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The persistence of ponderosa pine and lodgepole pine forests in the 21st century depends to a large
extent on how seedling emergence and establishment are influenced by driving climate and environmen-
tal variables, which largely govern forest regeneration. We surveyed the literature, and identified 96 pub-
lications that reported data on dependent variables of seedling emergence and/or establishment and one
or more independent variables of air temperature, soil temperature, precipitation and moisture availabil-
ity. Our review suggests that seedling emergence and establishment for both species is highest at inter-
mediate temperatures (20 to 25 �C), and higher precipitation and higher moisture availability support a
higher percentage of seedling emergence and establishment at daily, monthly and annual timescales. We
found that ponderosa pine seedlings may be more sensitive to temperature fluctuations whereas lodge-
pole pine seedlings may be more sensitive to moisture fluctuations. In a changing climate, increasing
temperatures and declining moisture availability may hinder forest persistence by limiting seedling pro-
cesses. Yet, only 23 studies in our review investigated the effects of driving climate and environmental
variables directly. Furthermore, 74 studies occurred in a laboratory or greenhouse, which do not often
replicate the conditions experienced by tree seedlings in a field setting. It is therefore difficult to provide
strong conclusions on how sensitive emergence and establishment in ponderosa and lodgepole pine are
to these specific driving variables, or to investigate their potential aggregate effects. Thus, the effects of
many driving variables on seedling processes remain largely inconclusive. Our review stresses the need
for additional field and laboratory studies to better elucidate the effects of driving climate and environ-
mental variables on seedling emergence and establishment for ponderosa and lodgepole pine.

� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Ponderosa and lodgepole pine forests are dominant ecosystems
of western North America (Critchfield and Elbert, 1966; Burns and
Honkala, 1990) and provide important ecosystem services includ-
ing the support of ecological plant and animal diversity, water
quality, biogeochemical cycling, and carbon storage (Turner et al.,
2013; Wu and Kim, 2013; Hurteau et al., 2014; Rocca et al.,
2014). These forests experienced widespread disturbances in the
20th century, and large-scale tree mortality has been observed
across much of western North America in response to both
enhanced drought severity (Breshears et al., 2005, 2009; Allen
et al., 2010; Williams et al., 2013), fire (Savage and Mast, 2005;
Parker et al., 2006; Hurteau et al., 2014), and severe insect out-
breaks (Parker et al., 2006; Hicke and Jenkins, 2008). Semiarid for-
ests including those of lodgepole and ponderosa pine may be
highly impacted by climate change (Diffenbaugh et al., 2008;
Allen et al., 2010; Herrero et al., 2013), which is predicted to pro-
duce warmer and drier conditions across much of western North
America in the coming century (Seager et al., 2007; Gutzler and
Robbins, 2011; IPCC, 2013). There is concern that ecological distur-
bances will be intensified by climate change, resulting in large-
scale degradation of and vegetation compositional changes in
these forests in the coming decades (Breshears et al., 2005;
Aitken et al., 2008; Allen and Breshears, 1998; Allen et al., 2010;
Feddema et al., 2013; Hanberry, 2014), altering and possibly reduc-
ing the persistence of these forests and the services they provide.

In the 21st century, disturbances such as drought, fire and
insect outbreaks are predicted to become more frequent and
destructive, and may possibly reduce the persistence of ponderosa
and lodgepole pine forests (Savage and Mast, 2005; Parker et al.,
2006; Hicke and Jenkins, 2008; Savage et al., 2013; Wu and Kim,
2013). The majority of research on forest persistence has focused
on the deleterious effects of mortality events complimented by
predictive modeling based on the climate conditions that support
mature trees. Yet, the primary mechanism governing the persis-
tence of ponderosa and lodgepole pine forests may actually be
the climate-related limitation of forest regeneration after distur-
bance events have already occurred (Sackett, 1984; Savage et al.,
1996, 2013; Kroiss and HilleRisLambers, 2015). Natural variability
in climate drivers including precipitation and temperature pro-
motes seedling recruitment events that are highly episodic and
that may take decades or longer to occur (Brown and Wu, 2005;
Ouzts et al., 2015); In western North America, the majority of for-
est regeneration in the past 100 years occurred during a small
number of time periods that supported seed production, seedling
emergence, and seedling establishment (Schubert, 1974; Mast
et al., 1999; Brown and Wu, 2005). Forest demographic informa-
tion during these regeneration events is not widely available, how-
ever, and the specific environmental conditions that govern forest
regeneration are not completely understood. Because the future
persistence of ponderosa and lodgepole pine forests in western
North America will be dependent on the ability of these species
to regenerate under the changing climatic conditions of the 21st
century, it is critical that fine-scale forest demographic information
is available to sharpen predictive analytical techniques.

It is clear that adequate moisture availability and above-
freezing temperatures support seedling emergence and establish-
ment for both ponderosa and lodgepole pine (International Seed
Testing Association, 1985; Kolb and Robberecht, 1996; Coop and
Givnish, 2008). Savage et al. (2013) suggest that ponderosa pine
seedling emergence requires favorable temperature, evaporation
and moisture conditions over a four-year period, including seed
production through seedling germination and emergence from
the soil, and seedling establishment requires an additional two
years of favorable conditions. It is difficult to corroborate Savage
et al. (2013)’s requirements with additional studies, however;
Puhlick et al. (2012) for example found that ponderosa pine seed-
ling density was closely correlated to annual precipitation,
whereas Feddema et al. (2013) used a modeling approach to find
that ponderosa pine seedling emergence and establishment was
more sensitive to monthly precipitation, especially during the fall
prior to seedling emergence. Therefore, although these and other
generalities provide a foundation for understanding the relation-
ships between seedling processes and climate and environmental
conditions (Schubert, 1974; International Seed Testing
Association, 1985; White, 1985), empirical, quantitative informa-
tion at a finer level of detail would strengthen predictions of future
forest demographics, regeneration and persistence.

To better understand how seedling processes – and therefore
forest persistence – in ponderosa and lodgepole pine forests may
be affected by climatic and environmental conditions in the 21st
century, we compiled 96 publications that reported data on seed-
ling emergence and/or establishment in ponderosa pine (Pinus pon-
derosa) and/or lodgepole pine (P. contorta), and also one or more
driving climate and environmental variables of temperature, pre-
cipitation and moisture availability. Our primary objective was to
correlate variation in driving, independent variables of tempera-
ture, precipitation and moisture availability to dependent variables
of seedling emergence and establishment for ponderosa pine and
lodgepole pine. In doing so, we also identified what information
on seedling emergence and establishment is robust and what
information is less-supported, and we investigated the foci of these
studies to ascertain the strengths of and deficiencies in the peer-
reviewed literature. Because only a small number of peer-
reviewed publications have focused on the relationships between
climate and environmental drivers and seedling emergence and
establishment directly, our analysis included reported data on
our driving variables of interest, even when these studies did not
explore the influence of these variables. These indirect sources
comprise the majority of information on emergence and establish-
ment for ponderosa and lodgepole pine. Our review explores
whether or not general assumptions of seedling responses to driv-
ing climate and environmental variables are supported by existing
data, and also provides additional information on how climate and
environmental conditions might govern ponderosa and lodgepole
pine persistence in the 21st century.
2. Materials and methods

We conducted a literature search for ponderosa and lodgepole
pine publications from 1930 to 2015 that included a United States
Department of Agriculture – Forest Service database of 1200 pub-
lications, as well as Web of Science, National Agricultural Library
(NAL) DigiTop, ProQuest Natural Science Collection, and Elton B.
Stephens Co. (EBSCO) Environment Complete databases. We iden-
tified publications that reported data for ponderosa pine (P. pon-
derosa) or and/or lodgepole pine (P. contorta) seedling emergence
and/or establishment, and one or more environmental and climate
variables including air temperature [Ta], soil temperature [Ts], pre-
cipitation [P], soil moisture [h] and soil water potential [w]. We
compiled 96 publications that reported data for ponderosa pine
(44 publications) and/or lodgepole pine (59 publications) in west-
ern North America and western Europe. Of these, 74 (77%) were
laboratory or greenhouse studies, and 22 (23%) were field studies.
We extracted data manually from each source; 47 (49%) studies
provided only a single data point, and 23 (24%) studies focused
on relationships between one or more of our variables of interest
and seedling emergence and/or establishment directly. We
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Fig. 1. Percentage and total number of studies focused on ponderosa and lodgepole
pine (Panel a), greenhouse and field studies (Panel b), and on seedling emergence
and establishment (Panel c).
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conducted all analyses and produced all figures using R-project
statistical computing software (R Development Core Team, 2015).

The majority of the studies in our review did not investigate the
effects of climate and environmental drivers on seedling emer-
gence and establishment directly. We found that a larger number
of studies provided usable data indirectly, however, by reporting
values for variables such as mean rainfall and air temperature as
part of the study. We used these reported data from indirect stud-
ies in our investigation alongside data from a smaller number of
direct studies. Thus, we combined data from all studies that
reported usable data, regardless of whether or not these studies
focused on the relationships between climate and environmental
drivers and seedling processes directly. We investigated the effects
of ten environmental and climate variables: Ta (daily x, daily
maximum, daily minimum), Ts (daily x, daily maximum, daily
minimum), volumetric soil moisture [h: m3 m�3], soil water poten-
tial [w: MPa], and precipitation (total annual and total monthly).
We evaluated these relationships using linear correlations when
the number of data points from all studies numbered seven or
more.

Seedling functions may be defined in a number of ways. Germi-
nation in a laboratory, for example, is the emergence of the seed-
ling hypocotyl from the seed coat, whereas germination in a field
experiment may not be accounted for until the hypocotyl emerges
from the soil surface. These germination events occur over differ-
ent timescales and at different frequencies. In this study we
defined seedling emergence as the final result of all germination
phases (Chambers, 2000), and we considered seedling germination
in a laboratory and seedling emergence from the soil to be equiv-
alent. We defined seedling establishment as reported seedling sur-
vival at any point during the first year and up to a year of age. To be
comparable to other studies, we only included studies that
reported emergence and establishment data as a percentage of
total seeds or seedlings, or studies with data that could be con-
verted to a percentage.
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Fig. 2. Number of studies focused on climate variables of air temperature [Ta],
precipitation [P], soil temperature [Ts] and soil moisture and soil water potential
[VWC & WP] for seedling emergence (Panel a) and seedling establishment (Panel b)
for ponderosa and lodgepole pine. ‘Driving’ variable studies specifically manipu-
lated or evaluated the role of a driving climate variable on seedling emergence or
establishment, whereas ‘Reported’ variable studies reported data for a driving
climate variable without investigating its influence.
3. Results

3.1. Literature review

We investigated seedling emergence and establishment for
ponderosa and lodgepole pine from 96 primary sources, comprised
of 74 laboratory and greenhouse studies (e.g. ‘greenhouse’ in text)
and 22 field measurement and experimental studies (e.g. ‘field’ in
text) (Fig. 1a). A total of 34 studies (35%) reported emergence or
establishment data for ponderosa pine, and 62 studies (65%)
reported data for lodgepole pine (Fig. 1a). A total of 53 (55%) of
these studies reported data on seedling emergence, 27 studies
(28%) reported data on seedling establishment, and 16 studies
(17%) reported data on both variables (Fig. 1b).

Although all of the greenhouse and field studies in our review
reported data on climate and environmental variables, only a rela-
tively small number of studies investigated or manipulated any of
these variables directly (23 total; 24% of all studies; Fig. 2a). The
majority of greenhouse studies reported average values of climate
and environmental variables, and we found only a single field
study that evaluated any of these variables as a driver of seedling
emergence or establishment (Rother et al., 2015) (Fig. 2). The time-
scales of studies focused on seedling emergence versus those
focused on seedling establishment differed in their timescales of
analysis; of published values, seedling emergence studies focused
primarily on periods shorter than one month in duration (62% of
published values; Fig. 3a), and seedling establishment studies
focused primarily on periods longer than one year (59% of pub-
lished values; Fig. 3b). 21% of studies did not report the timescale
over which they investigated or reported seedling emergence and
establishment (Fig. 3).
3.2. Summary of climate effects on seedling emergence and
establishment from the literature

Seedling emergence in ponderosa and lodgepole pine is
reported to be highest when Ta is between 20 to 30 �C during sum-
mer (International Seed Testing Association, 1985). We found that
both greenhouse and laboratory studies maintained Ta in this
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range (Downie and Wang, 1992; Li et al., 1994; Page-Dumroese
et al., 2002; Wang et al., 1992; Wang, 2003; Simpson et al.,
2004; Teste et al., 2011). A constant Ta of 20 to 25 �C was often
considered ideal for ponderosa and lodgepole pine emergence
(Weber and Sorensen, 1990; Ohlson and Zackrisson, 1992; Fay
and Mitchell, 1999; Pasquini et al., 2008), and emergence rates
for ponderosa pine were found to decline when Ta was above or
below approximately 20 �C (Weber and Sorensen, 1990). A number
of studies found that seedling emergence for both ponderosa and
lodgepole pine increased as mean Ta increased up to 25 �C, at
which point emergence decreased (Haasis and Thrupp, 1931;
Ackerman and Farrar, 1965; Peterson, 1970; Kaufmann and
Eckard, 1977; Kamra, 1980; Weber and Sorensen, 1990; Jones
and Gosling, 1994). Similarly, lower minimum Ta (>�15 to 20 �C)
increased emergence in lodgepole pine (Holmes and Buszewicz,
1955; Ackerman and Farrar, 1965; Kamra, 1980; Tanaka et al.,
1986; Jones and Gosling, 1994). Higher maximum Ta was found
to reduce emergence in both ponderosa and lodgepole pine
(Wright, 1931; Ackerman and Farrar, 1965; Peterson, 1970;
Knapp and Anderson, 1980; Hall, 1984; Tanaka et al., 1986). Based
on this information, emergence in ponderosa and lodgepole pine is
likely to increase with increasing Ta up to a mean or maximum Ta
25 to 30 �C, beyond which emergence may decline.

Similar to reported relationships for seedling emergence, higher
mean and minimum daily Ta may increase establishment of pon-
derosa pine, and may also reduce establishment as daily maximum
Ta surpasses 25 to 30 �C (Cochran and Berntsen, 1973; Shepperd
and Noble, 1976; Noble et al., 1979; Seidel, 1986; Lopushinsky
et al., 1992). Lower minimum Ta, which may occur during winter
Table 1
R2 correlation statistic for ponderosa pine (PP) and lodgepole pine (LP) seedling emergence
[Ta], soil temperature [Ts], volumetric soil moisture [h], soil water potential [w], and preci
Relationships listed as NA did not have enough data points for the regression analysis, those

Ta Ts

x min max x min

PP emergence 0.14 0.46 0.26 – –
PP establishment 0.05 NS 0.17 NA 0.13

LP emergence NS NS 0.22 0.49 –
LP establishment NA NS NS NS 0.05
in the field or as part of a manipulative experiment, reduced the
establishment of ponderosa and lodgepole pine seedlings
(Cochran and Berntsen, 1973; Lopushinsky et al., 1992), and higher
minimum Ta increased establishment (Cochran and Berntsen,
1973; Shepperd and Noble, 1976; Noble et al., 1979; Seidel,
1986; Lopushinsky et al., 1992). Although higher daily Ta may sup-
port greater emergence of ponderosa and lodgepole pine, none of
the studies in our review reported a relationship between maxi-
mum Ts and seedling establishment.

A small number of studies have investigated the effect of pre-
cipitation and moisture availability on seedling emergence and
establishment. Ohlson and Zackrisson (1992) and Varmola et al.
(2000) found that, in multi-year studies, higher mean annual pre-
cipitation supported lodgepole pine emergence and establishment.
Shepperd and Noble (1976) and Noble et al. (1979) found that
higher monthly precipitation increased emergence and establish-
ment for lodgepole and ponderosa pine, respectively. Generally,
higher soil moisture availability measured as volumetric soil mois-
ture [h] or soil water potential [w: MPa] increased seedling emer-
gence (Brayshaw, 1953; Holmes and Buszewicz, 1955; Larson
and Schubert, 1969; Djavanshir and Reid, 1975; Kaufmann and
Eckard, 1977; Elena Fernandez et al., 2014), and Moore and Kidd
(1982) found that declining w from �4 to �8 MPa greatly reduced
ponderosa pine seedling emergence. When experimentally manip-
ulated, drier conditions inhibited seedling establishment in lodge-
pole pine (Cochran and Berntsen, 1973; Bulmer and Simpson,
2005) and in ponderosa pine (Pinto et al., 2012; Rother et al., 2015).
3.3. Data review

Ponderosa pine and lodgepole pine had lower % seedling emer-
gence as Ta > �25 to 30 �C (Table 1, Figs. 4a, c and 5a), and also had
higher % seedling emergence as daily minimum Ta and Ts
increased (Table 1, Figs. 4b and 5b). Increasing maximum
Ta > 25 �C strongly reduced seedling emergence from 65% to 27%
(Fig. 4c). Increasing daily minimum Ta from �0 to 20 �C increased
ponderosa pine emergence from 14% to 70% (Fig. 4b), yet increas-
ing Ta from �20 to 25 �C decreased ponderosa pine emergence
from 69% to 58% (Fig. 4a). Lodgepole pine emergence increased
from 10% to 69% as Ts increased from 5 to 20 �C (Fig. 5b). Increasing
w, MAP and monthly P increased lodgepole pine emergence
(Fig. 5c–e). Lodgepole pine seedling emergence was much lower
when data were comprised solely of field studies (Fig. 5d) com-
pared to those comprised solely of greenhouse studies (Fig. 5c
and e).

Ponderosa pine establishment was highly sensitive to variation
in Ta and Ts: establishment increased as daily Ta increased from
�15 to 25 �C (Fig. 4e), and also increased as minimum Ts and lower
than average maximum Ts increased up to 10 and 15 �C, respec-
tively (Fig. 4g and h). Establishment decreased as maximum daily
Ta increased beyond 25 �C (Fig. 4f). Lodgepole pine establishment
also increased as minimum Ts and lower than average maximum
and establishment response to environmental and climate variables of air temperature
pitation [P]. Bold values indicate significance of the R2 correlation statistic at p < 0.05.
listed as NS were not significant, and a dash (–) indicates that no data were available.

h w P P

max x x annual monthly

– – 0.39 NA NS
0.13 NA NS 0.10 NS

– NA 0.69 0.42 0.66
0.14 0.09 NS NS 0.31
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2015), maximum Ta (Panel f: Stone and Jenkinson, 1970; Cochran, 1973; Lopushinsky and Beebe, 1976; Noble et al., 1979; Seidel, 1986; Coop and Givnish, 2008; Pinto et al.,
2012), minimum soil temperature [Ts] (Panel g: Stone and Jenkinson, 1970; Cochran and Berntsen, 1973; Cochran, 1973; Lopushinsky and Beebe, 1976; Noble et al., 1979;
Coop and Givnish, 2008), maximum Ts (Panel h: Stone and Jenkinson, 1970; Cochran and Berntsen, 1973; Cochran, 1973; Lopushinsky and Beebe, 1976; Noble et al., 1979;
Seidel, 1986; Coop and Givnish, 2008; Pinto et al., 2012) and mean annual precipitation [P] (Panel i: Lopushinsky and Beebe, 1976; Noble et al., 1979; Chen, 1997; Fan et al.,
2002; Coop and Givnish, 2008; Pinto et al., 2011; Pinto et al., 2012). All relationships are significant at p < 0.05. The linear regression and 95% confidence interval are
illustrated by the dotted lines.
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Fig. 5. Linear regression analysis of lodgepole pine seedling emergence and maximum air temperature [Ta] (Panel a: Wright, 1931; Crossley, 1955; Holmes and Buszewicz,
1955; Timonin, 1964; Ackerman and Farrar, 1965; Ackerman and Gorman, 1969; Minore, 1972; Cochran and Berntsen, 1973; Cochran, 1973; Shepperd and Noble, 1976;
Hellum and Pelchat, 1979; Hellum and Barker, 1980; Kamra, 1980; Knapp and Anderson, 1980; Wang, 1980; Hellum and Dymock, 1986; Hall, 1984; Tanaka et al., 1986;
Downie and Wang, 1992; Wang et al., 1992; Woodard, 1983; Woodard and Cummins, 1987; Jones and Gosling, 1994; Li et al., 1994; Wang, 2003; Simpson et al., 2004; El-
Kassaby et al., 2008; Aoki et al., 2011; Teste et al., 2011), seedling emergence and soil water potential [w] (Panel b: Page-Dumroese et al., 2002; Wright et al., 1998; Pinto et al.,
2009), seedling emergence and mean annual precipitation [P] (Panel c: Kaufmann and Eckard, 1977; Pinto et al., 2009), seedling emergence and monthly P (Panel d: Ohlson
and Zackrisson, 1992; Page-Dumroese et al., 2002), seedling establishment and monthly P (Panel e: Shepperd and Noble, 1976), seedling establishment and volumetric soil
moisture [h] (Panel f: Timonin, 1964; Etter, 1969; Minore, 1972; Cochran and Berntsen, 1973; Cochran, 1973; Shepperd and Noble, 1976; Coutts and Philipson, 1978;
Chakravarty and Sidhu, 1987; Sidhu and Chakravarty, 1990; Coates et al., 1991; Lopushinsky et al., 1992; Van den driessche, 1992; Chakravarty et al., 1999; Hawkins et al.,
2003), (Panel g: Timonin, 1964; Etter, 1969; Minore, 1972; Cochran and Berntsen, 1973; Cochran, 1973; Shepperd and Noble, 1976; Lotan and Perry, 1977; Coutts and
Philipson, 1978; Chakravarty and Sidhu, 1987; Sidhu and Chakravarty, 1990; Lopushinsky et al., 1992; Chakravarty et al., 1999; Hawkins et al., 2003), (Panel h: Timonin,
1964; Etter, 1969; Shepperd and Noble, 1976; Lotan and Perry, 1977; Bulmer and Simpson, 2005; Johnstone and Chapin, 2006), and (Panel i: Coates et al., 1991; Van den
Driessche, 1996; Wright et al., 1998; Bulmer and Simpson, 2005; Dehlin et al., 2008). All relationships are significant at p < 0.05. The linear regression and 95% confidence
interval are illustrated by the dotted lines.
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Ts increased up to 10 and 15 �C, respectively (Fig. 5f and g). Pon-
derosa pine establishment increased from 78% to �100% as MAP
increased from 550 mm to 850 mm (Fig. 5e). Lodgepole pine estab-
lishment increased from 37% to 78% as soil water potential
increased from �0.75 to 0.0 MPa (Fig. 5h), and also increased from
44% to 78% as h increased from 0.0 to 0.75 (Fig. 5i).
4. Discussion

4.1. Climate and environmental controls on emergence and
establishment

From the studies we analyzed in this review, it is clear that driv-
ing variables of air and soil temperature, precipitation and mois-
ture availability affect seedling emergence and establishment for
ponderosa and lodgepole pine. Generally, both information
reported in the literature and our analysis of reported data suggest
that seedling emergence and establishment are highest at moder-
ate ranges of air and soil temperature, and when precipitation and
moisture availability are at or above average local values (Figs. 4
and 5). Yet, very little primary information exists on the relation-
ships between driving climate and environmental variables and
seedling processes, and it is difficult to determine clear driver
and response relationships for seedling emergence and establish-
ment solely based on data available from these primary sources.
We believe this is in part due to the variety of settings of these
studies (field, greenhouse, laboratory), especially the low number
of field investigations (Fig. 1a). Despite this shortcoming, the
majority of studies did report data for emergence and establish-
ment at relevant timescales; the majority of emergence studies
focused on the first 0 to 3 months of seedling fecundity (91%;
Fig. 3a), and establishment studies focused on periods from
3 months to > 1 year in duration (88%; Fig. 3b). Because climate
and environmental variables will likely play an important role in
future scenarios of forest regeneration in coming decades, it is crit-
ical to better understand these relationships, and to continue con-
ducting research at the timescales at which seedling emergence
and establishment occur.

Ponderosa and lodgepole pine seedlings had similar and differ-
ing sensitivities to driving climate and environmental variables.
Ponderosa pine seedlings were more sensitive to Ta and Ts than
to other variables (Table 1, Fig. 4), whereas lodgepole pine seed-
lings were more sensitive to Ts, precipitation and moisture avail-
ability (Table 1, Fig. 5). Yet, we found that emergence of
ponderosa pine may be greatly reduced at low w (Fig. 4d), suggest-
ing that ponderosa pine is also sensitive to moisture availability.
Because only 23 studies focused on driving climate and environ-
mental variables, however, it is unclear if these species-specific dif-
ferences indicate actual differences in ponderosa and lodgepole
pine seedlings (Fig. 2). Furthermore, only one of these studies
occurred in the field (Rother et al., 2015), and this study did not
evaluate lodgepole pine (Fig. 2). On average, we observed lower
lodgepole pine seedling emergence in field studies (Fig. 5d) com-
pared to greenhouse studies (Fig. 5c and e), suggesting that the
relationships we found in greenhouse studies may be artificially
inflated. In greenhouse studies, temperature and moisture avail-
ability are usually maintained at levels that do not limit seedling
processes, and additional stressors such as low bare soil availabil-
ity, soil water repellency and vegetation competition are expelled
from the seedling environment. For example, in Figs. 4b and 5a,
greenhouse temperature was held constant in many studies,
resulting in a large amount of data points from 20 to 30 �C. We
believe that the varying results and inconclusive correlations that
we observed in this review (e.g. Table 1) suggest uncertainty in
the information available for seedling emergence and establishment,
and the high degree of variability in these results and in available
data sources stresses the need to further investigate the emergence
and establishment requirements for ponderosa and lodgepole pine.

Our results do corroborate a number of studies that focused on
temperature effects on seedling emergence and establishment.
Similar to our findings, Weber and Sorensen (1990) and McTague
and Tinus (1996) reported that seedling emergence and establish-
ment rates declined when Ta > 25 �C, and Jones and Gosling (1994)
and Beardmore et al. (2008) reported that very low Ta (<0 to 25 �C)
may also decrease emergence in lodgepole pine. Many studies
report that both emergence and establishment for ponderosa and
lodgepole pine may be highest at intermediate (�20 to 30 �C) tem-
peratures (Haasis and Thrupp, 1931; Wright, 1931; Ackerman and
Farrar, 1965; Cochran and Berntsen, 1973; Shepperd and Noble,
1976; Kaufmann and Eckard, 1977; Noble et al., 1979; Kamra,
1980; Seidel, 1986; Weber and Sorensen, 1990; Lopushinsky
et al., 1992; Jones and Gosling, 1994; Hawkins et al., 2003; Coop
and Givnish, 2008). We found high Ta to decrease emergence for
both ponderosa pine and lodgepole pine (Figs. 4c and 5a), and to
decrease ponderosa pine establishment (Fig. 4f). Increasing Ta
and Ts from 5 to 20 �C increased emergence in both species
(Figs. 4b and 5b), and also increased establishment (Figs. 4e, g, h
and 5f and g). Although increasing Ta from �20 to 25 �C decreased
ponderosa pine emergence (Fig. 4a), the data largely show that Ts
and Ta �20 to 25 �C is likely the most favorable range for seedling
emergence and establishment for ponderosa and lodgepole pine.

A good deal of research suggests that higher precipitation at
monthly to annual timescales supports greater seedling emergence
and establishment (Lotan and Perry, 1976; Shepperd and Noble,
1976; Noble et al., 1979; Lopushinsky et al., 1992; Ohlson and
Zackrisson, 1992; Fries, 1993; Chen, 1997; Burton et al., 2000;
Zabowski et al., 2000; Fan et al., 2002; Page-Dumroese et al.,
2002; Coop and Givnish, 2008; Dehlin et al., 2008; Page-
Dumroese et al., 2008; Pinto et al., 2011), and higher moisture
availability supports greater seedling emergence (Brayshaw,
1953; Holmes and Buszewicz, 1955; Larson and Schubert, 1969;
Djavanshir and Reid, 1975; Moore and Kidd, 1982). Our results cor-
roborate these findings, and show that lodgepole pine seedling
emergence and establishment may be especially sensitive to w
and P at monthly to annual timescales (Fig. 5), which supports
the findings of Feddema et al. (2013). Coincidently, we also found
that higher annual P increased ponderosa pine seedling establish-
ment (Fig. 4i), which supports the somewhat contradictory find-
ings of Puhlick et al. (2012). Although ponderosa and lodgepole
pine may actually have different sensitivities to rainfall and mois-
ture, and the timescales over which these processes occur remain
unclear, our results suggest that higher rainfall and moisture avail-
ability supports higher seedling success for both species.
4.2. Emergence and establishment in the 21st century

Seedling success is limited to a narrow range of temperature
and precipitation-driven controls (Savage et al., 2013), and these
drivers have limited regional forest regeneration in western North
America to a small number of favorable periods over the past
100 years (Schubert, 1974; Mast et al., 1999; Brown and Wu,
2005). In this review, we found that seedling processes for pon-
derosa pine were more sensitive to fluctuations in temperature
(Fig. 4), whereas these processes in lodgepole pine were more sen-
sitive to fluctuations in precipitation and soil moisture (Fig. 5).
Despite these relationships, temperature, precipitation and mois-
ture availability are inextricably linked (Laio et al., 2002;
Porporato et al., 2004), and both temperature and moisture avail-
ability will likely have a strong influence on future emergence
and establishment for ponderosa and lodgepole pine. As an exam-
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ple of these interactions, Brandes andWilcox (2000) found that soil
moisture availability governed the seasonal pattern of evapotran-
spiration in a ponderosa pine forest in New Mexico, and potential
evaporation (which is largely governed by temperature and vapor
pressure deficit) was consistently of high enough magnitude that
variation in potential evaporation did not influence rates of evapo-
transpiration and moisture availability. Yet, increasing average
temperatures have been found to shift the timing of evapotranspi-
ration towards earlier dates in spring, thus reducing moisture
availability and increasing ecosystem sensitivity to precipitation
in late spring and summer (D’Odorico et al., 2000; Schwartz
et al., 2006; Petrie et al., in press). As a result of the interactions
of temperature, precipitation and moisture availability, we hypoth-
esize that change to any of these variables is likely to influence
seedling processes for ponderosa and lodgepole pine.

Favorable periods for forest regeneration may be further
restricted by disturbances including windfall, fire, insect invasion,
and competition (Sackett, 1984; Savage et al., 1996; Parker et al.,
2006; Allen et al., 2010; Williams et al., 2013; Savage et al.,
2013). We found that very high air temperatures (>75 �C), such
as those produced by fire, reduced seedling emergence and estab-
lishment (Figs. 4c, f and 5a). It is well-documented that ponderosa
and lodgepole pine seedling viability is severely affected by very
high temperatures (White, 1985; Brown and Wu, 2005), although
fire events may also support seedling emergence in subsequent
years (Edwards et al., 2015). In the 21st century, increasing maxi-
mum temperatures of fire events as a result of higher fuel loads
and drier average conditions may limit forest regeneration by
reducing seed fecundity (Battaglia et al., 2009). Additionally, while
we found that temperatures >15 �C support seedling emergence
and establishment (Figs. 4b, e, g, h and 5b), these conditions also
support higher insect survival (Parker et al., 2006). It is critical
for tree seedlings to emerge in a bare-soil environment before
shallow-rooted woody and herbaceous species are established
(International Seed Testing Association, 1985; Elliott and White,
1987; Wagner et al., 1989; Stone and Wolfe, 1996), and plant com-
munity composition, productivity, and growing season dynamics
will likely all be influenced by changes in climate, making the
influence of biotic and abiotic disturbances increasingly complex
in the future.

The effect of a shift towards a warmer and drier climate in west-
ern North America may be a reduction in the range and persistence
of many forests (Johnstone and Chapin, 2003; Aitken et al., 2008).
Species Distribution Models (SDMs) are often used to investigate
the future persistence and geographic ranges of ponderosa pine
and lodgepole pine (Johnstone and Chapin, 2003; Coops et al.,
2005; Aitken et al., 2008; Lintz et al., 2013), yet our results suggest
SDMs may overestimate the range and persistence of these forests
because they focus on the current climatic and environmental con-
ditions of mature forests instead of the climatic and environmental
conditions that support forest regeneration (Guisan and
Zimmermann, 2000; Guisan and Thuiller, 2005). Many SDM tech-
niques are critiqued for oversimplifying ecosystem responses to
geographic barriers, no-analog vegetation communities, and novel
climate conditions, yet SDMs do provide valuable information on
potential ecosystem responses and we believe they can be a valu-
able analysis tool when focused on the correct demographic pro-
cesses (Pearson and Dawson, 2003; Guisan and Thuiller, 2005).
For example, a SDM technique from Bell et al. (2014) suggests that
the geographic range of ponderosa pine may contract or shift as
suitable climates for mature trees and seedlings diverge in the
coming century. Better forest demographic information, especially
information on how climate drivers affect seedling emergence and
establishment, would greatly enhance the ability of SDM tech-
niques to predict the persistence of ponderosa and lodgepole pine
forests in the 21st century. We believe that it is critical that scien-
tific understanding of forest regeneration moves beyond the
impact of climate drivers and towards a complete understanding
of how climate drivers, ecological disturbances and forest demo-
graphic processes interact to impact the effects of a changing cli-
mate on ponderosa and lodgepole pine forest persistence.

5. Conclusions

In this study we reviewed 96 peer-reviewed publications on
ponderosa pine and lodgepole pine seedling emergence and estab-
lishment, and investigated how seedling processes are influenced
by driving climate and environmental variables of air and soil tem-
perature, precipitation, and moisture availability. Our review sug-
gests that seedling emergence and establishment for both species
is highest at intermediate temperatures (20 to 25 �C), and higher
precipitation and moisture availability supports higher seedling
emergence and establishment at daily, monthly and annual time-
scales. We found evidence that ponderosa pine seedlings may be
more sensitive to temperature fluctuations whereas lodgepole pine
seedlings may be more sensitive to moisture fluctuations. How-
ever, our findings were limited by the quality of available data –
only 23 studies in our review investigated the effects of driving
climate and environmental variables directly, and only one of these
studies occurred in the field. This review illustrates that lack of
data about several key processes and relationships governing for-
est regeneration limits the ability to make predictive assessments
of forest demographics, range and persistence in the coming cen-
tury, and this review also stresses the need to further evaluate
the individual and aggregate effects of driving variables in the field.
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