrality. We then compared all models

based on the difference in Akaike information crite-

rion (AIC; Burnham and Anderson 2002).

Model comparison

To spatially quantify the difference in resistance values

between the expert models and empirically supported

alternative model (identified based on the synthesis of

the landscape genetic and lek occupancy analyses), we

subtracted the empirically supported alternative resis-

tance model raster from each expert resistance model

(CE, FE, and LI). In the resulting rasters, positive

values represented areas where resistance was under-

estimated by the expert model relative to the em-

pirically supported model and negative values

indicated resistance was overestimated. We also

compared the expert models (CE, FE, and LI) to the

empirically supported model based on their predictions

of connectivity between leks. Specifically, for each

expert model and the empirically supported alternative

model, we used ArcGIS (ESRI 2008) to calculate the

cost-weighted distance to the nearest lek. We then

subtracted the cost-distance raster corresponding to the

cFig. 2 The Mantel correlation between genetic and landscape

distances for Greater Sage-Grouse in Washington State, while

partialling out the effect of distance, including 95 % confidence

intervals. Higher correlations indicate a stronger relationship

between the resistance hypothesis and the empirical pattern of

genetic isolation. The dashed line serves as a baseline

representing the highest correlation among the models evaluat-

ed. The models are numbered 1 through 82, and split between

coarse resolution models (1–51) in the top panel and fine

resolution models (52–82) in the bottom panel. Models 1 and 52

are null models (i.e., the resistance of all cells equals one, and

therefore predict isolation is a function of distance alone, rather

than resistance due to landscape heterogeneity) at coarse and

fine resolutions, respectively. Models 2 and 53 are the coarse

resolution expert (CE) and fine resolution expert (FE) resistance

models, respectively. The alternative models differ from the

expert models at the corresponding resolution in ways listed

below each plot. The notations 09, 29, and 49 represents

eliminating, doubling, or quadrupling resistance values for a

particular spatial data input, respectively. The lesser than and

greater than symbols indicate a reduction or increase, respec-

tively in values for a particular spatial data input. A plus symbol

indicates resistance was assigned to a layer not used in the expert

model. Model 82 was parameterized based on the concept of

landscape integrity (i.e., resistance was only assigned to

attributes reflecting human modification of the landscape)
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empirically supported model from each of the three

expert models. Positive values represented areas where

the expert model underestimated connectivity (as

measured by cost-weighted distance) to the nearest

lek and negative values indicated the expert model

overestimated connectivity.
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Results

Landscape genetics

The FST value comparing genetic samples collected in

the 1990s to those collected in the 2000s was 0.006.

The FST value comparing genetic samples collected

from the YTC to those collected from Douglas County

was 0.068. Thus, nearly all of the genetic differen-

tiation in the population was due to spatial structuring

rather than temporal differences arising from the

18 year sampling period.

None of the coarse resolution models (including the

CE model or alternatives) retained a significant Mantel

correlation after partialling out the variance explained

by the null model (IBD), which only considered the

effect of distance as opposed to the additional resistance

imposed by landscape heterogeneity (Fig. 2). Among

the fine resolution models, the FE and LI models did not

have a significant relationship with the empirical pattern

of genetic distances after partialling out the null model.

Of the 28 alternative fine resolution models, 14 retained

a significant Mantel correlation after partialling out the

null model (models 55–57, 66, 68–71, 75, 76, and

78–81). However, only one of these met all the criteria

of a causal model within our framework (model 79,

Supplemental Table 2). Namely, after partialling out the

effect of all other competing models, we still observed a

significant partial Mantel correlation between genetic

distance and landscape distance for model 79, yet the

converse was not true. This fine resolution alternative

model differed from the FE model in that it eliminated

the resistance of landcover and doubled the resistance of

transmission lines.

Lek activity

One fine resolution sage-grouse specific model (model

78) was clearly supported relative to all other models

based on AIC scores (Fig. 3). This differed from the

FE model in that it eliminated resistance due to

landcover (also observed in the landscape genetic

analysis), doubled the resistance of transmission lines

(also observed in the landscape genetic analysis), and

added resistance at low elevations. Relating this

resistance model to patterns of lek occupancy by

logistic regression using terms for both nesting habitat

area and centrality produced the lowest AIC score

(96.25), however, removing the term for centrality

only modestly increased the AIC score (98.82).

Including only the centrality term raised the AIC

score substantially (107.55) suggesting the relation-

ship was driven primarily by nesting habitat area

rather than centrality. The coefficient was 4.8 9 10-7

(SE = 1.5 9 10-7) for the area term and -0.146

(SE = 0.09) for the centrality term, indicating larger

area available for nesting near leks and lower average

cost-distances to other leks predicts greater probability

of activity. Model 78 appeared strongly predictive

(AUC = 0.82, Cohen’s Kappa = 0.616, classification

accuracy = 0.813), sensitive (sensitivity = 0.89), and

specific (specificity = 0.722).

Model comparison

The resistance of the FE model differed from the

empirically supported model (#78) by as much as

39 units (Fig. 4, top left panel). Resistance was under-

estimated mainly in low elevations of the study area and

along transmission line corridors and overestimated in

higher elevations. The CE model showed a similar

pattern of error as the FE model, but the magnitude of

the difference was generally greater (up to 2035 units;

Fig. 4, top middle panel). The comparison to the LI

cFig. 3 The difference in AIC scores (delta AIC) between the

model with the lowest AIC and all other models is depicted,

based on logistic regression relating lek occupancy to each

resistance hypothesis. Three different regressions were per-

formed for each resistance model, including one based on the

resistance model’s prediction of the area available for nesting

adjacent to each lek (black diamond), the centrality of the lek

within the network of leks (white triangle), and the combination

of available nesting habitat area and centrality (grey circle). The

models are numbered 1 through 82, and split between coarse

resolution models (1–51) in the top panel and fine resolution

models (52–82) in the bottom panel. Models 1 and 52 are null

models (i.e., the resistance of all cells equals one, and therefore

predict isolation is a function of distance alone, rather than

resistance due to landscape heterogeneity) at coarse and fine

resolutions, respectively. Models 2 and 53 are the coarse

resolution expert (CE) and fine resolution expert (FE) resistance

models, respectively. The alternative models differ from the

expert models at the corresponding resolution in ways listed

below each plot. The notations 09, 29, and 49 represents

eliminating, doubling, or quadrupling resistance values for a

particular spatial data input, respectively. The lesser than and

greater than symbols indicate a reduction or increase, respec-

tively in values for a particular spatial data input. A plus symbol

indicates resistance was assigned to a layer not used in the expert

model. Model 82 was parameterized based on the concept of

landscape integrity (i.e., resistance was only assigned to

attributes reflecting human modification of the landscape)
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model revealed the opposite pattern. Low-elevation

areas dominated by anthropogenic landscape modifica-

tions vastly overestimated resistance (up to 935 units),

while the less modified higher elevations underestimat-

ed resistance relative to the most-supported model (up

to 35 units; Fig. 4, top right panel).
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A similar pattern is apparent in the contrasts based on

cost-weighted distance to the nearest lek. Both the FE

and CE models underestimate connectivity in higher

elevations and overestimate connectivity in lower

elevations, and the degree of error is greater in the

coarse resolution expert model (Fig. 4, bottom left and

middle panels). The LI model differs in the opposite way

by underestimating connectivity in lower elevations and

overestimating connectivity in higher elevations

(Fig. 4, bottom right panel).

Discussion

In this study, we used two independent empirical

datasets to evaluate the ability of three expert resis-

tance models (CE, FE, and LI) to predict patterns of

Greater Sage-Grouse genetic differentiation and lek

occupancy. We found statistical support for the expert

models was weak compared to an alternative resis-

tance model. Indeed, support for the expert models

was equivocal compared to the null hypothesis that

distance alone (as opposed to resistance) was the

process driving the observed empirical patterns.

Differences between the empirically supported alter-

native model and the expert models suggest transmis-

sion lines and low elevation have greater resistance

than anticipated. Conversely, the expert models

appeared to overestimate the resistance of landcover,

particularly non-irrigated agriculture and CRP lands.

In general, alternative resistance models based on fine

resolution spatial data and tailored to the specific

ecology of sage-grouse exhibited much stronger

relationships to empirical patterns than models based

on coarse resolution spatial data or LI parameters.

The two empirical model validation approaches

yielded slightly different inferences regarding the

most predictive model of genetic isolation or patterns

of lek occupancy. However, these inferences may be

synthesized by considering differences in the factors

limiting sage-grouse movement or gene flow across

the nested extents of our analysis. At the broad extent

of the lek occupancy analysis, all major potential

sources of resistance in the study area were present.

That low elevation and not landcover appeared to

drive resistance in the top model over this extent

reflects the strong correlation between elevation and

sage-grouse habitat quality in the Columbia Plateau.

Indeed, elevation is likely a better predictor of

resistance than landcover because the lowest eleva-

tions capture multiple interacting sources of resis-

tance, including intensive irrigated agriculture (which

is not suitable for sage-grouse), very low prevalence of

CRP lands (which are suitable), and significant

degradation of sagebrush habitat from grazing and

the legacy effects of historical land use (neither of

which were reflected in the landcover data available).

Conversely, the higher elevations near the periphery of

the plateau reflect the low resistance of non-irrigated

agriculture (dryland wheat) and CRP fields, and the

high quality sagebrush habitat there.

Over the more limited extent of the landscape

genetic analysis, low elevations were rare. Even

though low elevation habitats in this study area may

be a strong barrier to gene flow, if they are not present

in sufficient quantity in the area of genetic sampling,

their resistance may not be observable. This fits with

the concept of limiting factors in landscape genetics

(Cushman et al. 2013a), which postulates that a

landscape factor’s resistance to gene flow can only

be measured when it’s prevalence and configuration in

the landscape reaches a point where it forms a

dispersal barrier. Thus, the inability to detect the

resistance of low elevation could be interpreted as a

lack of an ecological relationship, when in fact, it

could be merely unobservable due to its rarity. Several

recent studies have demonstrated the influence of

limiting factors on the detectability of ecological

relationships, including analyses of American marten

(Martes americana) habitat selection (Shirk et al.

2012) and gene flow (Cushman et al. 2011), black bear

(Ursus americanus) gene flow (Short Bull et al. 2011),

and simulations in fractal landscapes (Cushman et al.

2013a). Our results suggest limiting factors should be

considered when interpreting and synthesizing results

of empirical validation studies. That the top model in

the landscape genetic analysis was identical to the top

model of the broad-scale lek analysis, minus the

influence of elevation, is consistent with the latter

being the best predictor among those we examined.

Our study also highlights the need to match the

grain of the resistance model input data to the grain at

which the species responds to landscape heterogene-

ity. Though data of coarse spatial and thematic

resolution may accurately reflect resistance for some

species, our results support our expectation that sage-

grouse respond to landscape heterogeneity at a fine

grain. Indeed, the top models in each of our empirical
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analyses were generally based on fine resolution data.

In particular, the ability to attribute resistance to

specific types of agriculture and the inclusion of

transmission lines in the fine resolution models

allowed us to explore resistance models with more

accurate predictions of genetic differentiation and lek

occupancy compared to the coarse resolution models.

This demonstrates how broad-scale connectivity

analyses using coarse spatial data may not adequately

capture landscape resistance for species that respond

to finer resolution habitat attributes. Several recent

studies have also demonstrated the importance of

matching the resolution of the data and extent of

analysis to the ecology of the species under study (e.g.

Cushman and McGarigal 2004; Cushman and Land-

guth 2010a; Shirk et al. 2012). Our results suggest

scale is an important consideration when designing

and interpreting resistance model validation analyses.

The differences between the empirically supported

resistance model and the three expert models in terms

of resistance (Fig. 4a) and predicted connectivity

(Fig. 4b) suggest caution in the use of expert models

for connectivity analyses and conservation planning.

The expert sage-grouse models failed to account for

the magnitude of resistance due to transmission lines

and low elevations, and overestimated the resistance

due to certain landcover types, raising the potential to

misinform conservation planning related to these

sources of resistance. However, many of the pa-

rameters in the expert models remained the same (or

nearly so) in the empirically derived top model. This

affirms the value of expert models in reducing the vast

potential hypothesis space to a tractable number of

plausible alternative models, while grounding the

analysis in a hypothesis testing framework. Other

studies have used a similar strategy to improve upon

expert models with similar success (e.g. Epps et al.

2007; Shirk et al. 2010). This framework, and our

approaches for optimizing resistance models based on

genetic and occurrence data, could be applied to other

species where validation of expert models is desired.

Our study also demonstrates the limitations of using

LI as a proxy for species-specific resistance model

parameterization when the species of interest also

responds strongly to natural variability in the land-

scape, or can move efficiently through some human

modified habitats. Indeed, because sage-grouse move-

ment and gene flow does not appear to be strongly

reduced by dryland wheat and CRP fields in our study

area, the LI model vastly underestimated rates of

movement in the higher elevations of the Columbia

Plateau, where these cover types predominate. The

ability of LI models to reflect species’ movement and

gene flow is largely unexplored, yet LI models are now

widely used in connectivity assessments. Understand-

ing the relationship between predicted connectivity

based on LI models and the actual connectivity of

species is therefore a major research need.

The convergence of two independent empirical

validation analyses on a single alternative model (once

the confounding influence of limiting factors is taken

into account) suggests the need to update previous

assumptions about landscape factors that shape sage-

grouse lek occupancy and gene flow, particularly with

regard to transmission lines. Collisions with transmis-

sion lines have been observed as causes of mortality in

our study area and elsewhere, and they also provide

perches and nesting sites for raptors and corvids. The

risk of mortality likely drives behavioral avoidance of

transmission lines, with declining habitat use observed

100 m away (Connelly et al. 2011). Our analysis

suggests greater attention should be focused on these

landscape features in sage-grouse conservation plan-

ning, particularly in light of the planned expansion of

the energy transmission network throughout much of

the sage-grouse habitat in the western United States. In

addition, the low resistance of agricultural fields

planted to native vegetation as part of the CRP program

supports the value of this and related efforts designed to

improve habitat suitability and connectivity.

Expert resistance models are widely used to assess

habitat connectivity, yet few are subsequently tested

with empirical data. Our study underscores the value of

empirical validation of expert models, to improve their

power to predict habitat connectivity patterns on the

landscape and thereby better inform conservation

planning. Though our approach involved only a limited

exploration of the limitless hypothesis space (centered

on the expert model), it was able to clearly identify an

alternative model that was able to superior in terms of

its ability to predict patterns of differentiation and lek

occupancy on the landscape. This model was based on

fine-scale data and designed to reflect the ecology of

sage-grouse specifically, rather than the concept of

landscape integrity. This suggests the value of using

fine-scale, species-specific data and parameterization

when the species of interest responds to both natural

and anthropogenic factors at a fine scale. For species
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that respond to broad-scale landscape patterns, fine

resolution data may not be necessary. Similarly,

species that can readily disperse through most habitat

types except those that are heavily modified by human

activity may be adequately represented by landscape

integrity models. More studies are needed to fully

characterize the accuracy of expert models in predict-

ing rates of movement and gene flow, as well as the

tradeoffs associated with resistance model resolution

and parameterization approaches.
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