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Abstract. Eglin Air Force Base (AFB) in Florida, in the United States, conserves a large reservoir of native longleaf pine (Pinus
palustris Mill.) stands that land managers maintain by using frequent fires. We predicted tree density, basal area, and dominant
tree species from 195 forest inventory plots, low-density airborne LiDAR, and Landsat data available across the entirety of Eglin
AFB. We used the Random Forests (RF) machine learning algorithm to predict the 3 overstory responses via univariate regression
or classification, or multivariate k-NN imputation. Ten predictor variables explained ∼ 50% of variation and were used in all
models. Model accuracy and precision statistics were similar among the various RF approaches, so we chose the imputation
approach for its advantage of allowing prediction of the ancillary plot attributes of surface fuels and ground cover plant species
richness. Maps of the 3 overstory response variables and ancillary attributes were imputed at 30-m resolution and then aggregated
to the management block level, where they were significantly correlated with each other and with fire history variables summarized
from independent data. We conclude that functional relationships among overstory structure, surface fuels, species richness, and
fire history emerge and become more apparent at the block level where management decisions are made.

Résumé. Eglin Air Force Base (AFB) en Floride, aux États-Unis, possède un grand réservoir de peuplements de pins des marais
(Pinus palustris Mill.) indigènes que les gestionnaires des terres entretiennent en utilisant des feux fréquents. Nous avons prédit
la densité des arbres, la surface terrière et les espèces dominantes d’arbres à partir de 195 parcelles d’inventaire forestier, du
LiDAR aéroporté à basse densité et de données Landsat disponibles dans l’ensemble d’Eglin AFB. Nous avons utilisé l’algorithme
d’apprentissage automatique des forêts aléatoires « Random Forests » (RF) pour prédire les 3 réponses de l’étage supérieur
par régression ou classification unidimensionnelles, ou par une imputation k-NN multidimensionnelle. Dix variables prédictives
expliquent environ 50 % de la variabilité et ont été utilisées dans tous les modèles. La précision du modèle et les statistiques
de précision ont été similaires entre les différentes approches FA, nous avons donc choisi l’approche d’imputation, car elle a
l’avantage de permettre la prédiction des attributs auxiliaires des parcelles telles que les combustibles de surface et la richesse des
espèces de plantes couvre-sol. Les cartes des 3 variables réponses de l’étage supérieur et les attributs auxiliaires ont été imputés à
30 m de résolution et ensuite agrégés au niveau du bloc de gestion, où ils étaient significativement corrélés les uns avec les autres
et avec les variables de l’historique des feux synthétisées à partir de données indépendantes. Nous concluons que les relations
fonctionnelles entre la structure de l’étage supérieur, les combustibles de surface, la richesse des espèces, et l’historique des feux
émergent et deviennent plus apparentes au niveau du bloc où les décisions de gestion sont prises.

INTRODUCTION

Longleaf Pine Ecology
Native longleaf pine (Pinus palustris Mill.) forests of the

southeastern United States are dependent on fire for healthy
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ecosystem structure and function (O’Brien et al. 2008). Fre-
quent fire (fire return intervals are 1 year–10 years; Christensen
1981, 1988; Glitzenstein et al. 1995) arrests encroachment of
understory shrubs to maintain a healthy overstory, prevents accu-
mulation of surface fuels and duff to expose mineral soil and thus
promote tree recruitment (Mitchell et al. 2006; Mitchell et al.
2009), and sustains an exceptionally diverse understory flora
(Kirkman et al. 2001; Iacona et al. 2010). Although longleaf
pine forest overstories are often monospecific, understory and
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ground cover plant species can number up to 50 per square me-
ter, making longleaf pine forests a biodiversity hotspot (Mitchell
et al. 2006; Palmquist et al. 2014).

A policy of fire exclusion provides a competitive advantage to
fire-averse tree species that compete with and eventually replace
longleaf pine in the absence of fire. This factor, coupled with
extensive logging in the 19th century for dense, high-quality
longleaf pine wood, have reduced formerly widespread longleaf
pine forests to < 5% of their historic range (Frost 1993; Noss
et al. 1995). Some of the largest remnant stands of longleaf pine
can be found on Eglin Air Force Base (AFB) in the Florida
Panhandle. Eglin AFB managers use fire as the principal tool to
maintain longleaf pine stand structure and health, usually using
prescribed fire, but also by incorporating wildfires into their
operational fire program goal of burning 36,500 ha of longleaf
pine forest per year (Williams 2012).

Longleaf pine grows slowly as it establishes during the grass
seedling stage, and after the brief period when it bolts to escape
the flame zone (Platt et al. 1988). Longleaf pine trees growing in
the poor, sandy soils at Eglin AFB can obtain a maximum height
of ∼ 25 m in ∼ 50 years but can continue slow lateral growth for
hundreds of years. Trees might be randomly distributed (Platt
et al. 1988; Gelfand et al. 2010) but can also be observed to
clump and form gaps, where saw palmetto (Serenoa repens),
turkey oak (Quercus cerris L.), and other oaks, broadleaf trees,
and shrubs are more likely to establish. There is little understory
growth in healthy, fire-maintained longleaf pine forests; how-
ever, forest undergrowth thickens after years of fire exclusion,
resulting in succession to other forest types less valued by Eglin
AFB managers.

Predictive Modeling
Airborne scanning light detection and ranging (LiDAR) is

the preferred remote sensing technology for mapping forest
canopy structure (Lefsky et al. 2001, 2002; Næsset 2002, 2004;
Popescu et al. 2003; Dean et al. 2009; Lee et al. 2010), be-
cause 2-dimensional optical data tend to lose sensitivity to for-
est structure variation in dense forest conditions (Lefsky et al.
1999; Harding et al. 2001; Hudak et al. 2006). Because LiDAR
data are 3-dimensional, forest canopy height measures can be
derived directly from LiDAR point cloud data. Provided the
LiDAR collection has been ground calibrated by the vendor,
as is customary, canopy height measures derived from LiDAR
after normalizing for topography do not require field height
measures for calibration. Canopy cover and density are 2 other
forest structure attributes that can be calculated from the LiDAR
data without field calibration data. Canopy cover is calculated as
the number of LiDAR first returns above a given height thresh-
old, divided by the total number of first returns. Canopy density
is calculated as the same ratio but based on all (not just first)
returns.

LiDAR processing for forest inventory applications usually
entails reducing the 3-dimensional distribution of canopy el-
ements captured in the LiDAR point cloud data to statistical

metrics of canopy height and density that can serve as more
digestible inputs into predictive models. By calculating these
metrics within defined areas, such as fixed-radius plots, the Li-
DAR metrics can serve as predictor variables to be empirically
related to traditional forest structure attributes that serve as the
response variables of interest. The area-based approach to forest
inventory, using LiDAR, has been demonstrated in many studies
(Lim et al. 2003; Hyyppä et al. 2008; Hollaus et al. 2009; Koch
et al. 2009; Wulder et al. 2012; Hudak et al. 2008).

Many predictive modeling methods exist, including regres-
sion and k nearest neighbor (kNN) imputation (Eskelson et al.
2009). In this study, we used Random Forests (RF), a machine
learning algorithm developed by Breiman (2001) and imple-
mented by Liaw and Wiener (2002) and Crookston and Finley
(2008) in R packages (R Core Team 2013). By bootstrapping
through various predictor variable combinations while randomly
withholding 1/3 of the data in an out-of-bag sample, the RF
algorithm randomly generates a forest of classification and re-
gression trees (CART) to predict a given response variable. Both
continuous and categorical variables can be predicted using RF,
which compares well with other predictive modeling methods
(Hudak et al. 2008, 2009; Latifi and Koch 2012; Hayashi et al.
2015).

Objectives
Overstory structure will change slowly in response to multi-

ple fires over many years, whereas surface fuel conditions are
highly dynamic at fine temporal and spatial scales. Therefore,
our conceptual approach was to map the relatively static over-
story structure and composition that constrains comparatively
dynamic surface fuel patterns and fire processes at finer scales.

Our goal was to apply airborne LiDAR and proven area-based
modeling methods to map 3 overstory response variables of ben-
efit to Eglin AFB managers. The first response, tree density mea-
sured in number of trees per hectare (TPH), determines compe-
tition among trees, constrains the understory environment, and
is a principal determinant of habitat selection by wildlife such
as Red-cockaded Woodpeckers (Smart et al. 2012). The second
response, plot-level basal area (BA), is a standard forestry at-
tribute, used for timber management and planning. The third
response, a categorical variable indicating forest composition,
was dominant species (DomSpp), defined as the tree species
having the most basal area within the plot.

Our first objective was to apply the RF method to predict
these 3 responses, using 3 independent, univariate models and a
single, multivariate k-NN imputation model. Our second objec-
tive was to evaluate the alternative RF models and then apply a
single modeling approach to map the 3 responses across Eglin
AFB. Our third objective was to summarize the 3 mapped over-
story responses and associated surface fuel and species richness
measures at the management block (i.e., stand) level and to com-
pare them to historical fire management records summarized at
the same level, in order to reveal functional relationships. We
hypothesized that the effects of management interventions as re-
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FIG. 1. Eglin Air Force Base study area in the Florida Panhandle, United States.

vealed through such functional relationships should emerge and
be most apparent at the same scale at which the management
actions are applied.

METHODS

Study Area
Eglin AFB covers 186,350 ha in the flat Gulf Coastal Plain

of the Florida Panhandle, in the United States (Figure 1). Cli-
mate is subtropical with mean annual temperature of 19.8 ◦C
and mean annual precipitation of 158 cm. Most rain falls from
June through September, and the sandy soils are well-drained
deposits of Quartzipsamments of the Lakeland series (Overing
et al. 1995). The sandhills at Eglin AFB fall under the high pine
characterization by Myers (1990), referring to the hilly undu-
lating xeric terrain dominated by an open longleaf pine (Pinus
palustris) canopy with a hardwood midstory made up of turkey
oak (Quercus laevis), bluejack oak (Q. incana), and persimmon
(Diospyros virginiana). Flatwoods at Eglin AFB are charac-
terized by flat topography with mesic, poorly drained soils as
described by Abrahamson and Hartnett (1990). Overstory is
dominated by longleaf pine with a midstory and an understory
dominated by saw palmetto (Serenoa repens), dwarf live oak
(Quercus minima), and gallberry (Ilex glabra).

Eglin AFB managers consider longleaf pine “reference”
stand conditions most desirable because of their characteris-
tically open understories, maintained by frequent prescribed
fires and conducive to military training exercises. Less desir-
able stand conditions are termed “restoration” stands and are in
need of mechanical treatment, a management intervention more
intensive and expensive than prescribed fire. Restoring longleaf
pine stands to reference conditions is a long-term management
goal and was a primary justification for establishing monitoring
plots (Hiers et al. 2007).

Plot Data
Eglin AFB monitors vegetation status at 201 monitoring

plots randomly located across the base as described in Hiers
et al. (2007). Plots were established in 2001 to be monitored
each summer following management treatments that included
prescribed fire, herbicide, and harvesting. All overstory trees
>10 cm diameter at breast height (DBH; 1.37 m) were stem
mapped within a 61-m x 106-m (0.65 ha) rectangular plot.
The 4 corners were geolocated to within 5 m without differ-
ential correction using Trimble Nomads connected to SXBlue
receivers. Trees were tallied and stem mapped in all but 6 plots
situated in plantations, so these 6 plots were dropped from con-
sideration, leaving 195 for analysis. We assessed the spatial
pattern and scale of tree stems mapped within plots in ref-
erence and restoration stands of predominantly longleaf pine
using Ripley’s L statistic (Clark and Evans 1954), using the
“splancs” package (Bivand et al. 2014) in R (R Core Team
2013).

Surface fuels were sampled nondestructively along 2 parallel
50-m Brown’s transects situated north and south of plot center
as described in Hiers et al. (2007). Measures at each meter in-
cluded: counts of 1-hr, 10-hr, 100-hr, and 1000-hr fuels (the time
lag for 2/3 of the fuel to dry in response to atmospheric moisture,
which increases with fuel size), where 1-hr and 10-hr fuels were
subsampled along the north 50 m of the transect; duff, litter, and
fuelbed depths averaged from 10 measures along the 100-m of
both north and south transects; percent cover of the litter com-
ponents: oak, conifer (long and short needle), grasses, forbs,
shrubs, saw palmetto, and bare mineral soil. Ground cover plant
species richness data were collected in 8 1-m2 square subplots
systematically located within a 20-m x 20-m area immediately
west of plot center. Wherever repeat measures of trees or other
attributes existed, only the most recent measures were used (Ta-
ble 1), which varied by plot from 2003–2012.
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TABLE 1
Plot-level overstory tree, surface fuel, and plant species richness summary statistics

Attributes Minimum Maximum Mean Standard Deviation

Tree density (trees ha−1) 0.00 433.50 120.87 80.66
Basal area (m2 ha−1) 0.00 20.49 6.19 4.46
1-hr (counts) 0.00 3306.00 107.30 259.62
10-hr (counts) 0.00 466.00 27.48 43.80
100-hr (counts) 0.00 217.00 12.78 21.27
1000-hr (counts) 0.00 38.00 4.07 5.89
Litter depth (cm) 0.12 3.86 1.13 0.73
Duff depth (cm) 0.00 3.30 0.48 0.63
Fuelbed depth (cm) 2.58 54.85 20.58 10.55
Oak litter cover (%) 0.00 95.00 39.11 24.81
Long-needle conifer litter cover (%) 0.00 99.00 46.97 25.77
Short-needle conifer litter cover (%) 0.00 95.00 14.50 24.48
Grass litter cover (%) 0.00 47.00 9.92 11.82
Forb litter cover (%) 0.00 38.00 7.42 8.08
Shrub litter cover (%) 0.00 69.00 7.17 9.72
Saw palmetto litter cover (%) 0.00 21.00 1.46 3.14
Mineral soil cover (%) 0.00 71.00 22.62 18.21
Plant-species richness (species m−2) 0.13 13.50 6.52 2.32

LiDAR Data
LiDAR data collected circa 2006 and 2008 were downloaded

from a public archive1 with files organized at the county level;
620 tiles in .las format that ranged from 225 ha–625 ha in area
were processed to cover the entirety of Eglin AFB, which spans
portions of 3 counties (Fig. 1; Table 2).

Binary .las files were processed using LAStools (Isenburg
2015). The “lasground” utility was used to classify returns as
ground or nonground, and normalize Z values of absolute ele-
vation to Z values of height above ground for each return. The
“blast2dem” tool was used to create a 2-m digital terrain model
(DTM) across Eglin AFB. The proportion of classified ground
returns in Santa Rosa County was 3 to 4 times greater than that
in the 2 other counties, so the “lasthin” tool was used to reduce
the ground return density in Santa Rosa County by a factor of
3 to 4 to match the proportion of ground returns in neighboring
Okaloosa County (Figure 1), which, if not remedied, would lead
to an artifact in the subsequent canopy density metrics along the
Santa Rosa–Okaloosa County line. Canopy height and density
metrics were calculated from all returns using the “lascanopy”
utility (Table 3). Using the “lasclip” utility, canopy height and
density metrics were calculated within the rectangular plot foot-
prints for training and testing the RF models. Grids of the same
metrics were created at a 30-m x 30-m binning resolution for
mapping.

1http://www.nwfwmdlidar.com/

Rumple, a measure of canopy surface rugosity or roughness,
is defined as the ratio of canopy surface area over the underlying
ground area, and has been demonstrated to be a useful measure
of forest canopy structure (Parker et al. 2004; Kane et al. 2010).
Because the resolution of some of the LiDAR collections was
low, we created a grid of rumple across Eglin AFB from a 5-m
canopy height model (CHM), generated with the “lascanopy”
tool of LAStools, and then used the “GridSurfaceStats” tool
within the FUSION software package to calculate rumple at
30-m resolution (McGaughey 2015). The GridSurfaceStats tool
creates a canopy surface by deriving a triangular irregular net-
work (TIN) from the input CHM.

Ancillary Data
Landsat Thematic Mapper (TM) surface reflectance imagery

of Eglin AFB (Path 20, Row 39) from January 21 and July
15, 2008, was downloaded.2 Normalized Difference Vegetation
Index (NDVI) and middle-infrared corrected NDVI (NDVIc;
Nemani et al. 1993) images were created for each date. NDVIc
is defined as

NIR − Red

NIR + Red
×

[
1 − (MIR − MIRmin)

(MIRmax + MIRmin)

]
,

where Red is the red band (Landsat TM band 3), NIR is
the near-infrared band (Landsat TM band 4), and MIR is the
middle-infrared band (Landsat TM band 5). Incorporation of the

2http://earthexplorer.usgs.gov/
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TABLE 2
LiDAR data acquisition specifications in the 3 counties spanned by Eglin AFB

Acquisition Area
Acquisition

Time
Horizontal
Accuracy

Vertical
Accuracy Sensor Contractor

Mean Return
Density (points

m−2)

Santa Rosa Jan, Feb. 2006 Not available RMSE 18.5 cm Leica ALS-50 Photo Science,
Inc.

0.5

Okaloosa Inland Feb. 2008 1 m RMSE or
better

RMSE 15 cm Leica ALS50-II
MPiA

EarthData
International,
Inc.

1.3

Okaloosa
Coastal

Not available Not available Not available Not available Not available 4.7

Walton Jul., Aug. 2006 1 m RMSE 13 cm Not available Sanborn 2.9
Eglin, inside

Walton
Summer 2008 1 m RMSE 15 cm Optech 3100 Sanborn 2.9

middle-infrared band has been found to improve the relation-
ship between NDVI and forest structure (Nemani et al. 1993;
Pocewicz et al. 2004).

Eglin AFB managers provided geographic information sys-
tem (GIS) layers pertinent to our objectives, including past pre-
scribed fire and wildfire boundaries, date of burn, and fuel type.
For burn histories starting in the 1990s, burn-area boundaries
were based on the land management blocks that were prescribe
burned, whereas the boundaries of any prescribed fire escapes,
lightning ignitions, or other wildfires were delineated with a
global positioning system (GPS). For fire records prior to the
1990s, a combination of burn documentation, fire maps, and
Landsat image data (MSS and TM) was used (Laine 2015).
These fire history records (beginning February 1, 1972) were
summarized into 3 GIS layers: number of fire occurrences, num-
ber of years since last burn, and fuel type; in areas where no
burns were recorded, a value of 50 was assigned as the num-
ber of years since last burn. A polygon layer was also provided
to enable comparisons, at the management block level, among
these fire/fuel variables, the mapped overstory responses, and
the surface fuel variables associated with the overstory variables
at the plot level. The size of the management blocks (n = 425)
averaged 439 ha and ranged from 0.48 ha to 3,872 ha.

Analysis
Overview

Plot-level LiDAR metrics (predictor variables) were asso-
ciated with the plot-level TPH, BA, and DomSpp attributes
(response variables) at all 195 inventory plots. These data were
randomly divided into training and testing datasets compris-
ing 2/3 and 1/3 of the data, respectively. The testing dataset
was reserved to evaluate all predictive RF models built from the
training dataset. Based on this evaluation, the best RF model was
used with all available plot data to generate predictive maps.

Predictive Modeling
The RF algorithm implemented in the RandomForest pack-

age of R (R Core Team 2013) can operate in either regression
or classification mode to predict either continuous or categori-
cal variables, respectively. For each of 3 response variables, a
preliminary set of predictor variables was selected based on the
Model Improvement Ratio (MIR), which is a scaled measure
of the percent increase in mean square error used by the RF
algorithm to assign importance values to predictor variables.
The MIR variable selection tool (Evans 2015) iterates through
randomly selected predictor variable combinations to identify
the best suite of predictors for the given response (Evans and
Cushman 2009; Evans et al. 2011; Murphy et al. 2010). The
maximum Pearson correlation allowed between any 2 selected
LiDAR metrics was 0.85. In cases when 2 candidate metrics
exceeded r = 0.85, the metric having the lesser importance
value was excluded from consideration. The 3 preliminary sets
of selected variables were then concatenated into a single list
of candidate predictors to consider for simultaneous imputa-
tion of all 3 responses, using the RF nearest neighbor selection
method implemented in the k-NN imputation package, “yaIm-
pute” (Crookston and Finley 2008) available in R (R Core Team
2013). By concatenating the random forests generated by the
RF algorithm (n = 500 by default) for each response and then
tallying nodes per variable across all random forests, a distri-
bution of variable importance measures was derived. A final
set of predictors with consistently higher importance was then
selected for use in all models.

Model Evaluation
Univariate RF regression models predicting TPH or BA were

evaluated for precision with root mean squared error (RMSE)
and for accuracy with mean bias error (MBE). The RF classi-
fication model predicting DomSpp was evaluated with a con-
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TABLE 3
Description of LiDAR metrics and Landsat indices considered
as predictor variables; selected variables indicated in boldface

Metric Description

min Minimum canopy height
max Maximum canopy height
avg Mean canopy height
std Standard deviation of canopy heights
ske Skewness of canopy height
kur Kurtosis of canopy height
p10 10th percentile of canopy height
p25 25th percentile of canopy height
p50 50th percentile of canopy height
p75 75th percentile of canopy height
p90 90th percentile of canopy height
rum Rumple (surface roughness or rugosity)
cov Percentage of first returns > 1.37 m in

height
dns Percentage of all returns > 1.37 m in

height
d01 Percentage of returns > 1.37 m and < 5 m

in height
d02 Percentage of returns > 5 m and <

10 m in height
d03 Percentage of returns > 10 m and <

20 m in height
d04 Percentage of returns > 20 m and <

30 m in height
NDVI.Jan Normalized Difference Vegetation Index,

21 Jan. 2008
NDVI.Jul Normalized Difference Vegetation Index,

15 Jul. 2008
NDVIc.Jan Middle-infrared corrected NDVI, 21

Jan. 2008
NDVIc.Jul Middle-infrared corrected NDVI, 15 Jul.

2008

fusion matrix and user’s, producer’s, and overall classification
accuracies. The same 3 responses predicted with the multivari-
ate RF k-NN imputation model were all evaluated in the same
manner, with the exception that root mean squared difference
(RMSD) was used instead of RMSE to assess the precision of
the continuous TPH and BA responses. This RMSD statistic is
more appropriate for evaluating imputations when the number
of nearest neighbors (k) is limited to one (as in this study, and
the default in yaImpute), because the imputed prediction is it-
self an observation rather than a unique value, as is the case
with regression predictions (Crookston and Finley 2008; Stage
and Crookston 2007). This causes regression predictions to be
shifted toward the mean and have less variance compared to im-
putations, which preserve the variance in the observations when

k = 1 (McRoberts et al. 2002). As a result, an imputation model
RMSD will be larger than a regression model RMSE, based on
the same input data, when k = 1.

Mapping
The RF modeling approach (i.e., univariate regres-

sion/classification versus imputation) producing the best eval-
uation statistics was chosen to map all 3 responses. All model
evaluation results reported in this article are based on the in-
dependent testing dataset. However, the full dataset based on
all available information was used for mapping responses, in
order to provide more accurate maps for Eglin AFB managers.
Nonforest areas within Eglin AFB were masked in the map;
the nonforest mask was defined as having < 1% canopy cover
greater than breast height (1.37 m), as calculated from the Li-
DAR data.

Map Evaluation
Map cells were summarized at the land management block

(i.e., stand) level by mean or modal value, depending on whether
they were continuous or categorical variables, respectively.
These summary statistics were then compared to 2 surrogates for
fire frequency—number of fire occurrences and years since most
recent fire—and between fuel types. Because many of the data
distributions were not normal but skewed, Spearman rank corre-
lations (ρ) between fire management variables and the mapped
responses, along with surface fuel and species richness attributes
associated with the mapped overstory responses at the inventory
plots, were calculated and evaluated for significance.

RESULTS
Ripley’s L statistic was calculated from plot stem map data

to characterize the spatial pattern of trees in longleaf pine stands
classified as having either reference conditions maintained by
frequent prescribed fires and considered more desirable, or
restoration conditions in need of more intensive management
intervention. Ripley’s L trends comparing reference and restora-
tion conditions showed a similar clustered pattern at distances of
20 m–50 m, with clustering often being a significant departure
from randomness (Figure 2).

There was much overlap between variables selected to inde-
pendently predict TPH, BA, and DomSpp based on the MIR,
and the predictors selected for multivariate k-NN imputation
(Table 3). Therefore, 10 predictors (Table 3) were selected for
use in all RF models in order to standardize the data inputs and
simplify comparison of RF model results. Three metrics—avg,
dns, and p75—had high importance values based on the MIR
but were dropped from consideration because they correlated
highly (r > 0.85) with selected metrics.

The relative RMSD measures of precision for imputing
TPH and BA (49% and 41%, respectively) were slightly larger
than the corresponding RMSE measures from the RF models
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FIG. 2. Ripley’s L summarizing the spatial pattern of trees from 61-m x 106-m (0.65 ha) plots randomly placed within longleaf
pine stands classified by Eglin AFB managers as representing reference (left, n = 35) or restoration (right, n = 93) conditions.
Only plots with a minimum of 20 trees are included.

FIG. 3. Predicted versus observed results using RF models to predict TPH (a, b) or BA (c, d) as either a univariate response in
regression mode (a, c) or via multivariate k-NN imputation (b, d). Models were trained with a random selection of 2/3 of the plot
data (n = 130) and tested with the remaining 1/3 of the plot data (n = 65); these graphs illustrate the testing results. The same 10
predictor variables (Table 3) were used in all models. Solid lines in each graph indicate best linear fit; dashed lines indicate 1:1.
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TABLE 4
Predicted versus observed results using Random Forests to predict DomSpp as (A) a univariate response in RF classification

mode or as (B) one of 3 responses predicted using RF imputation

DomSpp
Black
Tupelo

Slash
Pine

Longleaf
Pine

Sand
Live
Oak

Swamp
Laurel
Oak

Turkey
Oak

Total
Pre-

dicted
User’s

Accuracy (%)
Commission

Error (%)

(A) Univariate response in RF classification mode
Black Tupelo 0 0 0 0 0 0 0 100.0 0.0
Slash Pine 0 0 0 0 0 0 0 100.0 0.0
Longleaf Pine 1 2 46 3 0 0 52 88.5 11.5
Sand Live Oak 0 0 4 0 2 0 6 0.0 100.0
Swamp Laurel Oak 0 0 0 0 0 0 0 100.0 0.0
Turkey Oak 0 1 3 2 0 1 7 14.3 85.7
Total Observed 1 3 53 5 2 1 65
Producer’s Accuracy (%) 0.0 0.0 86.8 0.0 0.0 100.0 Overall Accuracy = 72.3%
Omission Error (%) 100.0 100.0 13.2 100.0 100.0 0.0

(B) One of 3 multivariate responses using RF k-NN imputation (k = 1)
Black Tupelo 0 0 0 0 1 0 1 0.0 100.0
Slash Pine 0 0 2 0 0 0 2 0.0 100.0
Longleaf Pine 1 3 42 3 0 0 49 85.7 14.3
Sand Live Oak 0 0 6 0 1 0 7 0.0 100.0
Swamp Laurel Oak 0 0 2 0 0 1 3 0.0 100.0
Turkey Oak 0 0 1 2 0 0 3 0.0 100.0
Total Observed 1 3 53 5 2 1 65
Producer’s Accuracy (%) 0.0 0.0 79.2 0.0 0.0 0.0 Overall Accuracy = 64.6%
Omission Error (%) 100.0 100.0 20.8 100.0 100.0 100.0

Models were trained with a random selection of 2/3 of the plot data (n = 130) and tested with the remaining 1/3 of the plot data (n = 65); these
tables illustrate the testing results. The same 10 predictor variables (Table 3) were used in all models. Longleaf pine classification accuracy and
errors, of primary interest in this study, are indicated in boldface.

predicting TPH and BA (47% and 39%, respectively) indepen-
dently in regression mode (Figure 3). Based on the relative
MBE statistic, imputed TPH (−10.5%) was less accurate than
TPH predicted via RF regression (−4.4%), while imputed BA
was only slightly more accurate (relative MBE: −4.4%) than
BA predicted via RF regression (relative MBE: −4.5%; Fig-
ure 3). With regard to the DomSpp categorical response, overall
classification accuracy was somewhat higher if predicted by
RF as a univariate response in classification mode (72%) than
by imputation (65%) (Table 4). Similarly, classification of lon-
gleaf pine, the tree species of interest, was slightly more accu-
rate by univariate classification (87%–88%) than by imputation
(79%–86%).

Based on the similarity in these RF model results and for the
sake of utility, we chose the imputation model in order to pre-
serve the covariance relationships among the response variables
and other plot attributes of interest to managers. The imputed
maps illustrated in Figure 4 have RMSD and MBE statistics of
57.7 and −8.8 for imputing TPH and 2.45 and −0.26 for im-
puting BA. The overall accuracy of the imputed DomSpp map

is 75%, with user’s accuracy of 82.7% and producer’s accuracy
of 89.3% for classifying longleaf pine. Because these statistics
are based on all plot data (i.e., training and testing datasets com-
bined), they show an expected (but not dramatic) improvement
over the more conservative evaluation of the models trained from
2/3 of the plot data and tested against the other 1/3 (Figure 3,
Table 4).

Plot ID was imputed as an ancillary variable (Figure 4d).
Since k was set equal to 1 in this analysis, plot ID as a cate-
gorical variable could be mapped by virtue of its association
with the nearest neighbor plot having the most similar multi-
variate association of TPH, BA, and DomSpp responses and
their relationship to the combination of 10 LiDAR predictors
collectively weighting the model. Although plot ID had no
weight in the model, stand-level patterns are still evident in
Figure 4d, as in Figures 4a–c, because of the greater similar-
ity in overstory canopy structure within stands than between
stands, making imputation of the same nearest neighbor plots
more likely locally, even though the model makes no accounting
for spatial dependency between adjacent map cells.
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FIG. 4. Imputations of (a) TPH, (b) BA, and (c) DomSpp from airborne LiDAR across Eglin AFB, and (d) Plot ID imputed as an
ancillary variable (i.e., having no weight in the model). This model used for mapping was based on all plots (n = 195) and the
same 10 predictor variables (Table 3) for all RF models.

Plot-level surface fuel and species richness measures were
mapped by association with the imputed Plot ID map (Fig-
ure 4d). All mapped continuous variables were averaged by
land management block (n = 425) and compared to explore
functional relationships. Maps of plant-species richness and
duff depth are illustrated as examples (Figure 5a–b) and were,
themselves, highly correlated (Spearman ρ = −0.81). The TPH
and BA overstory responses were compared to 2 indicators of
fire frequency: number of fires and years since last fire (Fig-
ure 5c–d), which were, themselves, highly correlated (Spear-

man ρ = −0.86). The relationships shown in Figure 6 have
highly significant correlations but do not reveal any underlying
mechanisms.

Besides duff depth (Figure 5b), many other surface fuel at-
tributes were significantly correlated with TPH and BA, as well
as the fire frequency indicators (Table 5). Although the signifi-
cant correlations indicate potentially meaningful relationships,
the functional form of these relationships is revealed only on
viewing scatterplots. For example, the variables underlying 4
of the stronger correlations in Table 5 are plotted in Figure 7.
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FIG. 5. (a) Plant-species richness and (b) duff depth related to the imputed overstory responses via plot ID (Figure 4d). Also shown
are the fire history variables (c) number of fires and (d) years since last fire extracted from Eglin AFB fire management records.

Note that although longleaf pine litter cover is linearly related
to TPH (Figure 7b), total fuelbed depth is clearly nonlinearly
related (Figure 7c), at least in part due to the shrub compo-
nent (Figure 7a). Plant-species richness is inversely but strongly
correlated to TPH (Figure 7d).

Accompanying the fire history variables in the fire manage-
ment data, yet unmentioned in our results up to this point, was
the categorical variable of fuel type. We found that TPH and BA
were approximately 7 and10 times lower, respectively, in the
longleaf pine sandhill fuel type managed with a < 3-yr fire re-
turn interval, compared to the other major fuel types. This result

agrees with ground observations of more open forest structure
in the relatively xeric and unproductive sandhills that are fre-
quently burned. Surface fuel components in the other fuel types
also differed noticeably from this fuel type, which was char-
acterized by a higher fuelbed depth with high shrub and grass
litter cover, but with lower oak leaf and pine needle cover, fewer
1-hr, 10-hr, 100-hr, and 1000-hr fuel counts, and little duff.
These findings are also consistent with high-frequency fire ef-
fects on surface fuels. Plant-species richness was also markedly
higher on this frequently burned fuel type compared to other fuel
types.
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FIG. 6. Relationships between TPH and (a) number of fires and (b) years since last fire, and between BA and (c) number of fires
and (d) years since last fire. Each plot symbol represents the mean of the 30-m map cells within an Eglin AFB management block
(n = 425). Spearman correlations (ρ) are all highly significant (p < 0.0001). Solid lines in each graph indicate best linear fit.

DISCUSSION
The prevailing trend in Ripley’s L shows tree clustering is

most pronounced at a distance of 30 m–40 m (Figure 2), which
supports our strategy to bin the LiDAR returns and map the
responses at a 30-m × 30-m (0.09 ha) resolution, which is also
convenient given the 30-m resolution of Landsat-derived spec-
tral vegetation indices that supplemented the LiDAR metrics as
predictor variables. The ∼ 30 m scale at which overstory struc-
ture predominantly varies does constrain surface fuels (Table 5,
Figure 7), which vary at submeter scales in longleaf pine forests,
as shown by Loudermilk et al. (2009).

The LiDAR data used in this study were not all collected at
the same time, nor at the same return density, but this does not
preclude their utility for broad-scale, observational studies such
as ours. The 2006–2008 range in LiDAR data collection dates,
situated midway within the 2003–2012 range of the most recent
field plot data collections, would affect the predicted TPH and
BA responses little in slow-growing longleaf pine. Scatterplots

of plot-level TPH imputations against either point density or
scan angle were random, with no discernible trends to suggest
that either variable could have biased the models. Furthermore,
we saw no evidence that differences between the LiDAR sur-
veys (Table 2) had any subsequent effect on the gridded LiDAR
metrics, other than the higher proportion of classified ground re-
turns in Santa Rosa County affecting the density metrics (which
was remedied by applying lasthin to just the ground returns, as
was already described). The DTM is a much more sensitive in-
dicator of a height bias than the CHM, neither of which showed
any artifacts on visual inspection.

Binning the metrics at 30-m resolution ensured that there
were at least 450 returns/cell, even at the lowest return density
of 0.5 returns/m2 in Santa Rosa County, in order to maintain
a stable height distribution for generating metrics. Hudak et al.
(2012) showed that height and density metrics such as those used
in this study could be compared between 2 LiDAR collections
collected 6 years apart, to quantify biomass change due to forest
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TABLE 5
Spearman rank correlations between mapped overstory responses or fire history variables and surface fuel or plant species

richness measures associated with the Plot ID map (Figure 4d) and aggregated within Eglin AFB land management blocks (n =
425); significant (p < 0.05) correlations indicated in boldface

Attributes Tree Density (trees ha−1) Basal Area (m2 ha−1) Number of Fires Years Since Last Fire

1-hr (counts) 0.27 0.28 −0.50 0.43
10-hr (counts) 0.37 0.37 −0.28 0.25
100-hr (counts) 0.46 0.49 −0.09 0.14
1000-hr (counts) 0.41 0.44 −0.36 0.35
Litter depth (cm) 0.58 0.64 −0.15 0.18
Duff depth (cm) 0.49 0.52 −0.42 0.38
Fuelbed depth (cm) −0.45 −0.42 0.08 −0.09
Oak litter cover (%) 0.14 0.12 −0.55 0.46
Long-needle conifer litter cover (%) 0.62 0.61 0.69 −0.60
Short-needle conifer litter cover (%) −0.11 −0.11 −0.65 0.56
Grass litter cover (%) −0.14 −0.13 0.61 −0.52
Forb litter cover (%) 0.02 −0.01 0.64 −0.57
Shrub litter cover (%) −0.57 −0.54 −0.03 0.03
Saw palmetto litter cover (%) 0.35 0.35 −0.41 0.31
Mineral soil cover (%) −0.47 −0.48 0.44 −0.39
Plant-species richness (species m−2) −0.55 −0.59 0.31 −0.32

growth, despite a 12-fold difference in point density. The differ-
ence between point densities among these LiDAR collections
(Table 2) is no greater.

An unusual aspect of this study was the large size (0.65
ha) of the plots. Larger plots are more immune to poor geolo-
cation accuracy and suffer less from edge effects, given their
lower perimeter/area ratio, because tree crowns spanning the
plot edge add noise to the relationship with the LiDAR metrics
(Frazer et al. 2011). Frazer et al. (2011) used synthetic LiDAR
with a sparse return density of 0.47 points m−2 and simulated
Douglas-fir forest canopies to evaluate the influence of plot
size on total aboveground biomass predictions. They found that
model precision and accuracy increased as plot size increased
from 0.0314 ha to 0.1964 ha, tending toward an asymptote
at 0.25 ha. Gobakken and Næsset (2009) reported similar but
less pronounced improvement for a smaller, 0.02 ha to 0.04 ha
range of plot sizes in Norwegian forest composed of Norway
spruce and Scots pine, using a LiDAR return density of 0.9
points m−2 more generally in line with the range of return den-
sities used in our study (Table 2). The stand-level estimates of
Gobakken and Næsset (2009) were derived from sample plots
within stands, whereas our plots included a census of all trees
within the unusually large area of 0.65 ha. These 2 characteris-
tics of our plots should mitigate bias caused by their poor ge-
olocation accuracy, and Gobakken and Næsset (2009) also state
that larger plot sizes can compensate for sample plot position
errors.

The 30-m × 30-m (.09 ha) grid cell size we used for map-
ping is larger than most inventory plots, yet much smaller than

the 0.65 ha plots used for modeling. Plots of this size are more
typical of tropical rainforests, where large plots are necessary to
overcome edge effects from huge trees (Mauya et al. 2015). Such
trees do not exist at Eglin AFB. Thus, it is apparent, based on the
30-m scale of longleaf pine clustering revealed by the Ripley’s
L analysis (Figure 2), that monitoring could be more efficiently
accomplished on smaller plots. The 0.09-ha map cells capture
this scale of clustering. It is advisable for the grid cell size of
the maps to match the size of the sample plots (Magnussen
and Boudewyn 1998, Næsset and Bjerknes 2001, Hudak et al.
2012). We recommend standard, 16-m fixed-radius inventory
plots for monitoring, which are only slightly smaller (0.08 ha)
but also are more efficient practically because they are round in-
stead of square (Bormann 1953). Previous LiDAR-based forest
inventory studies in coniferous forests (e.g., Hudak et al. 2006,
2014) found it more difficult to achieve accurate and precise es-
timates of TPH compared to BA, which is more correlated with
LiDAR-derived canopy height and density metrics than TPH.
Although tree height–diameter relationships tend to be stronger
with coniferous than deciduous trees, the height–diameter al-
lometry for longleaf pine breaks down after reaching a diam-
eter of ∼ 25 cm, when height growth asymptotes at ∼ 25 m
(Gonzalez-Benecke et al. 2014). This growth habit coupled with
the open canopy structure that is typical of managed longleaf
pine forests are probably why TPH and BA in this study were
themselves highly correlated (Pearson r = 0.89) and predicted
with comparable relative precision and accuracy (Figure 3).

Individual trees are more obviously apparent in higher den-
sity LiDAR point clouds; thus, more accurate tree counts can
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FIG. 7. Functional relationships between TPH and (a) shrub litter cover, (b) long-needle conifer litter cover, (c) fuelbed depth,
and (d) plant-species richness. Each plot symbol represents the mean of the 30-m map cells within an Eglin AFB management
block (n = 425). Spearman correlations (ρ) are all highly significant (p < 0.0001). Solid lines in each graph indicate loess smooth
fit.

generally be obtained from higher-density LiDAR (e.g., Lee
et al. 2010) than the low-density LiDAR used in this study.
Silva et al. (2016) developed an automated individual tree de-
tection and delineation approach that is sensitive to crown area
coverage. Given the difficulty in implementing an automated
tree identification algorithm across such a large area as Eglin
AFB, it was deemed much more practical in this study to ap-
ply an area-based modeling approach to predicting TPH, as has
been successfully demonstrated in previous studies (e.g., Hudak
et al. 2006; Yu et al. 2010).

Basal area estimates are even more difficult to estimate at
the individual tree level because of the additional need for stem
diameter measures. LiDAR data are much more sensitive to
tree height and crown diameter than to stem diameter, given
that few LiDAR returns actually reflect off of the vertically
oriented tree stems. Furthermore, the ∼ 25-m cap on longleaf
pine height growth, regardless of tree age, makes for a noisy
height–diameter relationship for longleaf pine at Eglin AFB.

The addition of crown dimension attributes to a biometric model
can help but would require accurate individual tree crown delin-
eation from the LiDAR returns. Although there are automated
tools available to do this at the plot (Silva, Crookston, Hudak,
et al. 2015) and stand levels (Silva, Hudak, Crookston et al.
2015), methods are still lacking for automating such tools at the
landscape level, particularly as large and structurally diverse a
landscape as Eglin AFB. Thus, operational utility also argued
for an area-based modeling approach for predicting basal area.

Our area-based approach to predicting DomSpp is easiest to
defend, because to define DomSpp at the individual tree level
is not even possible conceptually. In this study, DomSpp was
defined in each plot as the tree species having the most BA and
is akin to forest type. Knowing which tree species comprises
most of the basal area in a given management block increases
the practical value of the TPH and BA maps to Eglin AFB
managers, who are most concerned with maintaining healthy
stands of longleaf pine, and for which we obtained higher Dom-
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Spp classification accuracies (79%–86%) than overall (65%;
Table 4). DomSpp varies more in the spectral and textural do-
mains, increasing the utility of NDVIc and rumple as predictors.
The NDVIc image from January was a better predictor than the
NDVIc image from July (Table 3), possibly because ground veg-
etation would have been predominantly senesced in January to
provide starker contrast to the predominantly green, coniferous,
overstory canopy reflectance.

The management blocks (i.e., stands) provide an intermediate
scale of analysis for bridging the divide between the Eglin AFB
landscape and finer-scale ecological processes. With the pos-
sible exception of hurricanes, fire is the principal disturbance
driving the ecosystem, and the primary tool used to manage
longleaf pine ecosystems. Prescribed fires are applied at the
management block level, and most wildfires are of similar or
only slightly larger size. These disturbances drive ecological
dynamics at the stand level; it is therefore an appropriate scale
to analyze functional relationships between overstory structure
and surface fuels (Figure 7), as influenced by prescribed fire,
harvesting, or other management tools. We found forest and fire
management strongly impacts plant-species diversity as well
(Figure 7d), but further research is needed to understand the
ecological mechanisms interacting to drive this functional rela-
tionship.

Multivariate imputation modeling is advantageous for pre-
serving the covariance structure between forest attributes
(Moeur and Stage 1995; Tuominen et al. 2003). Furthermore,
imputation provides managers with a practical means, grounded
in actual measurements, to associate surface fuel and species
diversity characteristics to overstory structure attribures, even
if knowledgeable explanations for such associations are incom-
plete (Fehrmann et al. 2008; McRoberts 2008). Regression mod-
els, because they are limited to univariate responses, break these
associations (Tomppo et al. 2008). Although such associations
might be weak, as manifested in maps that can appear “noisy,”
they become more apparent on aggregating so many mapped
predictions within management units. Moreover, aggregation
overcomes the uncertainty associated with map noise because
managers make decisions at the scale of management polygons,
not pixels. It is by aggregating so many mapped pixel-level pre-
dictions that significant and useful relationships might emerge
at the stand level that are neither obvious to a careful observer
in a 0.08 ha field plot nor from a 100,000+ ha vegetation map.
By aggregating the data to the same scale that prescribed fire
and other management interventions are applied, the stand scale
might be most appropriate for revealing functional constraints
imposed by the overstory canopy (Table 5, Figure 7), tied in lon-
gleaf pine forests to a strongly management-driven disturbance
regime.

CONCLUSION
Overstory height and density metrics derived from airborne

LiDAR, despite having lower point density in this analysis than
is typically used for forestry applications, explained ∼ 50% of

the variation in overstory structure and composition across Eglin
AFB. The RF method produced comparable predictions of TPH,
BA, and DomSpp by both the univariate regression/classification
and multivariate k-NN imputation approaches, with only slightly
less precise and accurate validation statistics from the imputa-
tion model, as expected by theory when k = 1. This slight dis-
advantage of imputation was outweighed by the advantage of
imputation for preserving the covariance relationships between
these responses as well as with ancillary plot measurements.
The accuracy in predicting such ancillary measurements is con-
tingent on the strength of their association with the response
variables actually weighting the model.

This study demonstrates a method by which remote sens-
ing data (LiDAR, in this case), seemingly unrelated plot data
(surface fuel and plant-species richness data, in this case), and
management data (fire management records, in this case) can be
used in conjunction to reveal functional relationships between
ecosystem structure and disturbance history. Stand-level forest,
fuel, and fire management strategies and decisions influence not
only the tree overstory but also ground cover plant composi-
tion and structure, and presumably the midstory and understory
canopy layers in between. Eglin AFB managers are diligent at
maintaining accurate, consistent, and comprehensive fire and
monitoring records. We encourage other land management or-
ganizations to do the same, to complement and add value to
investments in both field and remote sensing data collections.
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U. 2004. “Laser scanning of forest resources: the Nordic expe-
rience.” Scandinavian Journal of Forest Research, Vol. 19: pp.
482–499.

Nemani, R., Pierce, L., Running, S., and Band, L. 1993. “Forest ecosys-
tem processes at the watershed scale: sensitivity to remotely-sensed
leaf area index estimates.” International Journal of Remote Sensing,
Vol. 14(No. 13): pp. 2519–2534.

Noss, R.F., LaRoe I, E.T., and Scott, J.M. 1995. Endangered Ecosys-
tems of the United States: A Preliminary Assessment of Loss and
Degradation. National Biological Service Biological Report 28.
Washington, DC: U.S. Department of the Interior.

O’Brien, J.J., Hiers, J.K., Callaham Jr., M.A., Mitchell, R.J., and Jack,
S.B. 2008. “Interactions among overstory structure, seedling life-
history traits, and fire in frequently burned neotropical pine forests.”
Ambio, Vol. 37(No. 7–8): pp. 542–547.

Overing, J.D., Weeks, H.H., Wilson, J.P., Sullivan, J., and Ford, R.D.
1995. Soil Survey of Okaloosa County, Florida. Washington, DC:
USDA Natural Resource Conservation Service.

Palmquist, K.A., Peet, R.K., and Weakley, A.S. 2014. “Changes in
plant species richness following reduced fire frequency and drought
in one of the most species-rich savannas in North America.” Journal
of Vegetation Science, Vol. 25(No. 6): pp. 1426–1437.

Parker, G.G., Harmon, M.E., Lefsky, M.A., Chen, J., Van Pelt, R.,
Weiss, S.B., Thomas, S.C., et al. 2004. “Three-dimensional structure
of an old-growth Pseudotsuga-tsuga canopy and its implications for
radiation balance, microclimate, and gas exchange.” Ecosystems,
Vol. 7(No. 5): pp. 440–453.

Pocewicz, A.L., Gessler, P., and Robinson, A.P. 2004. “The relationship
between effective plant area index and Landsat spectral response
across elevation, solar insolation, and spatial scales in a northern
Idaho forest.” Canadian Journal of Forest Research, Vol. 34: pp.
465–480.

Platt, W.J., Evans, G.W., and Rathbun, S.L. 1988. “The population
dynamics of a long-lived conifer (Pinus palustris).” The American
Naturalist, Vol. 131(No.4): pp. 491–525.

Popescu, S.C., Wynne, R.H., and Nelson, R.F. 2003. “Measuring indi-
vidual tree crown diameter with LiDAR and assessing its influence
on estimating forest volume and biomass.” Canadian Journal of
Remote Sensing, Vol. 29: pp. 564–577.

R Core Team. 2013. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Comput-
ing, accessed September 2015, http://www.R-project.org.

Silva, C.A., Crookston, N.L., Hudak, A.T., and Vierling,
L.A. 2015. Web-LiDAR Forest Inventory Applications,
http://forest.moscowfsl.wsu.edu:3838/csilva/Web-LiDAR/.

Silva, C.A., Hudak, A.T., Crookston, N.L., and Vierling, L.A. 2015.
rLiDAR: An R Package for Reading, Processing and Visualiz-



VOL. 42, NO. 5, OCTOBER/OCTOBRE 2016 427

ing LiDAR (Light Detection and Ranging) data, version 0.1,
accessed October 2015, http://cran.r-project.org/web/packages/
rLiDAR/index.html.

Silva, C.A., Hudak, A.T., Vierling, L.A., Loudermilk, E.L., O’Brien,
J.J., Hiers, J.K., Jack, S.B., Gonzalez-Benecke, C.A., Lee, H.,
Falkowski, M.J., and Khosravipour, A. 2016. “Imputation of in-
dividual longleaf pine forest attributes from field and LiDAR data.”
Canadian Journal of Remote Sensing, Vol. 42(No. 5): pp. 554–573.
doi: 10.1080/07038992.2016.1196582

Smart, L.S., Swenson, J.J., Christensen, N.L., and Sexton, J.O. 2012.
“Three-dimensional characterization of pine forest type and Red-
cockaded Woodpecker habitat by small-footprint, discrete-return Li-
DAR.” Forest Ecology and Management, Vol. 281: pp. 100–110.

Stage, A.R., and Crookston, N.L. 2007. “Partitioning error components
for accuracy assessment of near-neighbor methods of imputation.”
Forest Science, Vol. 53(No. 1): pp. 62–72.

Tomppo, E., Olsson, H., Ståhl, G., Nilsson, M., Hagner, O., and Katila,
M. 2008. “Combining national forest inventory field plots and remote
sensing data for forest databases.” Remote Sensing of Environment,
Vol. 112: pp. 1982–1999.

Tuominen, S., Fish, S., and Poso, S. 2003. “Combining remote sens-
ing, data from earlier inventories, and geostatistical interpolation in
multisource forest inventory.” Canadian Journal of Forest Research,
Vol. 33: pp. 624–634.

Williams, Brett. 2012. Personal communication, October 2012.
Wulder, M.A., White, J.C., Nelson, R.F., Næsset, E., Ørka, H.O.,

Coops, N.C., Hilker, T., Bater, C.W., and Gobakken, T. 2012. “Li-
DAR sampling for large-area forest characterization: a review.” Re-
mote Sensing of Environment, Vol. 121: pp. 196–209.
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