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Evidence of shifting dominance among major forest disturbance agent classes regionally to globally has
been emerging in the literature. For example, climate-related stress and secondary stressors on forests
(e.g., insect and disease, fire) have dramatically increased since the turn of the century globally, while
harvest rates in the western US and elsewhere have declined. For shifts to be quantified, accurate histor-
ical forest disturbance estimates are required as a baseline for examining current trends. We report
annual disturbance rates (with uncertainties) in the aggregate and by major change causal agent class
for the conterminous US and five geographic subregions between 1985 and 2012. Results are based on
human interpretations of Landsat time series from a probability sample of 7200 plots (30 m) distributed
throughout the study area. Forest disturbance information was recorded with a Landsat time series visu-
alization and data collection tool that incorporates ancillary high-resolution data. National rates of dis-
turbance varied between 1.5% and 4.5% of forest area per year, with trends being strongly affected by
shifting dominance among specific disturbance agent influences at the regional scale. Throughout the
time series, national harvest disturbance rates varied between one and two percent, and were largely
a function of harvest in the more heavily forested regions of the US (Mountain West, Northeast, and
Southeast). During the first part of the time series, national disturbance rates largely reflected trends
in harvest disturbance. Beginning in the mid-90s, forest decline-related disturbances associated with
diminishing forest health (e.g., physiological stress leading to tree canopy cover loss, increases in tree
mortality above background levels), especially in the Mountain West and Lowland West regions of the
US, increased dramatically. Consequently, national disturbance rates greatly increased by 2000, and
remained high for much of the decade. Decline-related disturbance rates reached as high as 8% per year
in the western regions during the early-2000s. Although low compared to harvest and decline, fire dis-
turbance rates also increased in the early- to mid-2000s. We segmented annual decline-related distur-
bance rates to distinguish between newly impacted areas and areas undergoing gradual but consistent
decline over multiple years. We also translated Landsat reflectance change into tree canopy cover change
information for greater relevance to ecosystem modelers and forest managers, who can derive better
understanding of forest-climate interactions and better adapt management strategies to changing cli-
mate regimes. Similar studies could be carried out for other countries where there are sufficient
Landsat data and historic temporal snapshots of high-resolution imagery.
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1. Introduction

Disturbance is a major driver of forest ecosystem dynamics,
with the legacy of disturbance history being largely responsible
for the state of a forest stand at any point in time (Uuttera et al.,
1996; Pflugmacher et al., 2012). Disturbances can alter the mix
of species and stand structure in ways that depend on disturbance
agent (e.g., fire, harvest, insects) and severity or magnitude, with
variable and profound implications on fluxes of water, energy,
and nutrients, biodiversity, and a host of other functions that
strongly influence life on earth (Edwards et al., 2014). There is
evidence that in the past several decades patterns of forest distur-
bance among disturbance causal agent classes have begun to shift
both regionally and globally. For example, in the western US, tim-
ber harvesting on public lands has decreased (Oswalt et al., 2014)
while forest fire frequencies have increased (Westerling et al.,
2006). Across Europe, wildfire, wind, and bark beetle disturbances
have steadily increased since the early 1970s (Seidl et al., 2014).
Globally, incidents of both chronic and acute forest decline,
purportedly related to climate change, have become increasingly
common (Allen et al., 2010). Because of the importance of distur-
bance on forest function and implications for shifting dominance
among classes of disturbance agent, ecological modeling and
natural resource decision-making can benefit from improved
national- to continental-scale monitoring and assessments
(Running, 2008).

Currently, much of what we know about forest disturbance
comes from disparate monitoring efforts that produce estimates
that are challenging to compare and synthesize across disturbance
agent classes, regions, and time periods. Further, estimates of dis-
turbance rates produced by these efforts are often biased. For
example, in the case of remote sensing based approaches if image
spatial resolution is too coarse to capture small-scale disturbance
these omission errors of disturbance will lead to bias in the area
estimates. In general, map classification error, which is always pre-
sent to some extent, also leads to biased area estimates (Olofsson
et al., 2013). In the US several monitoring programs focus on forest
disturbance but as a collection these are lacking in sufficient detail
and temporal record length. US forest inventory data are able to
resolve all major disturbance agent classes (Schroeder et al.,
2014), but these data have only been collected in a nationally con-
sistent manner for a little over a decade and have long remeasure-
ment periods (i.e., 5 years in the east and 10 years in the west). The
ForWarn system (Norman et al., 2013) is designed to detect and
map an array of disturbance agent classes at a sub-monthly time
step. ForWarn relies on MODIS data which has a spatial resolution
(250 m) that is incapable of resolving many stand-scale events.
Further, ForWarn extends temporally back only to 2000. Although
the LANDFIRE program derives disturbance maps across distur-
bance agent classes at a 30 m nominal resolution, LANDFIRE also
extends back only to 1999 (Vogelmann et al., 2011). Several other
major monitoring programs report only a limited set of distur-
bance agent classes and often have significant measurement bias.
For example, aerial insect and disease detection surveys (ADS)
use visually defined polygons that only approximate area affected
and are not collected everywhere every year (Meddens et al.,
2012). The US fire mapping program, Monitoring Trends in Burn
Severity (MTBS; Eidenshink et al., 2007), is based on Landsat data
but maps only larger fire size events (�200 ha in the east,
�400 ha in the west).

The Landsat satellite remote sensing program holds great pro-
mise to satisfy monitoring needs because it provides one of the
few datasets capable of quantifying diverse patterns and dynamics
of forests at sub-stand scales and at sub-annual temporal
resolution over the last several decades (Banskota et al., 2014).
The spatial resolution of most Landsat data is 30 m, and with
two satellites active over much of the life of the Landsat program
(1972-present), data have been collected globally at either an
8- or 16-day interval, providing at least one clear view of the
earth’s surface during the growing season every year in most
places (Roy et al., 2014). Data are free of charge and available from
the archive in calibrated, georeferenced, and analysis-ready format
(Woodcock et al., 2008). There are well-established protocols using
Landsat data to map forest disturbance across all forest types glob-
ally (Cohen and Goward, 2004; Hansen et al., 2013) using data
from the full temporal depth of the archive (Cohen et al., 2002).
Moreover, there has been recent rapid development of sophisti-
cated algorithms designed to use all available imagery in time ser-
ies change detection analyses, offering great opportunities for the
future of Landsat-based science (Huang et al., 2010; Kennedy
et al., 2010; Brooks et al., 2014; Zhu and Woodcock, 2014). Addi-
tionally, we are now making good progress toward full integration
of early Landsat data (MSS starting in 1972) in time series analyses
(Braaten et al., 2015). This is important because the MSS data,
despite presenting distinct challenges in time series analysis,
would extend the record of forest dynamics backwards an addi-
tional 12 years.

Unfortunately, the full promise of automated Landsat distur-
bance mapping has yet to be realized. For example, Hansen et al.
(2013) and Masek et al. (2013) provided national, annual data
but quantified mostly moderate to high-severity, short-duration
disturbances only and did not distinguish among disturbance
agent classes. Meddens and Hicke (2014) and Meigs et al. (2015)
targeted more gradual phenomena associated with insect distur-
bances, but these studies were limited in geographic scope. Zhu
and Woodcock (2014) and Kennedy et al. (2015) evaluated a more
comprehensive set of disturbance agent classes, but results were
likewise spatially limited.

Recently, McDowell et al. (2015) described a comprehensive
monitoring framework required for systematic quantification and
analysis of disturbance that transcends limitations of current mon-
itoring systems. The first two of the four primary framework com-
ponents, detection and disturbance agent classification, emphasize
a strong role for remote sensing. In this context, detection ranges
from partial canopy loss to tree mortality and should be based
on sub-patch scale observations at an annual or less time-step. Dis-
turbance classification includes such agents as harvest, fire, insects,
etc. Implied is that consistent (or at least harmonious) methods
that allow comparison and integration of estimates should be used
to detect disturbances across agent classes through time and over
space. To improve the use of remote sensing for forest disturbance
monitoring, we further suggest that the estimates of area and rates
of disturbance be unbiased, include uncertainties, and have a long
enough retrospective monitoring period to allow current trends to
be contrasted against the recent past. Only then can we detect and
quantify meaningful shifts in dominance among major causal
agent classes.

The objective of our study is to characterize forest disturbance
by major causal disturbance agent class for the conterminous US
during the time period 1985–2012. We implement a disturbance
monitoring strategy that is temporally and spatially consistent to
allow comparisons of disturbance rates and agent classes across
regions and time periods. In addition, we assess how the domi-
nance among various disturbance agent classes has shifted, both
nationally and regionally, between 1985 and 2012 across the full
range of disturbance severities (or magnitudes). Rates of distur-
bance along with causal agent classes are quantified by visual
interpretation of Landsat time series, and regional and national dis-
turbance rates (by time period) are estimated from a probability
sample of 7200 pixel-level observations distributed across the
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conterminous US. The adequacy of the sample size for the regional
and national estimates can be assessed by examining the standard
errors associated with each estimate.
2. Materials and methods

2.1. Sample design

For efficiency in preparing imagery for interpretation, we used
Landsat scenes of the second World Reference System (WRS2) as
clusters in a two-stage stratified cluster design. Scenes (Fig. 1)
were defined as the non-overlapping portions of individual frames
known as TSAs (Thiessen Scene Areas; Kennedy et al., 2010). Of the
442 individual TSAs covering the conterminous US, we selected
180 for the sample, a data volume deemed manageable at the start
of this study. Stratified sampling was implemented because we
wanted a higher proportion of the sampled TSAs to be drawn from
forested regions. Strata were based on a combination of the EPA
Level II ecoregion map (Omernik, 1987) and the US Forest Service
forest type map (Ruefenacht et al., 2008). Using these two maps,
the ecoregions were generalized into five coarser strata that com-
bined different ecoregions sharing similar forest types (Table 1).
Five regional strata were defined – Mountain West, Lowland West,
Central, Northeast, and Southeast – and the dominant regional
stratum was assigned as the label for each TSA (Fig. 1). To deter-
mine the allocation of the 180 TSAs to strata, we calculated the
product of forest area per regional stratum (from the forest type
map within TSA boundaries) and stratum area, as represented by
the sum of area across the collection of TSAs in that stratum. Sum-
ming the regional product values and determining the proportional
contribution of each product value to the summation of values
yielded the proportion of the 180 TSA clusters sampled per stra-
tum. From the 58, 86, 127, 84, and 87 TSAs from the Mountain
West, Lowland West, Central, Northeast, and Southeast strata,
respectively, we selected 42, 18, 14, 52, and 54 via simple random
sampling within each stratum (Fig. 1). For example, even though
the Central stratum has the largest areal proportion across the
US (�30%), because it had a small forest area (8.2%), fewer sample
clusters were selected for that stratum than for other, more
forested strata.
Fig. 1. Regionalized stratification of Landsat Thiessen Scene Areas (TSAs) for the contermi
in text). TSAs selected in the sample are shown with thicker border lines and crosshatc
For the second stage of the sample design, within each of the
180 first-stage sample TSAs, we selected a simple random sample
of 40 Landsat plots (30 m pixels) to be interpreted, resulting in a
sample size of 7200 (the number of sample locations we could
afford to interpret). We refer here to our sample units as Landsat
plots, following the long-used practice of assessing photo plots
for inventory and related purposes when aerial photos are used
to collect data as part of a sample design in forestry. No further
stratification (e.g., forest and nonforest) was used in the second-
stage sample selection protocol.
2.2. Landsat plot data collection

Each of the 7200 Landsat plots was first interpreted to deter-
mine if it was forested at any time during the period of observa-
tion. Similar to the US forest inventory, here forest was defined
as planted or naturally vegetated land likely to contain 10% or
greater tree cover that was not an agricultural crop (e.g., orchard)
at some time during a near-term successional sequence. Because
of land use conversions, some plots were forested only a portion
of the time period of this study. Forest management (e.g., harvest)
and natural disturbances (e.g., fire, insects) that did not result in a
land use change were labeled as forest throughout the time period
of observation. We noted conversions of land use (forest to non-
forest and the reverse), as well as the timing of those conversions,
so that we could accurately derive annual area of forest for annual
disturbance rates estimates (Section 2.3).

Forest disturbance occurrence was interpreted using the Land-
sat time series visualization and disturbance data collection soft-
ware (TimeSync) that integrates several important features to
assure high quality data collection (Cohen et al., 2010): simultane-
ous viewing of Landsat time series around a Landsat plot of inter-
est, rapid toggling to view multiple spectral band and index time
series graphical plots (i.e., temporal trajectories), and temporal
snapshots of high resolution imagery in Google Earth. Using a
nearly identical set of tools to collect disturbance data and compar-
ing results against forest inventory data, Schroeder et al. (2014)
substantiated the validity of the TimeSync approach for collecting
highly accurate disturbance information via visual interpretation
of Landsat time series.
nous US derived from a combination of ecoregion and forest type maps (as described
hing.



Table 1
Level II ecoregions and forest type groups contained within each regional stratum.

Stratum
(percent
forested)

Level II ecoregiona Forest type group (percent of
total)b

Mountain
West
(62.5)

Marine West Coast Forest,
Western Cordillera,
Northwestern Forested
Mountains, Western Sierra
Madre

Douglas-fir (26.9), Fir/Spruce/
Mountain Hemlock (19.6),
Ponderosa Pine (14.3), Pinyon/
Juniper (10.9), Lodgepole Pine
(8.8), California Mixed Conifer
(5.6), Aspen/Birch (3.8),
Western Oak (3.4), Hemlock/
Sitka Spruce (2.3), Other
Western Softwoods (1.3),
Alder/Maple (1.0), Tanoak/
Laurel (1.0)

Lowland
West
(16.8)

Cold Deserts, Warm Deserts,
Mediterranean California,
Upper Gila Mountains

Pinyon/Juniper (72.7),
Western White Pine (12.8),
Ponderosa Pine (4.1), Exotic
Hardwood (3.0), Western Oak
(2.0), Redwood (1.5), Tanoak/
Laurel (1.5)

Central
(8.2)

South Central Semiarid
Prairies, Western Central
Semiarid Prairies, Temperate
Prairies, Central USA Plains,
Tamaulpas-Texas Semiarid
Plains

Oak/Hickory (54.0), Elm/Ash/
Cottonwood (9.8), Loblolly/
Shortleaf Pine (7.5), Ponderosa
Pine (6.6), Pinyon/Juniper
(6.2), Oak/Pine (6.0), Maple/
Beech/Birch (3.4), Aspen/Birch
(3.2), Oak/Gum/Cypress (1.8)

Northeast
(61.4)

Ozark-Ouachita Appalachian
Forest, Mixedwood Plains,
Mixedwood Shields, Atlantic
Highlands

Oak/Hickory (45.4), Maple/
Beech/Birch (24.5), Aspen/
Birch (12.1), Spruce/Fir (8.4),
White/Red/Jack Pine (3.7),
Loblolly/Shortleaf Pine (3.0),
Oak/Pine (1.4), Elm/Ash/
Cottonwood (1.0)

Southeast
(53.7)

Southeastern USA Plains,
Mississippi Alluvial and
Southeast USA Coastal Plains,
Texas-Louisiana Coastal
Plains, Everglades

Loblolly/Shortleaf Pine (35.1),
Oak/Hickory (30.4), Oak/Gum/
Cypress (14.0), Longleak/Slash
Pine (9.8), Oak/Pine (7.9), Elm/
Ash/Cottonwood (2.3)

a Type groups (from Ruefenacht et al., 2008) having less than 1% of total omitted.
b From Omernik, 1987.

Table 2
Descriptions of disturbance causal agent classes interpreted with TimeSync on
forested plots.

Causal agent
class

Description

Harvest Apparent removal of tree stems by mechanical means, where
land use was forest before and after removal

Fire Evidence of burning from either natural (wildfire) or
anthropogenic (prescribed burning) causes

Decline Either temporary (one year or less) or longer-term (two or
more years duration) tree canopy cover loss not associated
with the harvest, fire, or other classes. The specific agent
could not easily be determined, but likely included insects,
diseases, and physiological stresses that reduced canopy
cover or leaf area density, or killed whole trees within a
Landsat plot

Other Includes several subclasses:
� Wind – Evidence of wind damage from hurricanes, torna-
dos, and storms

� Water – Tree mortality associated with flooding
� Land use change – When forest was converted to non-
forest

� Debris – When tree canopy cover was destroyed by natu-
ral material movement associated landslides and
avalanches
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Interpretations were made at an annual time step for each of
the Landsat plots (following Cohen et al., 2010; Pflugmacher
et al., 2012) labeled as forest use at any time during the period
of observation (3861). Several metrics of disturbance were derived
from the primary interpretations. Year of disturbance detection
(YOD) was the first year a given disturbance was detected. For
example, for a disturbance lasting one year and occurring between
1984 (first year of Landsat imagery used) and 1985, YOD was 1985.
Magnitude of disturbance was calculated as the relative amount of
reflectance change associated with the disturbance. Relative reflec-
tance change magnitude was expressed in terms of the Tasseled
Cap angle index, as the difference between the start and end angle
values, divided by the start vertex angle value. This index, first
described by Powell et al. (2010) and used by Gómez et al.
(2011) and Pflugmacher et al. (2012) for time series analyses, is
related to the more common Normalized Difference Vegetation
Index (NDVI) but has greater sensitivity at higher percent vegeta-
tion cover proportions. Duration of change was recorded for all dis-
turbance occurrences, and had a value from one to n, where n is the
number of consecutive years that a given disturbance occurrence
or process lasted in the given Landsat plot. Most disturbance occur-
rences lasted one year (e.g., fire, harvest, wind), but sometimes
harvest and usually forest decline were multi-year processes. A
multi-year disturbance for a given Landsat plot implicitly means
that separate portions of the plot were disturbed over a period of
years, and includes progressive losses of leaf area or canopy cover
within specific, affected trees over several growing seasons.
For each disturbance occurrence or process, apparent causal
agent class (Table 2) was interpreted in TimeSync with the aid of
high spatial resolution imagery available in Google Earth, as well
as ancillary databases of fire, wind, insect and disease, and man-
agement activity data available from various government agencies
(Table 3). The harvest class involved mechanical removal of trees,
and fire included both wildfire and prescribed burning. The causal
disturbance agent class ‘‘other” was dominated by land use conver-
sion but included disturbances from wind, water, debris, and
unknown causes. The specific causal agent driving the decline class
could not be determined from our observations, but is generally
known to be associated with insects, disease, and physiologically
induced stress caused by excessive temperatures often combined
with short-term or extended drought where not all trees present
are equally affected at the same time (Amoroso et al., 2012;
Choat et al., 2012; Meddens and Hicke, 2014; Vilà-Cabrera et al.,
2013; Anderegg et al., 2015; Meigs et al., 2015). We labeled as
decline any observation where we determined there was a general
loss of canopy leaf area density not associated with management,
fire, or other defined agents (Table 2). Rapid decline, when noted,
was commonly associated with eastern deciduous broadleaf for-
ests that were under apparent broad scale attack by leaf eating
insects (commonly followed by rapid recovery in subsequent
years). This was determined from the convergence of visual evi-
dence available in TimeSync, backed up by referencing temporal
and spatial patterns of insect and disease observations available
from ADS data. Gradual decline was far more common, especially
in western conifer forests, and usually, but not always, resulted
in mortality of some trees within a plot and was associated with
ADS insect and disease observations. Gradual decline was assessed
by examining both the annual reflectance trends (trajectories) in
multiple spectral bands and indices and Landsat image coloration
changes associated with those trends in the plot and its immediate
neighborhood. A subsequent high-resolution image snapshot
available in Google Earth was used for confirmation.
2.3. Estimation of annual disturbance area and rate

The estimates of areas and rates of disturbance from the sample
of plots for a given year were produced using the SURVEYMEANS
procedure of the Statistical Analysis Software (SAS version 9.3,
SAS Institute Inc., Cary, North Carolina, USA). For the sampling



Table 3
Ancillary databases used to identify or confirm causal agent class associated with
observed disturbances.

Database webpage Description

foresthealth.fs.
usda.gov/portal/
Flex/IDS

US Forest Service aerial detection survey map
database containing information about
approximate locations and timing for a variety of
specific insects and diseases for conterminous US
(predominantly since 1997)

www.nws.noaa.gov/gis/
shapepage.htm

US National Weather Service database giving
approximate locations of specific high intensity
weather events

www.mtbs.gov Landsat-based database for all significant fires
across all lands in the US from 1984 to 2014

www.fs.fed.us/nrm/
index.shtml

Information on access to US Forest Service
database for all treatment activities
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design implemented, the primary sampling unit is a TSA (indicated
by the subscript i) and each TSA is associated with a stratum h. A
ratio estimator is used to estimate the proportion of forest area
that is disturbed, where the proportion is defined as area of
disturbed forest divided by total area of forest,

bR ¼
PH

h¼1

Pkh
i¼1

Pnhi
j¼1whijyhijPH

h¼1

Pkh
i¼1

Pnhi
j¼1whijxhij

ð1Þ

and h is the stratum index, i is the TSA index in stratum h for the
sample size of kh TSAs sampled from the Kh TSAs available in stra-
tum h (i = 1, 2, . . . , kh), j is the index of a sampled pixel (j = 1, . . . ,
nhi), nhi is the number of pixels sampled from the Nhi pixels available
in cluster i of stratum h, and whij is the estimation weight (i.e.,
inverse of the inclusion probability) for sample pixel j in TSA i of
stratum h. The variable xhij is the area of forest in sample pixel j
from TSA i of stratum h, and yhij = area disturbed (e.g., a disturbed
pixel would have disturbed area of 900 m2 whereas yhij = 0 if the
pixel is not disturbed forest). Note that the 900 m2 area is the finest
resolution observed, but the full area of the pixel need not have
been disturbed for that pixel to be identified as disturbed.
The numerator of Eq. (1) based on yhij is the estimated total area
of disturbed forest.

For the two-stage cluster sampling design, the inclusion proba-
bility of a pixel is the product of the first-stage inclusion probabil-
ity (kh/Kh) and the second-stage inclusion probability (40/Nhi). The
second-stage inclusion probability is a conditional probability in
which the conditioning is on the sample of TSAs selected at the first
stage, and this conditional probability is determined for a simple
random sample of 40 pixels selected from the Nhi pixels available
in sampled TSA i of stratum h.

The variance estimator for bR provided by SAS is based on a
Taylor series approximation (Särndal et al., 1992) (see SAS ver-
sion 9.3 documentation for Statistical Computations of the
SURVEYMEANS procedure). The SAS algorithm for variance estima-
tion for two-stage cluster sampling does not incorporate the within
primary sampling unit variance component associated with the
second-stage sample so the standard errors reported represent
slight underestimates.

2.4. Conversion of spectral change to tree canopy cover change

Remote sensing-based forest disturbance estimates have histor-
ically been reported as rates or areas of disturbance over a given
time period, without accompanying descriptions of disturbance
severity or magnitude (Cohen et al., 2002; Hansen et al., 2013;
Masek et al., 2008, 2013). When magnitude has been reported, it
was commonly in terms of reflectance change (Skakun et al.,
2003) or total vegetation cover change (Kennedy et al., 2012),
including herbaceous and shrub components. Because we report
annual forest canopy disturbance at the 30 m pixel resolution
and knowingly include partial pixel disturbances, sometimes accu-
mulating over multiple consecutive years within a given Landsat
plot, we wanted to also report magnitudes in terms of cumulative
tree canopy cover loss. To accomplish this, we related spectral
change to tree canopy cover change using 21,950 photo interpreted
tree canopy cover plots from Coulston et al. (2012) and the
Random Forests regression tree algorithm (Breiman, 2001) to pre-
dict tree canopy cover through time for all the disturbed Landsat
plots described above in Section 2.2.

Tree canopy cover was predicted as a function of contempora-
neous Tasseled Cap brightness, greenness, and wetness, and regio-
nal stratum (the five regions of Fig. 1) as predictors (R2 = 0.58, and
slope of observed versus predicted from leave-one-out cross vali-
dation = 1.06). This model was applied to the pre-disturbance
and post-disturbance reflectance data (over the full duration if
more than one year), and the predictions were differenced to calcu-
late the tree canopy cover change for each disturbance observation
over the duration. For multi-year disturbances, dividing by dura-
tion can yield annual cover change. Although differencing can
amplify tree cover change prediction error, it is a long-standing
approach for modeling change with reflectance data (Healey
et al., 2006; Powell et al., 2014), yielding results nearly equivalent
to modeling cover change directly from reflectance change. For our
application, the tree canopy change predictions were meaningful if
they could generally distinguish different levels of cover change
among agent classes, even if the actual change values were
somewhat inaccurate.

3. Results

3.1. National and regional aggregate disturbance rates

Estimated area of disturbed forest across the conterminous US
averaged 8.4 ± 0.73 million ha per year between 1985 and 2012
(SE = 0.73 is the average of annual SE estimates). The percent of
forest area disturbed each year was highly variable, with a remark-
able increase beginning in the mid-90s (‘‘all” in Fig. 2 for the US).
For the first 10 years of the series (1985–1995), the rate of distur-
bance averaged 1.76 ± 0.17% per year. Between 1995 and 2001 the
rate more than doubled, rising steadily during that period. In 2006
the disturbance rate peaked at 4.69 ± 0.30% and thereafter began a
downward trend, ending the time series in 2012 at 3.44 ± 0.33%.

Temporal variability in national disturbance rates was strongly
related to regional disturbance patterns. In the Northeast region,
rates increased steadily, albeit only slightly over time (0.05% per
year), averaging 1.93 ± 0.30% over the full period of observation
(all, Fig. 2, Northeast). Rates in the Southeast region were variable
but with no clear trend throughout the period, averaging
3.38 ± 0.38% per year (all, Fig. 2, Southeast). In the Lowland West
(all, Fig. 2, LowlandWest) and Mountain West (all, Fig. 2, Mountain
West) regions, disturbance rates increased dramatically after the
early-90s. The Lowland West region had disturbance rates near
zero until 1995, which then climbed steadily at a rate of 1.08%
per year, peaking at 9.21 ± 2.14% in 2002. After 2002, disturbance
rates in this region dropped as precipitously as they had increased
until 2005, after which they varied between 2% and 4% per year.
The disturbance rate pattern for the Mountain West was similar
in part to that of the Lowland West region, where rates dramati-
cally increased during the latter half of the 90s (1.07% per year).
Between 2000 and 2008, rates of disturbance remained above
8.7%, peaking at 9.61 ± 0.97% in 2003. After 2008, rates declined
at about the same rate as they increased, but appeared to level
off at a rate above 6% by 2012. Disturbance rates for the Central
region were quite low throughout the entire time series and are
not reported here.

http://www.foresthealth.fs.usda.gov/portal/Flex/IDS
http://www.foresthealth.fs.usda.gov/portal/Flex/IDS
http://www.foresthealth.fs.usda.gov/portal/Flex/IDS
http://www.nws.noaa.gov/gis/shapepage.htm
http://www.nws.noaa.gov/gis/shapepage.htm
http://www.mtbs.gov
http://www.fs.fed.us/nrm/index.shtml
http://www.fs.fed.us/nrm/index.shtml


Fig. 2. Annual rates of forest disturbance (smoothed lines with 1 SE envelopes), for all disturbance classes (All) and by major causal agent class, across the conterminous US
and by region.
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3.2. National and regional disturbance rates by disturbance agent class

Disaggregating national total disturbance rates by causal agent
class revealed that decline-related disturbances were largely
responsible for the dominant temporal trend of the national rate
(Fig. 2, US). The rate of disturbance for the decline class of agents
steadily increased from 1985 (0.07 ± 0.02%) through 2001
(2.82 ± 0.38%). Two notable periods were 1985–1995, when the
rate of increase was 0.05% per year, and 1995–2001 when the rate
of increase was seven times higher (0.35% per year). After 2001,
decline-related disturbance decreased at a rate of 0.12% per year
through 2011 (roughly half the rate at which it increased post-
1995), remaining relatively high at 1.48 ± 0.23% in 2012. In con-
trast, although harvest was somewhat variable over time
(1.28 ± 0.14%), there was no sustained trend. Fire exhibited low
rates of disturbance across time, but did display lower rates before
2000 (0.08 ± 0.03%) than after 2000 (0.24 ± 0.07%). The agent class
other had slightly higher rates than fire (0.29 ± 0.07%) with no
meaningful increase over time.

Disturbance rates among causal agent classes were highly vari-
able by region. In the eastern regions, harvest was the dominant
agent throughout most of the full observation period. In the South-
east, although temporally variable (high of 4.67 ± 0.43% in 2006,
low of 2.08 ± 0.27% in 1993), the mean harvest rate was
2.90 ± 0.34% per year, far above the rates for other agent classes
(Fig. 2, Southeast). Harvest was lower and less variable in the
Northeast (1.01 ± 0.19% per year), but was still the dominant agent
class for most of the observation period (Fig. 2, Northeast). The rate
of harvest in the Mountain West decreased 0.06% per year from
1985 (0.93 ± 0.16%) to 1997 (0.27 ± 0.08%). Between 1997 and
2012 the harvest rate was somewhat erratic, averaging
0.61 ± 0.14% with a high of 0.92 ± 0.14% in 2007 and a low of
0.23 ± 0.07% in 2009. In LowlandWest harvest rates were generally
low throughout the study period, except in a few specific years.



Fig. 3. Violin plots by disturbance causal agent class of annual relative angle change
magnitude (top), and cumulative relative tree canopy cover change (bottom).

Table 4
Number of disturbance occurrences by disturbance agent class and duration for the
forested Landsat plots used in this study. The Total column represents the number of
affected plots in a given class, whereas the Percent column represents the proportions
of total occurrences represented by a given class (or subclass for the class Other).

Agent Duration (years) Total Percent

1 2 3 4 5+

Fire 167 0 0 0 0 167 7.60
Harvest 1319 88 4 2 0 1413 64.29
Decline 69 13 17 20 115 230 10.46
Other 340 36 9 3 0 388 17.65
Debris 1 0 0 0 0 1 0.05
Land use 216 28 4 0 0 248 11.28
Water 13 2 1 0 0 16 0.73
Wind 61 0 0 0 0 61 2.78
Unknown 49 6 4 3 0 62 2.82

Total 1891 137 30 25 115 2198 100.00
Percent 86.03 6.23 1.36 1.14 5.23 100.00 –
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In the western regions, forest decline was the most important
causal disturbance agent class, especially after the early 90s. In
the Lowland West (Fig. 2, Lowland West), decline-related distur-
bance was only rarely observed before 1996, after which it rapidly
became the dominant class rising at an average rate of 0.96% per
year until its peak in 2002 at 7.57 ± 2.38%. Between 2002 and
2008, a decreasing rate of 0.87% per year was observed, before
the rate of decline-related disturbance stabilized at an average rate
of 1.83 ± 1.22% per year between 2008 and 2012. In the Mountain
West (Fig. 2, Mountain West), forest decline was notably expressed
in three distinct periods. Between 1985 and 1995, there was a slow
but steady increasing rate (0.22% per year), which accelerated after
1995 (at an increasing rate of 1.03% per year) until 2000. From
2000 to 2003, that rate varied between 7.81 ± 1.02% and
8.30 ± 1.06%, after which time forest decline decreased at a rate
of 0.40% per year. By 2012 decline-related disturbance was still
high, at 4.71 ± 0.55%. Forest decline occurred at low rates in the
Southeast (0.07 ± 0.06% Fig. 2, Southeast). In the Northeast decline
was a more important causal agent class (0.53 ± 0.17%, Fig. 2,
Northeast), exhibited by a marked increase after about 1997
(0.22 ± 0.10% and 0.79 ± 0.22%, before and after 1997, respectively),
and a large pulse resulting in a high of 2.08 ± 0.81% reached in
2001.

When viewed in the aggregate, fire, although regularly occur-
ring, was a minor disturbance agent relative to harvest and forest
decline. Fire was common in the Mountain West (Fig. 2, Mountain
West) throughout the period of observation but varied episodi-
cally. After 2000 the rate became elevated through about 2008,
peaking at 1.71 ± 0.34% in 2008. In the Lowland West (Fig. 2, Low-
land West) the most prominent fire disturbance years occurred
after 2001, with the period between 2002 and 2004 being the most
active, peaking at 1.64 ± 0.98% in 2002. The three other most active
fire years were 2008 (0.82 ± 0.77%), 2011 (2.02 ± 1.59%), and 2012
(1.01 ± 0.84%). In the Southeast (Fig. 2, Southeast) fire was a regular
feature, albeit with no remarkable temporal patterns
(0.09 ± 0.04%). Fire in the Northeast (Fig. 2, Northeast) was some-
what regularly occurring but only at low rates, averaging
0.03 ± 0.02% over the full period. The agent class other was mini-
mal in the west, but more important than fire in the east. In the
Southeast (Fig. 2, Southeast) no trend was evident for the other
class with rates averaging 0.40 ± 0.13%. In the Northeast (Fig. 2,
Northeast) rates were similarly low (0.34 ± 0.12%) and without
an obvious trend.

3.3. Disturbance rates by reflectance magnitude and tree canopy cover
change

As noted above, magnitude of disturbance in reflectance space
was quantified using the Tasseled Cap angle metric. Distributions
of annual spectral change magnitudes were highly variable by
agent, with the majority of disturbances having relative spectral
changes less than 50% (Fig. 3, top). Fire had the highest change
magnitudes, with a median of 38.1%. This was followed by the
agent classes harvest and other, at 21.7% and 20.1%, respectively.
Decline had the lowest change magnitudes, with a median of
1.5% per year.

Disturbance duration was one year for fire, mostly one year for
harvest and other, but generally multi-year for forest decline
(Table 4). There were dramatic differences for decline between
the eastern and western regions (data not shown). In the eastern
regions, 86% of all decline-related disturbances had durations of
less than 5 years. In the western regions 68% of decline occurrences
had durations lasting 5 or more years and 24% had durations 10 or
more years in length.

For a more direct comparison of tree cover changes among
the four agent classes, we report tree canopy cover change



Fig. 4. Aerial Detection Survey (ADS) data summarized by the regional boundaries
used in this study. Shown is ADS polygon area mapped by region.
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distributions as accumulated values over the observed duration for
a given disturbance occurrence. Cumulative tree cover change dis-
tributions were highly variable within an agent class, but generally
lower than 50%, especially for forest decline (Fig. 3, bottom). Har-
vest had the highest median cumulative relative cover change, fol-
lowed in descending order by fire, other, and decline.

4. Discussion

4.1. Shifting dominance of disturbance agent classes over time

We report forest disturbance rates for the conterminous US
across major causal agent classes at an annual time step between
1985 and 2012, emphasizing the shifting importance among dis-
turbance agent classes during recent decades (Fig. 2). Prior to the
mid-90s, national disturbance rates varied between 1.5% and 2%
per year, driven largely by harvest activity, primarily in the Moun-
tain West, Northeast, and Southeast regions. During the late-80s
and early-90s, harvest rates decreased in the Mountain West, but
decline-related disturbances increased rapidly in the two western
regions. After 1997, the decline class dominated national distur-
bance rates, with the greatest disparity occurring during the early
2000s, when forest decline varied between 2% and nearly 3%. A
slow but steady decreasing rate of forest decline after its peak in
2002 brought this agent class into near parity with harvest by
2012, at rates considerably higher than pre-1995 rates.

Oswalt et al. (2014; Table 3), reported a 9% decrease in the rates
of tree mortality for the conterminous US over the 20 years
between 1976 and 1996 followed by a 68% increase between
1996 and 2006, and then a slower increase (15%) through 2011.
These inventory-based results report tree mortality as a percentage
of growing stock, rather than the more comprehensive characteri-
zation of decline used here, but clearly corroborate our estimates
of a major contrast in decline prior to the mid-90s with decline
between the mid-90s and the mid-2000s, followed by subsequent
slower rates of decline. Moreover, these data support our observa-
tions that the highest rates of increased decline-related distur-
bance occurred in our western regions: 180% increase in
mortality between 1996 and 2006 in the Oswalt et al. (2014) Rocky
Mountain and Pacific Coast regions. Similar to our decline results,
as compared to the western US, in our Northeast region Oswalt
et al. (2014) reported lower rates of mortality (4% per year) over
the 15 years from 1996 to 2011. For our Southeast region, Oswalt
et al. (2014) reported half the Northeast rate of increase, again
consistent with our decline results.

Aerial Detection Survey data (Table 3) are based on methods
that have some similarities (e.g., annual, defoliation as well as mor-
tality), but multiple inconsistencies (e.g., polygons, not spatially
comprehensive every year) with our data. The available ADS data
(since 1997) for the conterminous US (Fig. 4) illustrate similar tem-
poral patterns to our decline data (Fig. 2) across the regions demar-
cated in this study (Fig. 1). For both datasets, in the Lowland West
there were low levels of disturbance before the turn of the century,
followed by a peak between 2002 and 2004, and then a reduction
in disturbance to levels through 2012 that are higher than the level
before the turn of the century. In the Mountain West, disturbance
levels began to rise earlier than for the Lowland West, peaking at
approximately the same time in the early-2000s, and then not
declining significantly. In the ADS data there is another peak in
2009 that appears absent from our data. Across the Northeast
region we see three peaks post-2000 that are consistent in timing
between the datasets. For the Southeast, levels are quite low in
both datasets, but there is an ADS peak in 2001 that is not in our
dataset.

Trends in mortality across the western US reported in the liter-
ature also support our decline results. Breshears et al. (2005) report
widespread mortality (>90% of piñon pine at some sites) during an
intense drought in the early 2000s, with peak die-off during 2002–
2003, in an area approximately consistent with our Lowland West
region. Williams et al. (2010) further describe an accelerated mor-
tality period between l997 and 2008 over a similar spatial extent,
nearly identical to the period of our higher decline rates for the
Lowland West. Importantly, our decline class includes not just
mortality, but also partial canopy loss in response to severe
drought, a phenomenon associated with juniper trees that are a
prominent species group across the Lowland West region
(Gaylord et al., 2013). This, in combination with the differences
in spatial extent, prevent our rates of decline from being directly
compared to rates associated with other, less spatially and more
exclusive (i.e., mortality only) studies.

The MountainWest region hosts a diverse set of tree, insect, and
disease species, all of which interact with a highly variable climate
to result in more complex decline dynamics than in the Lowland
West (Weed et al., 2013). Creeden et al. (2014) report lodgepole
pine beetle-related mortality across nearly the full temporal range
of our study, but with generally very low rates of mortality
between the late 1980s and 2000 and peak rates occurring
between 2001 and 2010, dependent on specific location. Other
studies report variable specific timing of insect and disease activity
depending on conifer tree and insect species and location, but are
consistent with this study and with Creeden et al. (2014) regarding
significant increases in activity starting in the mid-90s (Chapman
et al., 2012; Meddens et al., 2012; Meddens and Hicke, 2014;
Meigs et al., 2015). Moreover, decline not associated with insects
has occurred in non-conifer-dominated forests, including a period
of active aspen mortality between 1991 and 2007 (with a peak
during 2000–2003; Hanna and Kulakowski, 2012).

Harvest rates (in cubic feet) across 10-year intervals from
1986–2011 reported by Oswalt et al. (2014, Table 41) exhibit no
meaningful trend and vary by about 20% across the period, not
unlike our harvest estimates. Moreover, akin to our results,
throughout the study period, harvest rates are highest (maximum
12.2 billions of cubic feet) and somewhat variable (minimum
10.5 billion cubic feet) across the South (an area similar to our
Southeast region). Also, harvest rates across the North (an area
similar to our Northeast region) are reported to have been about
40% of those of the South, as in our study. Across the west harvest
rates were generally lowest, with Rocky Mountain forests and Paci-
fic Coast forests (most closely associated with our Lowland West
region and our Mountain West regions, respectively) having less
than 10% (Rocky Mountains) and 20–30% (Pacific Coast) of the
rates associated with the Southeast region. From 1986 to 1996,
rates of reported harvest in these areas declined by about 50%



Fig. 5. MTBS fire data summarized by the regional boundaries used in this study.
Shown is fire extent polygon area mapped by region.
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and then remained at roughly the same levels through 2011, as in
our study. Other studies have suggested that variability in harvest
rates can be explained primarily through forest policy changes
(Moeur et al., 2011) or economic drivers (Masek et al., 2013).

Summarizing the MTBS data for the western US, Dennison et al.
(2014) report an increased number of large fires (above 400 ha)
and area burned between 1984 and 2011. As with our results,
the increases are greatest starting about 2000. Summarizing the
same MTBS data to match our specific regional boundaries
(Fig. 5), similar temporal patterns with our dataset are evident
(Fig. 2). In the Lowland West and Mountain West regions greater
area of fire activity occurred post-2000 than pre-2000, and the
peak prior to 1990 in the latter region is consistent in both data-
sets. In the Northeast and Southeast regions, fire-affected areas
are quite low throughout the period of observation. Differences
between the two datasets were apparently related to the particular
sample we selected; for example (data not shown), the MTBS data-
set shows a post-2000 increase in fire activity in the Southeast that
occurred in areas that by random chance were unsampled in our
study.

Fire disturbances increased in western US at the turn of the cen-
tury but remained a relatively small contributor to overall rates of
forest disturbance in the west throughout the study period.
However, because fires are so threatening to human lives and
structures, are so costly to control, and remain an iconic symbol
of the destructive forces of nature, they retain a dominant role in
forest policy and management (Moeur et al., 2011), as they have
since the dawn of the US Forest Service (Egan, 2009). In addition,
these relatively low fire rates demonstrate the effectiveness of fire
suppression and exclusion policies that have rendered a general
fire deficit relative to historic conditions (Marlon et al., 2012).
Despite the prominence of fire in the policy arena, the increasing
rates of forest decline and climate-induced vulnerability to decline
increasingly are the focus of both scientific investigation (Bréda
and Peiffer, 2014; Mildrexler et al., submitted for publication)
and public awareness (Rosner, 2015). In this context, our results
support the need for increasing and urgent attention to that class
of natural disturbances (Smith et al., 2014; McDowell et al., 2015).
4.2. Forest decline as a low intensity, multi-year phenomenon

Forest decline is a broadly defined term applied to largely
climate-driven effects on forest health (Camarero et al., 2015).
Decline is the result of complicated interacting factors that act at
the local level, covering a range of effects from partial canopy defo-
liation to tree mortality (Lineras and Camarero, 2012; Vilà-Cabrera
et al., 2013). Effects can be primary, such as hydraulic failure
(Choat et al., 2012; Lineras and Camarero, 2012) and consequent
canopy defoliation that is either reversible (Bréda and Peiffer,
2014) or leads to mortality (Anderegg et al., 2015), or secondary,
as in the case of reduced resin production that predisposes a tree
to insect attack (Gaylord et al., 2013). Effects in a given tree may
be abrupt or gradual (Amoroso et al., 2012) and not all trees in a
local area are affected simultaneously such that within a given
30 m Landsat pixel (i.e., plot in our study) the effect may be cumu-
lative, intensifying over many years (Meddens and Hicke, 2014;
Meigs et al., 2015). Moreover, it is common that not all trees are
affected within a given pixel, with, for example, 40–80% being
the predominant range of mortality from the mountain pine beetle
(Assal et al., 2014; Liang et al., 2014; Meddens and Hicke, 2014).
When considering the impact of multiple stressors acting within
a given pixel, decline can be slowly incremental (Meddens and
Hicke, 2014), sometimes resulting in subtle year-to-year
reflectance changes that accumulate over many years (e.g., Meigs
et al., 2011; Table 4). This presents two special challenges: one
with respect to monitoring and the other regarding how to
summarize and report decline disturbance rates.

Landsat monitoring of forest decline represents a special case of
monitoring relative to other disturbance agent classes because the
magnitudes can be low relative to other agent classes, especially at
an annual time-step (Fig. 3, top), and the effect can last for multiple
consecutive years (Table 4). Using TimeSync we were able to reli-
ably detect decline signals because we had ready access to a vari-
ety of tools for every plot. The toolset included simultaneous
viewing of image chips that revealed the plot in the context of its
pixel neighborhood, high resolution image snapshots available in
Google Earth, ready access via toggling to multiple reflectance
bands and indices for a truly multispectral interpretation, multiple
ancillary datasets with approximate mapped locations of distur-
bance events for specific agent classes, and a human interpreter
that could readily integrate the various information sources on a
case-by-case basis. Designing an automated algorithm, which by
definition relies on a higher degree of generalization, to replicate
the human interpretation process will remain a significant chal-
lenge. Algorithms that explicitly track reflectance trends (e.g.,
Kennedy et al., 2010; Lambert et al., 2013; Brooks et al., 2014;
Zhu and Woodcock, 2014), as opposed to those searching for
higher magnitude anomalous reflectance departures from trends,
undoubtedly hold the greatest promise for satisfying the new
monitoring framework suggested by McDowell et al. (2015). In
addition, algorithms that rely on denser temporal observations
(rather than a single observation each year) may be able to
suppress ‘‘noise” and extract subtler trends from the data.

With respect to reporting decline rates, most observed decline
disturbances had multi-year durations, with the majority having
durations of five or more years (Table 4). Because we summarized
and reported annual decline disturbance rates for all years any
given plot was affected, those plots were included in the rate cal-
culation for all of the affected years (Fig. 2). If we exclude the dura-
tion component from our rate calculations, we isolate the
‘‘extensification” component of decline such that only newly
affected areas (outside of the already affected 30 m plot) in a given
year are included. However, doing so excludes the ‘‘intensification”
component of the decline signal and thereby does not represent
the actual area undergoing decline in any given year. We can
address this challenge to reporting decline rates by summarizing
and reporting both duration-weighted (including intensification)
and duration-free (extensification only) rates that count only the
first year of detection for decline disturbances. An important out-
come is that by isolating the extensification component we also
isolate the intensification component.

At the national scale, newly affected areas (extensification) gen-
erally accounted for less than 0.5% forest in any given year; the
only exception being 2001 when the rate was nearly 0.7% (Fig. 6,



Fig. 6. Annual decline rate stratified by newly affected Landsat plots (extensifica-
tion) and plots affected in a given year that were already affected the previous year
(intensification). Shown are rates for the national level (top), the eastern regions
combined (middle), and the western regions combined (bottom).
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top). This is more similar to rates associated with the fire and other
agent classes, and considerably less than rates associated with
harvest. Not surprisingly, there are large differences between the
eastern (combination of Northeast and Southeast), and western
(combination of Lowland West and Mountain West) regions. In
the east, intensification and extensification were approximately
balanced over time (Fig. 6, middle). Across this region the intensi-
fication accounted for an average of only 59% (28.5% standard devi-
ation among years) of the total decline rate. In the west however
(Fig. 6 bottom), the large majority of detected decline was associ-
ated with intensification within areas already affected (Fig. 6, bot-
tom). For this region intensification averaged 79% (21.7% standard
deviation), which is highly consistent with the longer duration for
decline occurrences, relative to the eastern regions.

The disturbance agent classes harvest and other also had some
multi-year duration disturbance occurrences (Table 4). However,
as these were a small proportion of the total number of occur-
rences, and the large majority of these had only one-year duration,
we chose not to distinguish between intensification and extensifi-
cation for these cases. The effect of this on our results is small, but
should be recognized. The class other was dominated by land use
conversions (Table 4). Although this could have been distinguished
as a separate class for our analysis, we chose not to do so as this
would have placed undue focus on conversion from forest to
non-forest when, in fact, because of afforestation and reforestation
after harvest forest land use has actually been increasing in the US
(Oswalt et al., 2014).
5. Conclusions

This study presents the first direct comparison of annual trends
among forest disturbance causal agent classes for the contermi-
nous US as a whole and for five distinct forested regions of the
country using consistent methods across classes and over a
several-decade time period. Previously, national disturbance data-
sets derived using approximately consistent methods across dis-
tinct agent classes were either at too coarse a spatial or temporal
resolution or temporal extent (Norman et al., 2013; Oswalt et al.,
2014). Other national or greater level efforts focused on single
agent classes (e.g., ADS insect and disease, MTBS fire) with
methodological idiosyncrasies and inherent mapping biases
(Eidenshink et al., 2007; Meddens et al., 2012), or only character-
ized disturbance in the aggregate so that specific temporal trends
for individual causal agent disturbance classes could not be discov-
ered (Hansen et al., 2013; Masek et al., 2013). The national forest
inventory program (Oswalt et al., 2014) has relied on a 5- to 10-
year temporal revisit cycle and had no consistent measurement
protocols across regions prior to 2000 (Schroeder et al., 2014).

Our results based on visual interpretation of Landsat time series,
supported by high spatial resolution imagery in Google Earth and
ancillary disturbance datasets from government agencies, indicate
a shifting forest disturbance dynamic over the past several decades.
Prior to the late-90s, disturbance patterns were driven largely by
anthropogenic forces (e.g., harvest). Since the late-90s, natural
forces (e.g., climate, insects and disease) have dominated national
disturbance rates. Although a national phenomenon, increasing
rates for forest decline have been concentrated in the western US
where it is well documented that extended droughts have coupled
with increasingly high temperatures to create increasingly stressed
and vulnerable forests (Millar and Stephenson, 2015).

Landsat data have a 30 m spatial resolution, and it must be rec-
ognized that partial disturbances within a given pixel can occur for
several consecutive years. Partial disturbances (e.g., forest thin-
ning) can be challenging to detect, especially if they have one-
year duration. Forest decline is commonly subtle in a given year,
but because it tends to have a cumulative effect over several con-
secutive years it may be more detectable than short duration sub-
tle disturbances. Forest decline, as a predominantly multi-year,
cumulative phenomenon, should be analyzed and reported using
its two components: intensification and extensification. This bin-
ary reporting avoids inflating the areal spread of decline while also
enabling the full quantification of decline rates that include grad-
ual and sometimes chronic forest changes associated with ongoing
climatic stress. Despite the prominence of fire in the policy arena,
the increasing rates of forest decline and climate-induced vulnera-
bility to decline are increasingly the focus of both scientific inves-
tigation and public awareness. In this context, our results support
the need for increasing and urgent attention to that class of natural
disturbances.
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