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Abstract. Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but
such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely

sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux
density (FRFD), fromwhich FRED is integrated, across forested and non-forested RxCADRE 2011 and 2012 burn blocks.
Airborne longwave infrared (LWIR) image time series were calibrated to FRFD and integrated to provide FRED. Surface
fuel loads measured in clip sample plots were predicted across burn blocks from airborne lidar-derived metrics. Maps of

surface fuels and FRED were corrected for occlusion of the radiometric signal by the overstorey canopy in the forested
blocks, and FRED maps were further corrected for temporal and spatial undersampling of FRFD. Fuel consumption
predicted from FRED derived from both airborne LWIR imagery and various ground validation sensors approached a

linear relationship with observed fuel consumption, which matched our expectation. These field, airborne lidar and LWIR
image datasets, both before and after calibrations and corrections have been applied, will bemade publicly available from a
permanent archive for further analysis and to facilitate fire modelling.
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Introduction

The physical process of vegetation biomass burning greatly
influences terrestrial ecosystem structure and function, at spatial

scales ranging from biomes where fires affect the Earth system
(forest, savanna and grassland) (Seiler and Crutzen 1980;
Bowman et al. 2009) to the landscape level where humans apply

prescribed fires and other vegetation management decisions
(Lavorel et al. 2007; Trigg and Roy 2007). Prior remote sensing
investigations to measure biomass burning rates also range

broadly in scale, from coarse spatial resolution global moni-
toring satellites (Roberts andWooster 2008) to airborne thermal
imaging platforms (Riggan et al. 2004) with high resolution
more suited to monitoring individual wildfires.

Geostationary satellites such as Meteosat carry a spinning
enhanced visible and infrared imager (SEVIRI) sensor (Wooster
et al. 2005; Roberts and Wooster 2008; Wooster et al. 2013),

which has coarse spatial resolution (3 km) but is well suited for
regional–global scale studies of combusted biomass estimated
from fire radiative energy (FRE) measured in joules (J), which

are integrated over time from repeated measures of fire radiative
power (FRP)measured in watts (J s�1). The polar-orbiting Terra
and Aqua satellites bear the Moderate Resolution Imaging

Spectroradiometer (MODIS) sensor, which has higher spatial
resolution (1 km) yet provides FRPmeasures only twice daily at
best (Roberts et al. 2011), thus necessitating fusion with burn
area maps or other approaches to estimate FRE (Boschetti and
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Roy 2009; Freeborn et al. 2010; Kumar et al. 2011). Dickinson
et al. (2015) provide more details on active fire detection and
FRP estimation from MODIS as well as Visible Infrared Imag-

ing Radiometer Suite (VIIRS) imagery from which both 750-m
and 375-m resolution active fire products are derived (Schroeder
et al. 2014).

Wooster et al. (2005) demonstrated in small-scale (,2 m2)
burning experiments using a variety of herbaceous and woody
fuels that FRP is linearly related to biomass combustion rate, and

that FRE is linearly related to biomass combusted (see also
Freeborn et al. 2010 and Kremens et al. 2012). The latter
quantity represents a greater measurement challenge because
it requires sufficient sampling over time to integrate FRE from

instantaneous measures of FRP. Temporal sampling resolution
of active fire by fixed-wing aircraft is limited to 2–3min, the rate
at which the same airspace can be revisited. Riggan et al. (2004)

used airborne active fire imagery to estimate carbon and energy
fluxes from individual fires in Brazil. However, integration of
total FRE from airborne FRP image time series collected over

the entire duration and spatial extent of a landscape-level fire has
not yet been achieved.

The prediction of surface fuel loads, including those beneath

a forest canopy, using the canopy-penetrating and three-
dimensional capability of airborne lidar is yet to be achieved.
Seielstad and Queen (2003) described the potential of airborne
lidar for differentiating between surface fuel models in lodge-

pole pine (Pinus contorta Douglas ex Loudon) forests. Terres-
trial lidar has been used to classify surface fuel types within
high-resolution fuel cells in fire-maintained longleaf pine

forests (Hiers et al. 2009; Loudermilk et al. 2009, 2012), and
Rowell and Seielstad (2015) showed that terrestrial lidar can be
used in concert with an airborne lidar-derived digital terrain

model (DTM) to characterise surface fuel heights at high
resolution. However, surface fuel loads like those beneath the
longleaf pine forests occurring at Eglin Air Force Base (AFB) in
Florida, the site of these RxCADRE prescribed fires, have not

been predicted as a continuous variable from airborne lidar.
The primary objective in this paper was to predict fuel

consumption from estimates of FRE at multiple scales ranging

from plots (,1 ha) to large burn blocks (.100 ha). The related
secondary objective was to predict surface fuel loads and fuel
combusted across these same areas. Our chosen blocks were

burned with prescribed fires at Eglin AFB in 2011 and 2012 as
part of the RxCADRE project and imaged by both the Wildfire
Airborne Sensor Platform (WASP) longwave infrared LWIR

sensor and a scanning lidar sensor mounted aboard the same
aircraft.

Methods

Prescribed burn blocks

This paper considers the prescribed RxCADRE fires conducted
in selected land blocks at Eglin AFB in 2011 and 2012. The two
2011 burns of forested blocks ‘703C’ and ‘608A’ were ignited
by aerially delivered, delayed-ignition devices dispensed from a

helicopter in strips at right angles to and successively into the
ambient wind direction. The nine blocks burned on the ‘B70’
range in 2012 were lit with drip torches on the upwind side to

produce a more natural fireline progression through the blocks.

Like the two 2011 blocks, one large block (L2F) was forest
dominated by longleaf pine (Pinus palustrisMill.), whereas the
other two large (L1G and L2G) and six small blocks (S3, S4, S5,

S7, S8 and S9) were non-forested. Surface fuels were composed
of variable proportions of grasses, forbs and shrubs dominated
by turkey oak (Quercus cerris L.). Further details regarding the

prescribed fires may be found in Ottmar et al. (2015b).

Ground measures

Surface fuel loads were measured by destructive harvesting in
1� 1-m clip plots within all burn blocks except L2F, where clip
plots were 0.5� 0.5-m. The pre- and post-fire clip plot positions
alternated across a given sample unit, so consumption could not

be estimated at the plot level (i.e. consumption estimates were
limited in resolution to the sample unit level). A sample unit
consisted of a set of clip plots arranged systematically in one of

three configurations: (1) surrounding a 40� 40-m (2011) or
20� 20-m (2012) highly instrumented plot (HIP) that was
randomly located within a representative fuel condition inside a

large burn block (with two to three HIPs per large burn block);
(2) surrounding a 200� 100-m small burn block; or (3) along
parallel transects from a random starting point within a large

burn block. Details on the fuel sampling protocols can be found
in Ottmar et al. (2015a).

As litter decomposes, the various herbaceous and woody
components become indistinguishable to form (beneath the

litter) a highly degraded layer of material known as duff that
eventually will be incorporated into the soil – unless consumed
by fire. Ottmar et al. (2015a) did not include duff measures in

their analysis because measureable duff depths were only
encountered in the L2F burn block. We include the L2F duff
measures in this analysis because burning duff also contributes

to radiative energy flux. Duff depths were measured at the L2F
sample plots where duff occurred; elsewhere zeroes were
recorded.

Various ground sensors were deployed to collect voltage data

calibrated to fire radiative power flux density (FRFD, W m�2)
time series that were subsequently integrated over time to
provide independent measures of fire radiative energy density

(FRED, J m�2) for this analysis. Radiometers and infrared (IR)
cameras were usually deployed inside a HIP. O’Brien et al.

(2015) provide sensor specifications for IR cameras, whichwere

either nadir viewing and deployed on a 8.2-m tripod within the
large burn block HIPs in 2011 and 2012 and the small burn
blocks in 2012; or oblique viewing and deployed on a 26-m

boom lift parked outside the fire perimeter for a synoptic view of
the six small burn blocks (O’Brien et al. 2015). Dickinson et al.
(2015) provide sensor specifications on nadir-viewing, dual-
band ‘pocket’ radiometers deployed on a 0.5-m arm and elevated

to 5.5 m on telescoping poles, with a field of view of 52.58 for
full power and 758 for partial power. Dual-band ‘pocket’ radio-
meters deployed by Dickinson et al. differed from ‘orange box’

radiometers used by O’Brien et al. in their field of view and
bandpass. Upon calibration, both types of radiometers measure
FRFD and allow estimates of FRED.

Airborne lidar

Airborne discrete-return lidar data were collected by Kucera

International using a Leica ALS60 sensor on 5 February 2011
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(703C burn block), 6 February 2011 (608A burn block) and 3
November 2012 (B70 burn blocks). Vertical uncertainty quan-
tified with root mean squared error (RMSE), comparing the

laser-measured ground heights to independent ground control
points (GCPs) geolocated with a resource-grade global posi-
tioning system (GPS, Trimble Pathfinder ProXT), was 0.600 m

at burn block 703C (n¼ 9 GCPs) and 0.642 m at burn block
608A (n¼ 12 GCPs) in 2011. In 2012, installation of survey-
grade GCPs (n¼ 20) reduced the vertical uncertainty by almost

an order of magnitude (RMSE¼ 0.082 m). However, average
vertical bias was comparable between all three lidar collections
(�0.010 m at 703C, 0.003 m at 608A, 0.007 m at B70), as were
the flight and lidar sensor operation parameters (Table 1). Ter-

rascan software was used to classify and edit the lidar data.
A 1-m DTM was interpolated from the vendor-classified

ground returns using the GridSurfaceCreate function of

FUSION software (McGaughey 2014). The ‘minimum’ value
was used rather than the default ‘mean’, such that the DTM took
the value of the minimum elevation value in each grid cell. This

lowers the DTM slightly so that the majority of near-ground
returns will be above the DTM and hence have positive height
values.

The ClipData function of FUSION was used to clip ,200–
300 points within a 3-m radius of clip plot centre coordinates.
The DTM was subtracted from the point cloud to normalise
absolute point heights to relative heights above ground. Using

the CloudMetrics function of FUSION, canopy height and
density metrics were calculated from lidar returns 0–2 m above
ground and within a 3-m radius of each pre-fire clip plot.

Candidate metrics for predictive modelling included the mean,
mode, standard deviation (s.d.), coefficient of variation (c.v.),
skewness and kurtosis statistics calculated across the 0–2 m

height range; as well as mean, mode, s.d., c.v. and proportion of
all returns calculated within vertical strata of 0–0.05, 0.05–0.15,
0.15–0.50 and 0.50–1.0 m above ground. The stratum depths

were intended to be unequal because the lidar returns are denser
nearer the ground, where there is more vegetation and fuel to
intercept the laser pulses, than higher above the ground.

The plot-level lidar metrics were considered as candidate
predictor variables in a multiple linear regression model, using
the ‘lm’ function in R (R Core Team 2014). The Shapiro–Wilk

W statistic was used to test the response variable for normality,
and Moran’s I statistic was used to test model residuals for
spatial autocorrelation. Predictions were tested for dissimilarity
with observations using a bootstrap test for equivalence

(Robinson et al. 2005). Best subsets regression (using the
‘regsubsets’ function in the ‘leaps’ package of R) was employed
to select the best predictors from the candidate metrics; mini-

mising the Akaike Information Criterion (AIC) statistic was the
criterion used to choose the best subset model, following the
approach of Hudak et al. (2006). The FUSION GridMetrics

function was used to create gridded rasters of selected metrics at
5-m resolution for mapping. Overstorey canopy cover was
calculated as the percentage of first returns above breast height

(1.37 m) (Hall et al. 2005; Kim et al. 2009).

Airborne LWIR imagery

The airborne WASP LWIR sensor (McKeown et al. 2004)

imaged the active fires within the five large burn blocks. WASP
has a nominal 8–9.2-mm bandwidth (for further details see
Dickinson et al. 2015). Image frames were collected at 3- or 4-s

intervals (Table 2). Using the ArcPy package in Python, raw
WASP LWIR digital numbers were calibrated first to sensor-
reaching radiance, LLWIR (W m�2 sr�1) for the passband of the

WASP LWIR detector (Eqn 1). The spectral response of the
WASP LWIR detector that defines the passband is known from
laboratory measurements and was used in the calculation of
LLWIR. Ground-leaving excitance, or observed FRFD (FRFDobs)

(W m�2) (Eqn 2), is then calculated in two steps as follows:

LLWIR ¼ f DNð Þ ¼ 2� 10�6DN2 þ 0:0176DN ð1Þ

FRFDobs ¼ pb LLWIRð ÞM ð2Þ

where DN is digital number, and b and M vary by WASP
LWIR acquisition (Table 2) because of variable atmospheric

Table 1. Parameters of airborne lidar collected immediately before

the 2011 and 2012 RxCADRE prescribed burns

Lidar collection parameter 2011 2012

Flying height above

ground level

1200 m 1200 m

Sidelap 50% 50%

Field of view 248 208

Pulse rate 176.1 kHz 178.6 kHz

Average point density 6.9 points m�2 6.8 points m�2

Table 2. Burn block names, burn dates, WASP LWIR calibration coefficients (power fit; Eqn 2) and sampling characteristics of the 2011 and 2012

RxCADRE prescribed burns at Eglin AFB

Temporal undersampling proportion is the proportion of time during which WASP was not imaging the burn block. Spatial undersampling proportion is the

average proportion of the burn block not imaged in individual WASP frames

Burn block Burn date b M WASPLWIR spatial

resolution (m)

WASPLWIR sampling

interval (s)

Temporally

undersampled

proportion

Spatially

undersampled

proportion

703C 6 February 2011 5.216 1.374 2.8 4 0.69 0.70

608A 8 February 2011 5.138 1.374 2 4 0.68 0.85

L1G 4 November 2012 7.282 1.393 3 3 0.76 0.63

L2G 10 November 2012 7.006 1.380 3 3 0.85 0.35

L2F 11 November 2012 6.718 1.385 1.5 3 0.85 0.68
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absorption that was simulated with the Moderate Resolution
Atmospheric Transmission algorithm (MODTRAN) (Berk
et al. 2003) based on atmospheric profiles of temperature and

humidity during the burning period. Equation 1 was para-
meterised using a blackbody in the laboratory. MODTRAN
runs and further details regarding WASP LWIR image calibra-

tion are described in Accessory Publication 1 associated with
Dickinson et al. (2015).

For each burn block, calibrated image frames were assem-

bled into a multi-layer stack with a common origin, grain and
extent. This realigns the pixels at a common resolution based on
the nominal resolution of the image frames (Table 2). Small
shifts in the pixel coordinates necessitate reassignment of the

pixel values to the shifted locations; nearest neighbour resam-
pling was used because it preserves the pixel values from the
input image frames, making it minimally disruptive.

FRED (J m�2) was calculated from image time series of
calibrated FRFD (Wm�2). Fire pixels were separated from non-
fire pixels using a threshold of 1070 W m�2 derived indepen-

dently from the pocket radiometer data. The threshold can be
thought of as the post-fire FRFD value asymptotically
approached by a pixel as it cools after burnover, making it

greater than the apparent FRFD of unburned (background)
pixels masked from consideration. To estimate the threshold,
the peak FRFD was determined from the pocket radiometer
datasets (n¼ 60) distributed at fixed locations across all of the

2012 prescribed burns and sampling over the duration of the
fires at 5-s intervals. For each dataset, FRFD measurements
from before the peak were removed and the time rescaled so that

peak time was assigned a value of t¼ 0. Then, parameters of a
negative exponential model with an offset (the threshold) were
fit to the individual datasets and the average threshold and its

confidence interval determined from the results. The threshold
was determined to be 1070 W m�2, with no significant differ-
ence between radiometers in the forested vs. non-forested
blocks. Observed FRED (FREDobs) at each fire pixel, defined

as having a minimum of one FRFD observation.1070Wm�2,
was calculated following the trapezoidal rule for numerical
integration that was employed for the same purpose byBoschetti

and Roy (2009), by Eqn 3:

FREDobs ¼
Xn

i

0:5 FRFDi þ FRFDi�1ð Þ ti � ti�1ð Þ ð3Þ

whereFRFDi is pixel-levelFRFD from each image i in the time
series, and t is time in seconds. If pixel vectors only contained

one FRFD measurement, then FRED was calculated by multi-
plying the single FRFD measurement by the sampling interval
of either 3 s (2012) or 4 s (2011), depending on the burn block

(Table 2). Most pixel vectors contained only one FRFD mea-
surement for FRED calculation; 86, 92, 95, 96 and 88% of
FRFD pixel vectors for 608A, 703C, L1G, L2G, and L2F,

respectively.

Corrections for sampling biases

Back-transformation of the surface fuel model predictions from

the natural log (ln) scale to the natural scale introduced bias.
Therefore, a bias correction factor (cb) was calculated based on

the mean square error (MSE) of the model residuals following
Baskerville (1972), by Eqn 4:

cb ¼ expð0:5MSEÞ ð4Þ

where predicted fuels upon back-transformation were multi-

plied by cb.
A source of bias in both observed and predicted fuel loads

was the exclusion of duff at the L2F block. Duff load was not

measured at any RxCADRE burns except L2F andwas therefore
excluded from the fuel loads reported by Ottmar et al. (2015a).
However, duff load was measured at L2F because substantial

duff was evident in the field given that it had not burned for
3 years, longer than the other 2012 or 2011 burn blocks.
Therefore, the pre-fire fuel loadwas increased by the percentage
consumption observed in L2F across the other fuel types. Duff

consumption was similarly increased under the assumption that
the same proportion of duff was consumed as was observed
across the other fuel types. Percentage consumption of duff most

likely did differ from the other fuel types; for example, due to
higher duff fuel moisture (which we did not measure). However,
given that there was measureable charred duff, which undoubt-

edly contributed to the FRE flux, we judged it more accurate to
estimate duff consumption under this simple assumption than to
ignore it. The duff corrections were applied to both observations

(field based) and predictions (lidar based) of surface fuel load
and consumption.

Both the lidar-derived surface fuel maps and the WASP
LWIR-derived FRED maps were affected by occlusion of the

radiometric signal by the overstorey canopy in the forested
blocks. Canopy interception was assumed to equally affect the
airborne lidar and LWIR radiation signals. Canopy cover grids

were generated with the same origin, grain and extent as the
lidar-derived surface fuel maps or the WASP LWIR-derived
FREDmaps requiring correction.Maps of predicted surface fuel

(Fuelpre) were multiplied with corresponding maps of canopy
cover proportion (cc) generated within matching pixels, by
Eqn 5:

Fuelcc ¼ Fuelpreð1þ ccÞ ð5Þ

to produce maps of canopy-corrected surface fuel, Fuelcc.
Likewise, FREDobs (from Eqn 3) maps were multiplied with

corresponding maps of canopy cover proportion (cc) generated
within matching pixels, by Eqn 6:

FREDcc ¼ FREDobsð1þ ccÞ ð6Þ

to produce maps of canopy-corrected FRED, FREDcc.
The cumulative time that WASP LWIR was imaging the fire

during passes was much less than the time required for the

aircraft to return to the airspace above the fire between passes.
This temporal undersampling of FRFD caused FRED to be
underestimated. Therefore, the proportion of time that WASP

LWIR was not actively imaging the burn block was calculated,
as a correction for temporal undersampling bias.

The spatial extent (and resolution) of the WASP LWIR

image frames depended on the flying height of the aircraft.
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Usually, only part of a large burn block was imaged within each
WASP LWIR frame. Such spatial undersampling missed fire
activity outside the image frame, especially in the larger burn

blocks such as 608A. This resulted in FRFD and FRED being
underestimated upon aggregation to the extent of the entire burn
block. Therefore, the proportion of the burn block not imaged in

eachWASPLWIR framewas calculated and averaged across all
frames as a correction for spatial undersampling bias.

The correction factors for temporal and spatial undersam-

pling biases by WASP LWIR were assumed to be additive, as
applied in Eqn 7 to calculate a corrected FRED (FREDcor):

FREDcor ¼ FREDð1þ ct þ csÞ ð7Þ

where FRED is observed FRED (FREDobs, by Eqn 3) averaged
across the burn block, either with canopy cover correction
(FREDcc, by Eqn 6) in the forest blocks or without in the non-

forest blocks; ct is temporal undersampling proportion and cs is
spatial undersampling proportion.

Predicting fuel consumption from FRED

Predicting fuel consumption fromFRED estimates derived from
the ground-based IR cameras and dual-band radiometers
required estimates of fire radiated fraction and an assumption of

fuelbed heat of consumption. Kremens et al. (2012) estimated
fire radiated fraction from 8� 8-m experimental burn plots in
mixed-oak fuelbeds; the experimental plot fuels included

additions of milled woody fuels and resulted in a large range in
fuel consumption (0.2–3.2 kg m�2). Predicted fuel consumption
(FCpre) was calculated following Reid and Robertson (2012) by
Eqn 8 as follows:

FCpre ¼ FRED=rf =hc ð8Þ

where FRED is either FRED derived from the various IR
validation sensors deployed on the ground or FREDcor derived
from WASP LWIR after applying corrections (Eqns 6,7); rf is

fire radiated fraction (0.13–0.22) as estimated by Kremens et al.
(2012) in mixed-oak fuelbeds; and hc is heat of combustion,
which is assigned a constant value of 17.552 MJ kg�1 and

includes ash, as reported byReid andRobertson (2012),working
in natural longleaf pine savanna and old field fuelbeds, where
the heat of combustion is of similar magnitude.

Results

Surface fuel load

A pre-fire duff load of 1.94 Mg ha�1 at L2F was estimated by
dividing themeasured post-fire duff load of 1.14Mg ha�1 by the

observed proportion of surface fuel consumed at L2F (0.5887)
(Table 3). Adding estimated duff load and consumption in L2F
translated to a 21.9% increase above the pre-fire surface fuel
load and a 26.3% increase above the consumption reported by

Ottmar et al. (2015a) (Table 3).
The response variable, pre-fire surface fuel load, was found

to be significantly non-normal by the Shapiro–Wilk test for

normality (W¼ 0.721, P, 0.0001), so a natural logarithm
transform was applied (W¼ 0.9554, P¼ 0.27 after transforma-
tion). Nine lidar metrics were selected as the best subset of

significant predictors in a multiple linear regression model
(Table 4). Highly collinear predictors were avoided; thus, the
highest Pearson correlation between the nine selected lidar
metrics was 0.6. The model explained 44% of variance in

ln-transformed surface fuel load and was highly significant
(Fig. 1a). Spatial autocorrelation in the model residuals was
found by the Moran’s test to be weak and not significant

(I¼ 1.48, P¼ 0.07). The pattern of model residuals plotted
against the fitted values was random with no trend. The MSE

Table 3. Burn block names, areas and number of pre-fire clip plots (total5 354) used to predict surface fuels from airborne lidar metrics

Estimates of surface fuel load and consumption include estimates of duff load and consumption in the L2F burn block. The last column reports block-level

means of the lidar-derived, overstorey canopy cover grids used to correct maps of surface fuels (Fig. 2) and FRED (Fig. 4) in the forested blocks

Burn block Area (ha) Clip plots included

in fuel model (n)

Observed surface

fuel load (Mg ha�1A)

Observed absolute

consumption (Mg ha�1)

Observed relative

consumption (%)

Mean canopy

cover proportion

703C 668 60 5.35 3.03 56.58 0.250

608A 828 40 5.97 4.68 79.12 0.227

L1G 454 57 2.15 1.54 72.66 0

L2G 127 57 3.57 3.09 85.33 0

L2F 151 65 10.80A 6.36B 58.87C 0.373

S3 2 0D 3.08 2.56 83.15 0

S4 2 0D 2.45 2.04 83.30 0

S5 2 0D 2.82 2.19 77.58 0

S7 2 25 4.11 1.80 43.82 0

S8 2 25 3.64 2.80 77.02 0

S9 2 25 2.42 1.40 57.76 0

AFuel load reported by Ottmar et al. (2015a) (8.86 Mg ha�1) was increased 21.9% to include duff.
BConsumption reported by Ottmar et al. (2015a) (5.03 Mg ha21) was increased 26.3% to include duff.
CSame percentage consumption as reported byOttmar et al. (2015a); consistencywas assumedwhen increasing observed pre-fire fuel load and consumption to

include duff.
DThe S3, S4 and S5 blocks were burned on 1 November 2012, 2 days before the lidar survey; therefore, fuel measures at the 75 clip plots at these three blocks

(see Fig. 2) were excluded from the predictivemodel, whereas the 75 clip plots at blocks S7, S8 and S9 (see Fig. 2) burned on 7 November 2012 were included.
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of the residuals was 0.32, which when substituted into Eqn 1,
yielded a bias correction factor of 1.17 that was multiplied with

the back-transformed predictions. Fig. 1b illustrates back-trans-
formed, bias-corrected predictions vs. observations on the natu-
ral scale, with an RMSE of 3.73. Fig. 2 displays predicted
surface fuel loads and fuel consumption (calculated from

observed relative consumption, Table 3), with the higher fuel
loadings and consumption in the forested blocks, particularly
L2F, as was observed in the field. Surface fuel loads had

accumulated for 3 years in L2F, for 2–3 years in L2G, for 2
years in 703C and 608A and for 1 year in L1G.

The range of fuel predictions was not as broad as the range of

fuel observations made on the ground (Fig. 1). This is a
consequence of the regression modelling approach, which tends
to compress the distribution of predictions towards the mean.
However, bootstrap tests of equivalence rejected the null

hypothesis of dissimilarity (P¼ 0.025), meaning that predic-
tions were similar to observations and were neither biased nor

disproportional (Robinson et al. 2005). Moreover, fuel load and
consumption predictions when aggregated to the burn block
level compared favourably with observations, especially after
correcting for canopy cover occlusion in the three forested

blocks (Figs 2, 3). Percentage canopy cover calculated from
the airborne lidar returns above breast height (mean¼ 44%,
s.d.¼ 20%) compared well with field measures of overstorey

canopy closure (mean¼ 43%, s.d.¼ 22%) collected pre-fire at
the L2F clip plots (n¼ 60) using a spherical densiometer held at
breast height (Pearson correlation r¼ 0.60, P,0.0001). As the

gridded lidar measures of canopy cover (Table 3) were based on
many orders of magnitude more data collected across the entire
burn blocks, they were used to correct the surface fuel maps for
canopy occlusion in a spatially explicit manner (Fig. 2).

Table 4. Multiple linear regressionmodel predicting surface fuel loads (ln-transformed) fromnine selected lidar

metrics

Lidar predictor Estimate Std. Error t-value Pr (.|t|) Significance

(Intercept) 2.141 0.315 6.789 4.96e–11 ***

Mean (0–2 m) �1.767 0.780 �2.266 0.024 *

Kurtosis (0–2 m) 0.003 0.001 2.261 0.024 *

Mode (0–0.05 m) �4.772 2.327 �2.051 0.041 *

Proportion (0–0.05 m) �1.779 0.242 �7.355 1.41e–12 ***

Proportion (0.05–0.15 m) �1.777 0.308 �5.763 1.84e–08 ***

s.d. (0.05–0.15 m) 23.838 8.616 2.767 0.006 **

c.v. (0.15–0.50 m) 0.575 0.210 2.743 0.006 **

s.d. (0.5–1 m) 1.507 0.677 2.225 0.027 *

s.d. (1–2 m) 0.988 0.368 2.687 0.008 **
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Fire radiative energy density

The FRED maps in the three forested blocks were corrected for
overstorey occlusion with the same lidar-derived, canopy cover

metric as the surface fuel maps. The broader spatial patterns

evident in the FRED maps of the 608A and L2F burn blocks
(Fig. 4) relate reasonably well to the greater patchiness in fuel

conditions in these blocks (Fig. 2). However, the more obvious
pattern in the FRED images is the apparent parallel firelines,
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Fig. 2. Pre-fire surface fuels mapped across the extent of the 2011 and 2012 lidar collections based on the

predictivemodels in Fig. 1 and lidarmetrics in Table 4. See fig. 1 in Ottmar et al. (2015a, 2015b) for the locations of

these burn blocks within Eglin AFB. Correction for overstorey canopy occlusion in the forested areas has been

applied.
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which are an artefact of temporal undersampling (Fig. 4). The

blue voids between the apparent firelines are typically not actual
voids in surface fuel loads but ‘blind spots’ where the aircraft
was outside the airspace above the burn block when flame fronts
spread through them (Fig. 4). They are most apparent in the L1G

block where fuel loads were lightest (Ottmar et al. 2015a) and
the fire residence time and cooling period in a given pixel was
least (O’Brien et al. 2015). The opposite extreme can be

observed in the apparent lack of firelines throughoutmuch of the
L2F block, where surface fuel loads were heaviest and fire
residence times and cooling periods were longest (Fig. 4). In the

703C and 608A blocks, patterns of FRFD (not shown) and
FRED (Fig. 4) reflect numerous, simultaneous aerial ignitions
from a helicopter.

The more localised effect of the moving fireline on FRFD
sampling intervals is illustrated in Fig. 5, comparing imagery
between airborne WASP LWIR and nadir-viewing IR cameras
deployed on the ground. The nadir IR cameras locatedwithin the

HIPs imaged a restricted but fixed field of view continuously at
1- to 6-s intervals (depending on camera used). Thus, the data are
not temporally undersampled like WASP LWIR. For instance,

of the 10 HIPs with coincident nadir IR camera and WASP

LWIR measures of FRFD, WASP LWIR captured peak FRFD

only twice (608A HIP SE, L1G HIP 2) (Fig. 5).
Spatial undersampling was a smaller source of bias than

temporal undersampling in the 2012 burn blocks but was a larger
source for the especially large 608A block burned in 2011

(Table 2). Because the aircraft pilot sought to maximise cover-
age of the fire with each pass, the centre of the burn blocks was
more frequently imaged than some of the edges parallel to the

flight path.

Relationship between fuel consumption and FRED

Thermal radiation sensors on the ground provided a means to
validate the estimates of FRED generated from WASP LWIR,

but without temporal and spatial undersampling. Predictions of
fuel consumption based on observations of FRED and Eqn 8
facilitated more direct comparison between ground-based
sensor types and WASP LWIR, on whether predictions and

observations deviated from a 1 : 1 relationship (Fig. 6).
Compared with observed consumption, consumption calculated
from FRED at midpoint radiated fraction (Kremens et al.

2012) was under-predicted from the orange box radiometers
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Fig. 4. FRED estimated from WASP LWIR-derived FRFD image time series collected across the extent of the

2011 and 2012 large burn blocks. See fig. 1 in Ottmar et al. (2015a, 2015b) for the locations of these burn blocks

within Eglin AFB. Correction for overstorey canopy occlusion in the forested blocks has been applied.
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(mean difference¼ 1.37Mg ha�1, s.d.¼ 1.43Mg ha�1), nadir IR

cameras (mean difference¼ 1.42Mg ha�1, s.d.¼ 1.27Mg ha�1),
and oblique IR cameras (mean difference¼ 1.13 Mg ha�1,
s.d.¼ 0.40Mg ha�1) (Fig. 6a–c). It is worth noting that variation

among the six small (2 ha) non-forested burn blocks imaged by
the oblique IR cameras (Fig. 6c) is small because by design these

were replicate burns with little variation in surface fuels among

them (Ottmar et al. 2015a). Consumption predicted from pocket
radiometers was closest of all sensors to a 1 : 1 relationship with
measured consumption (Fig. 6d ), with the mean difference

between observed and predicted fuel consumption only
0.06 Mg ha�1 (s.d.¼ 1.06 Mg ha�1). WASP-derived FRED
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under-predicted consumption compared with observations, with
the notable exception of the L2F burn block (Fig. 6e). Excluding
L2F, the mean difference between observed and predicted

consumption from among the other four large burn blocks was
1.57Mg ha�1 (s.d.¼ 0.61Mg ha�1), or similar to the orange box
radiometers and nadir and oblique IR cameras. The small mean

difference between observed and predicted consumption from
the pocket radiometers significantly differed from the larger
mean differences calculated from the other sensor types,

according to nonparametric Wilcoxon rank sum tests (P, 0.01
in all cases). Because the L2F burn block imaged by WASP
LWIR was such an outlier, it also was excluded from a simple
linear regression fit across all sensor types (Fig. 6f).We attribute

the relatively high FRED values from the L2F block (Fig. 4) to
greater woody and duff fuels observed in this unit, which may
have been undersampled and which burn with much longer fire

residence times than the fine fuels that predominated in other
burn blocks. Indeed, ‘virtual’ firelines due to temporal under-
sampling are not as apparent in L2F as in the other large burn

blocks (Fig. 4).

Discussion

We defined vertical height strata that are unusually narrow,
withinwhichmeasures of height variability (s.d., c.v.) and return
density (proportion) emerged as the best predictors of surface

fuel loads (Table 4). During preliminary analysis, we found the
3rd-order (skewness) and 4th-order (kurtosis) moments of the
height distribution calculated within such narrowly defined

height strata to not be useful, whereas the kurtosis metric cal-
culated from the full 0–2-m height range of consideration was a
significant predictor (Table 4).

To our knowledge, this paper is the first to predict surface
fuel loads from airborne lidar metrics, including under forest
canopies (Figs 1–3). Terrestrial lidar has been used to charac-
terise surface fuel cells beneath longleaf pine canopies at the

finer (,1 m) scales that drive fire behaviour (Hiers et al. 2009;
Loudermilk et al. 2009, 2012). Attempts to predict fine fuel
loads from terrestrial lidar also are thwarted by occlusion

problems, but may be feasible from terrestrial lidar scanned
obliquely from a boom lift (Rowell and Seielstad 2015), like the
oblique-viewing IR camera imagery of the small burn blocks

(O’Brien et al. 2015) considered in this analysis.
By design, the clip plots where fuels were measured were

widely separated in space within sample units to avoid spatial

autocorrelation and consequently pseudoreplication. As shown
in Fig. 2, the spatial extent covered by the clip plot locations
within the sample units varied greatly but was in proportion to
the highly variable area of the sample units themselves. The

effective sampling area within sample units varied from 0.04 ha
in the 2012HIPs (n¼ 9), to 0.16 ha in the 2011HIPs (n¼ 5), 2 ha
in the 2012 small burn blocks (n¼ 6) and,19 ha covered by the

three parallel transects within the 2012 large burn blocks (n¼ 3)
(see Ottmar et al. 2015a for details). By pooling the surface fuel
data from all the pre-fire clip plots, we treated them as indepen-

dent observations in the predictive model. Spatial autocorrela-
tion in the model errors would have constituted evidence for
pseudoreplication. Although the Moran’s test did find evidence
of weak spatial autocorrelation in the residuals, it was not

significant (I¼ 1.48, P¼ 0.07). Therefore, adding a spatial
autoregressive component to the linear model, as exemplified
by Lewis et al. (2011) to predict surface fuel depth and

percentage fuel consumption in Alaska, would have been very
computationally demanding but for little profit in terms of
increased predictive power or accuracy.

Local accuracy in both the maps of surface fuels predicted
from lidar (Fig. 2) andmaps of FREDobserved byWASPLWIR
(Fig. 4) was admittedly poor, as indicated by the significant but

noisy relationship (not shown) between these mapped response
variables at the radiometer locations (Spearman rank correla-
tion, r̂¼ 0.50, P, 0.001). This is not surprising, given the high
heterogeneity in longleaf pine forest surface fuels shown by

previous studies (Hiers et al. 2009; Loudermilk et al. 2009,
2012) to occur at finer scales than the 5-m resolution of our fuels
map. Therefore, we chose to focus this paper on the sample

unit level instead of using spatially explicit comparisons to
evaluate whether we could develop reasonable corrections for
overstorey canopy occlusion of the lidar and LWIR signals

from the ground, and temporal and spatial undersampling by
WASP LWIR.

Fire radiated fraction (Eqn 8) is a critical parameter used to

estimate fuel consumption from fire radiation measurements.
Despite its importance, few studies have provided estimates of
fire radiated fraction or explored whether and why it might vary.
The few measurements of fire radiated fraction that have been

conducted in a range of wildland fuels are similar to those we
used (range of 13–22%, fromKremens et al. 2012). For instance,
Freeborn et al. (2011) and Wooster et al. (2005) report average

fire radiated fractions of 11% and 14%, respectively, for a range
of grass and forest fuels (recalculated on a moisture- and ash-
free basis, Kremens et al. 2012).Wooster et al. (2005) found that

fire radiated fraction increased with fuel consumption whereas
Kremens et al. (2012) found no linear relationship between fire
radiated fraction and fireline intensity (kW m�1) or fuel con-
sumed. Smith et al. (2013) reported an average fire radiated

fraction of 15% that declined with fuel moisture, a variable
reported by Ottmar et al. (2015a) but not considered in our
consumption predictions, which may partially explain our

tendency to underpredict consumption (Fig. 6). Clearly, the fire
radiated fraction and fuel moisture variables require more
attention.

The proportion of the burn block where FRFD values.1070
Wm�2were never observedwas also calculated as a thirdway to
quantify fire activity that may have been missed. We did not

correct for this third potential source of undersampling bias
because it could overestimate FRED, as if the ground were
wholly covered by a continuous surface fuelbed. A large
proportion of the ground cover in the burn blocks was exposed

mineral soil devoid of fuel. In fact, mineral soil was ocularly
estimated in 2012 before the fires at 30 distributed post-fire clip
plots per large burn block, and averaged 57.6% at L1G, 35.7% at

L2G and 15.7% at L2F, in inverse proportion to pre-fire litter
cover, which averaged 35.0% at L1G, 49.3% at L2G and 76.3%
at L2F. These numbers reflect the time elapsed since previous

burns: 1 year (L1G), 2–3 years (L2G) and 3 years (L2F).
However, the continuity of the fuelbed was most conducive to
fire spread in L2G among the large burn blocks, whereas the
distribution of fuels in L1G would be best described as sparse,
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and in L2F as very patchy. Given the complex distribution of
surface fuels both between and within burn blocks, we made no
attempt to account for fuel heterogeneity in this first analysis.

Further, we did not attempt to account for variation in fuelbed
components, but note here that consumption was dominated by
the herbaceous component in the non-forest burn blocks and by

the litter component in the forest blocks (Ottmar et al. 2015a).

Conclusions

This study is the first to predict fine surface fuel loads from
airborne lidar metrics at the landscape level of prescribed fires.
Riggan et al. (2004) estimated similar values of FRED from

airborne FRFD observations at comparable spatial scales, but
this study is the first to estimate FRED at the landscape scale
from airborne FRFD time series collected over the full duration

of the fires. The relationships between observed fuel con-
sumption and consumption predicted from FRED approach
linearity when compared across burn blocks and sensor types

(Fig. 6), thus corroborating the 1 : 1 relationship between bio-
mass combusted and FRE as found by Wooster et al. (2005) on
small-scale experimental fires, and as expected by theory.

Future analyses will consider spatially explicit improve-
ments for mapping these variables. For instance, one could
use the known rate of fire spread (Butler et al. 2015), substitute
space for time at the fire front observed by WASP, and use the

pixels behind the fireline to represent a cooling curve, assuming
uniform fuels. The surface fuels map might help to impute peak
FRFD or FRED observations at the pixel level to fill in the

sampling voids between apparent firelines, or geostatistical
interpolation methods such as kriging could be used to fill in
the gaps. Such fuel mapsmay also serve as useful inputs into fire

behaviour models. Other datasets could also be integrated into
future analyses, such as the terrestrial lidar data (Rowell and
Seielstad 2015) collected across the small burn blocks and at the
large burn block HIPs. We intend to make the various raw, pre-

processed and final field and map data products publicly
available on the USFS Research Data Archive to facilitate
new fire model development and further fundamental fire

science research.
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