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Abstract.   Maps of the number, size, and species of trees in forests across the western United States 
are desirable for many applications such as estimating terrestrial carbon resources, predicting tree mor-
tality following wildfires, and for forest inventory. However, detailed mapping of trees for large areas 
is not feasible with current technologies, but statistical methods for matching the forest plot data with 
biophysical characteristics of the landscape offer a practical means to populate landscapes with a limited 
set of forest plot inventory data. We used a modified random forests approach with Landscape Fire and 
Resource Management Planning Tools (LANDFIRE) vegetation and biophysical predictors to impute 
plot data collected by the US Forest Service’s Forest Inventory Analysis (FIA) to the landscape at 30- m 
grid resolution. This method imputes the plot with the best statistical match, according to a “forest” of 
decision trees, to each pixel of gridded landscape data. In this work, we used the LANDFIRE data set 
for gridded input because it is publicly available, offers seamless coverage of variables needed for fire 
models, and is consistent with other data sets, including burn probabilities and flame length probabil-
ities generated for the continental United States. The main output of this project is a map of imputed 
plot identifiers at 30 × 30 m spatial resolution for the western United States that can be linked to the FIA 
databases to produce tree- level maps or to map other plot attributes. In addition, we used the imputed 
inventory data to generate maps of forest cover, forest height, and vegetation group at 30 × 30 m reso-
lution for all forested pixels in the western United States, as a means of assessing the accuracy of our 
methodology. The results showed good correspondence between the target LANDFIRE data and the 
imputed plot data, with an overall within- class agreement of 79% for forest cover, 96% for forest height, 
and 92% for vegetation group.
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INTRODUCTION

Geospatial data describing tree species or forest 
structure are required for many analyses and mod-
els of forest landscape dynamics, including esti-
mating stocks of terrestrial carbon (Jenkins et al. 
2001), forest biomass (Blackard et al. 2008), forest 
growth and mortality (Brown and Schroeder 1999, 
Falkowski et al. 2010), national- level fire planning 

and risk assessment (Schmidt et al. 2002), simu-
lating continental- scale burn probabilities (Finney 
et al. 2011), simulating wildfire intensity patterns 
and fuel treatment strategies (Finney et al. 2007), 
tree species abundance and distribution (Wilson 
et al. 2012), basal area (Wilson et al. 2012), esti-
mating timber volume (Franco- Lopez et al. 2001, 
Muinonen et al. 2001), mapping wildland fuels 
for simulating fire growth (Keane et al. 2001), and 
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simulating wildfire risk transmission from federal 
lands to the wildland–urban interface (Haas et al. 
2014). Forest data must have resolution and conti-
nuity sufficient to reflect site gradients in moun-
tainous terrain and stand boundaries imposed by 
historical events, such as wildland fire and timber 
harvest. Such detailed forest structure data are 
not available for large areas of public and private 
lands in the United States, which rely on forest 
inventory at fixed plot locations at sparse densi-
ties of one plot per 6000 acres (Burkman 2005). 
While direct sampling technologies such as light 
detection and ranging (LiDAR) may eventually 
make broad coverage of detailed forest inventory 
feasible (e.g., Hudak et al. 2008, Latifi et al. 2012), 
no such data sets at the scale of the western United 
States are currently available.

Models of geospatial forest structure have uti-
lized various statistical methods to assign the 
measured plots from a sparse sample to unmea-
sured locations using a set of predictor variables. 
These methods have a common goal: to take 
more detailed observations at relatively few loca-
tions (e.g., field plots or stand inventories) and 
assign their characteristics to the unmeasured 
locations on the landscape in order to provide 
seamless information about all locations. The 
detailed observations are often referred to as the 
“reference data,” while the landscape data (often 
derived from aerial photographs, stand records, 
or satellite imagery) are referred to as the “tar-
get data.” These methods include linear mod-
els, image classification (Van Wagtendonk and 
Root 2003), classification and regression trees 
(CART), kriging (Krige 1951), universal kriging 
(UK; Cressie 1990), and an assortment of nearest 
neighbor methods, including normalized and 
unnormalized Euclidean distance, Mahalanobis 
distance, independent component analysis 
(ICA), most similar neighbor (MSN, also called 
canonical correlation analysis), gradient nearest 
neighbor (GNN, also called canonical correspon-
dence analysis), and random forests (RF; Moeur 
and Stage 1995, Pierce et al. 2009, Hudak et al. 
2008, Wilson et al. 2012, Breiman 2001). A dis-
tinguishing factor among all of these methods is 
whether they allow for the use of categorical pre-
dictor variables as well as continuous variables.

Linear models use the values of one or more 
predictor variables and a set of coefficients to 
predict the value of a response variable. Most 

classification and regression tree (CART) analy-
ses use a look- up table or classification rules to 
match a response variable with input character-
istics (Breiman 2001, Pierce et al. 2009, Rollins 
2009). Random forests uses a set of decision trees 
(a “forest”) to predict which among the refer-
ence data (e.g., forest plots) are most similar to 
the characteristics at a target location, includ-
ing both continuous and categorical variables 
(Cutler et al. 2007). Kriging is a form of interpo-
lation, using “a Gaussian process governed by 
prior covariances” (Krige 1951). Universal krig-
ing is similar to kriging, but with a local trend; 
it can be viewed as a point interpolation, using 
a point map as input and returning a raster map 
with estimations (Cressie 1990). Nearest neigh-
bor methods represent a more recent approach 
to mapping forest attributes, and use a set of 
numerical predictors (often spectral and environ-
mental continuous variables) to assess which of 
the candidate reference data (e.g., field plots) are 
most similar to each target (map) location (Pierce 
et al. 2009). Using continuous variables only, 
most similar neighbor (MSN) uses a similar-
ity measure that employs canonical correspon-
dence analysis to summarize the multivariate 
relationships between the set of target data and 
the set of reference data derived from field sam-
ples (Moeur and Stage 1995). Similarly, gradient 
nearest neighbor (GNN) imputation also utilizes 
canonical correspondence analysis, but incor-
porates the direct gradient analysis in assigning 
weights to predictor variables (Ohmann and 
Gregory 2002, Pierce et al. 2009). GNN and MSN 
techniques assign values at each target location 
that are the original values measured at a field 
plot, while regression- based and interpolation 
methods assign the modeled values (Pierce et al. 
2009). The GNN and MSN techniques give users 
the option to choose multiple nearest neighbors 
in order to predict continuous variables, as in 
k- nearest neighbor techniques (e.g., McRoberts 
2009, Wilson et al. 2012).

Recent studies have used a variety of these 
methods to impute forest structure variables 
or forest plots to target data, and have in some 
cases compared the robustness of various meth-
ods. In a project focused on estimating the tree 
mortality, Drury and Herynk (2011) used a CART 
procedure to create a national- scale 30- m grid of 
tree- list plots having the median bark thickness 
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within stratifications of existing vegetation type, 
biophysical setting, succession class, and canopy 
bulk density. Among several methods, Pierce 
et al. (2009) found that GNN performed best for 
forest structure variables in Oregon, while lin-
ear models and universal kriging demonstrated 
stronger performance for both forest struc-
ture and canopy variables in Washington and 
California. Among the nearest neighbor meth-
ods, Hudak et al. (2008) found that random for-
ests produced the best results for predicting the 
plot- level basal area and tree density and was the 
most robust and flexible method for a study area 
in north- central Idaho.

In this study, we describe the methods for 
developing a tree- list data set for the purpose of 
using forest inventory data with national- scale 
wildfire simulations, among others. Potential 
uses of this tree list include estimating the effect 
of fuel treatments and wildfires on mortality and 
carbon stores. For use in these research appli-
cations, the tree- list data set needed to be com-
patible with several other existing data sets: 
(1) Landscape Fire and Resource Management 
Planning Tools (LANDFIRE) vegetation and 
fuels data, which provide landscape inputs to 
the wildfire simulations (Rollins 2009; data avail-
able at www.landfire.gov), and (2) outputs of 
the wildfire simulations, including continental- 
scale burn probability grids and flame length 
grids from Fire Program Analysis project (FPA; 
Finney et al. 2011). The LANDFIRE program is 
shared between the wildland fire management 
pro grams of the U.S. Department of the Interior 
and U.S. Department of Agriculture and was pre-
cipitated by the National Fire Plan of 2000, which 
tasked LANDFIRE with producing landscape- 
scale geospatial products to support planning, 
operations, and management across land owner-
ship boundaries. Major advantages of LANDFIRE 
data are that they provide seamless coverage of 
variables necessary for fire models across the 
United States, and the data are publicly avail-
able. LANDFIRE vegetation and fuels data serve 
as inputs for a number of fire modeling efforts, 
including the above- referenced continental runs 
of the Large Fire Simulator (FSim) conducted by 
Fire Program Analysis (FPA). Thus, LANDFIRE 
data were chosen as target data for the tree list, 
so that the tree list would be consistent with 
the outputs of previous fire modeling efforts, and 

could be used in future research, including the 
calculation of risk to terrestrial carbon resources 
from wildfire. However, the level of detail in the 
LANDFIRE data is not sufficient for applications 
such as basal area determination and treatment 
effectiveness. Hence, the current effort to pro-
duce a tree- list data set links each LANDFIRE 
pixel to an FIA plot, thus enabling users to link to 
the extensive database for each FIA plot, which 
includes the number, size, and species of each 
tree, among many other attributes.

With the requirement for having compatibil-
ity between the tree- list data and the vegetation 
and fuels data provided by LANDFIRE, most 
of the methods listed above were precluded. 
For example, kriging would model the values 
based on the point plot data, but would not 
have good correspondence with the LANDFIRE 
data. In addition, the vegetation group data are 
categorical, while other predictor variables are 
numerical and continuous. This limits the set 
of possible methodologies to classification trees 
(i.e., Pierce et al. 2009). We chose random forests 
as our methodology because it leverages a “for-
est” of classification trees in order to produce 
high accuracies and model complex interactions 
among predictor variables, two notable strengths 
of this methodology over other statistical clas-
sifiers (Breiman 2001, Cutler et al. 2007). The 
modified random forests method used here eval-
uates a set of forest plots and identifies the best- 
matching plot for each grid cell on the landscape. 
Several important differences exist between the 
random forests methodology used here and that 
of Drury and Herynk (2011): (1) We limited our 
scope to a single set of nationally consistent plot 
data, whereas they obtained a variety of fixed-  
and variable- radius plot designs from multiple 
agencies; (2) because tree mortality was not the 
primary variable of interest, we did not use it 
as a predictor; and (3) we wanted to identify a 
single best- matching plot for each point on the 
landscape rather than utilizing the median plot 
in a class, thus retaining more variability on the 
landscape.

Given our objective to find the single best- 
matching plot for each pixel on the landscape, 
we optimized our model for a set of response 
variables linked to the prediction of terrestrial 
carbon: forest cover, forest height, and existing 
vegetation group (EVG). Here, we demonstrate 

http://www.landfire.gov
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high model accuracies and high levels of agree-
ment between the target (LANDFIRE) and 
imputed data for a random forests imputation 
run on all 997,153,322 forested pixels in the 
western United States at 30- m grid resolution. 
The primary output of this project is a raster 
grid of plot identifiers, which can in turn be 
used to generate a list of the number, size, and 
species of trees assigned to each pixel.

METHODS

In this section, we first describe our data 
sources, then present a brief description of the 
modified random forests methodology and how 
we applied it specifically to our problem. We fin-
ish by offering a description of the methods we 
used for verifying our outputs.

Data sources
Forest Inventory Analysis forest plot data.—We 

obtained the measurements of tree size, height, 
species, and status (dead or alive) from the US 
Forest Service’s Forest Inventory Analysis (FIA). 
FIA measures the forest attributes on a network of 
plots in all 50 states using a standardized plot 
design that was implemented beginning in 1999 
(Fig. 1) (O’Connell et al. 2014). Version 5.1 data 
were downloaded from the FIA Data Mart (http://
apps.fs.fed.us/fiadb-downloads/datamart.html, 
on 11 April 2012). We restricted the plot data to 
single- condition forested plots only; conditions 
are defined by changes in vegetation or land use, 
and some plots have more than one condition 
because of harvesting or fire, for example 
(O’Connell et al. 2014). Because we wanted the 
plots used in imputation to be more or less 
homogenous, we used single- condition plots only.

The LANDFIRE Reference Database.—The subset 
of FIA plots used in this study were further 
restricted to those in the LANDFIRE Reference 
Database (LFRDB), a database of plots leveraged 
by LANDFIRE in the production of their spatial 
data sets. The LFRDB was the sole source of three 
stand- level descriptions not available from the 
native FIA data: existing vegetation cover (EVC), 
exi sting vegetation height (EVH), and existing 
vegetation group (EVG), which were assigned to 
FIA plots by the LAND FIRE project based on 
geographic location and the characteristics of the 
trees recorded. Existing vegetation group describes 

the ecological sys tem (NatureServe 2009). Existing 
vegetation cover represents the vertically projected 
percent cover of the live canopy layer. Existing 
vegetation height is the average height of the 
dominant vegetation. Once plots were restricted to 
single- condition forested plots that appear in the 
LFRDB, 15,333 plots in the western United States 
were available for imputation.

LANDFIRE Target Landscape Data.—LANDFIRE 
provides a suite of topographic, biophysical, and 
vegetation data at 30- m grid resolution for the 
western United States that served as the target 
data for this project. Existing vegetation group is 
assigned to each pixel using a set of hierarchical 
and iterative CART models, Landsat imagery, 
biophysical gradients, and training databases 
developed from the LFRDB (Rollins 2009). 
Existing vegetation cover and height are mapped 
using regres sion tree- based models, empirical 
models, and spectral mixture models, leveraging 
spectral information from Landsat imagery and 

Fig. 1. The nationally standard FIA Phase 2 plot 
design (from O’Connell et al. 2014). Trees larger than 
12.7 cm in diameter at breast height are mea sured on 
the four 7.3 m radius subplots, and trees less than 
12.7 cm in diameter are measured on the nested 2.1 m 
radius microplots. Conifer seedlings at least 15.2 cm 
tall and hardwood seedlings at least 30.5 cm tall are 
measured on microplots. In some areas, larger trees 
are measured on the 18.0 m radius macroplots, in order 
to avoid under-  or overcounting of large rare trees.

http://apps.fs.fed.us/fiadb-downloads/datamart.html
http://apps.fs.fed.us/fiadb-downloads/datamart.html
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land cover information from the National Land 
Cover Database (Homer et al. 2004).

Random forests imputation
In this modified random forests imputation, a 

set of reference observations comprising the FIA 
plot data was imputed to a set of target points 
corresponding to the center of each 30- m pixel of 
the LANDFIRE landscape grid (Crookston and 
Finley 2008). The output consists of a raster grid 
attributed with the best- matching plot ID for 
each pixel (Fig. 2). The modified random forests 
model was created by inputting the forest plot 
data to the yaImpute package in the statistical 
program R (Crookston and Finley 2008, R 
Foundation 2016). We refer to our method as a 
modified random forests approach because 
yaImpute adapts the randomForest package in 
several ways, most notably: (1) by using the 
“nodes” matrix directly to compute proximity 
without the necessity of holding the often- large 

proximity matrix in memory and (2) it is possible 
to have more than one response variable. We 
chose to use the modified random forests app-
roach because our study design ideally involved 
the use of more than one response variable. 
However, although we did utilize the modified 
random forests approach as coded in yaImpute, 
we often refer to our method in the remainder of 
the manuscript as simply “random forests” for 
the sake of brevity.

Random forests requires all predictor variables 
to be available for both the reference and target 
data, which greatly constrains the list of possi-
ble variables. After examining the variables used 
in other imputation efforts and testing a more 
extensive list of predictor variables, we chose to 
include the variables listed in Table 1 based on 
their variable importance scores, the expected 
relevance to forest characteristics, and the lack 
of redundancy with other predictor variables: 
three topographic variables (slope, aspect, and 

Fig. 2. Random forests requires two sets of input data, which are referred to as the reference data and the 
target data. The reference data refer to the more detailed observations at sparse points on the landscape, in this 
case, the FIA plot data. The target data represent the whole landscape and are often derived from satellite data; 
in this case, we used the raster LANDFIRE data. The same set of predictor variables must be available for both 
the reference and target data. In this simplified schematic example, we used only two predictors: precipitation 
and vegetation group. The goal of the random forests imputation is, for each pixel of raster data, to find the forest 
plot that is the best match, based on a suite of predictor variables. In this example, the characteristics of plot 1 are 
obviously much closer to the characteristics of the center pixel than those of plot 15,333, so plot 1 would 
be matched (or “imputed”) to the center pixel. The output from our random forests method is a raster grid of 
forest plot ID numbers, which can be linked to characteristics of the plots, including the number, size, and 
species of trees.
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elevation), two location variables (latitude and 
longitude), three vegetation variables (forest 
cover, forest height, and vegetation group), and 
six biophysical variables (maximum tempera-
ture, minimum temperature, relative humidity, 
precipitation, photosynthetically active radia-
tion, and vapor pressure deficit).

The predictor variables for the reference (plot) 
data were derived as follows. FIA collects numer-
ous variables at plots, but for the imputation we 
directly utilized only elevation, slope, aspect, 
latitude, and longitude (the latter two attributes 
are not publicly available, but were acquired via 
a Memorandum of Cooperation signed between 
the authors of this manuscript and FIA). The 
three vegetation variables are calculated based 
on FIA plot characteristics by the LANDFIRE 
program, as noted above, which calculates EVH 
(hereafter referred to as “forest height”), EVC 
(“forest cover”), and EVG (“vegetation group”) 
for each plot in their LANDFIRE Reference 
Database. These data are also not publicly avail-
able, but were acquired via the Memorandum 
of Cooperation. A suite of biophysical pre-
dictors was derived via an overlay of the plot 
locations with gridded biophysical data from 
the LANDFIRE project (maximum tempera-
ture, minimum temperature, relative humidity, 

precipitation, photosynthetically active radia-
tion, and vapor pressure deficit).

The same suite of predictor variables was 
obtained from various LANDFIRE raster data 
sets for the target (gridded) data. The three topo-
graphic variables (elevation, slope, and aspect) 
and the three vegetation variables (forest cover, 
forest height, and vegetation group) are publicly 
available as 30 × 30 m rasters (www.landfire.
gov, version 1.2.0). The biophysical predictors 
are available at the same resolution from the 
LANDFIRE project.

Because we wanted to optimize the tree list for 
estimating carbon storage, we chose the response 
variables of forest cover, forest height, and vege-
tation group. Note that these also appear nomi-
nally in the list of predictor variables. Although 
the terms “predictor” and “response variable” 
are used in the descriptions of the random forests 
methodology, they do not have the same meaning 
as in other statistical approaches where the pre-
dictor variables are used to predict the value of 
the response variable. In random forests, the pre-
dictor and response variables are used to find the 
associations among the reference data and to find 
which observations are most like one another. In 
that sense, a variable can serve as both predictor 
and response without conflict. It is important that 

Table 1. Predictor variables for reference (FIA plots) and target (LANDFIRE raster) data.

Category Variable
Source for reference  

(FIA plot) data
Source for target  

(LANDFIRE raster) data

Topographic Slope FIADB LANDFIRE National 
 topographic layers

Aspect (sine and cosine) “ “
Elevation “ “

Location Latitude MOC with FIA Center of 30- m pixels for 
LANDFIRE Refresh 2008 
layers

Longitude “ “
Vegetation Existing Vegetation Cover (forest cover) LFRDB (derived from FIA 

plot data)
LANDFIRE Refresh 2008 

layers
Existing Vegetation Height (forest height) “ “
Existing Vegetation Group (vegetation 

group)
“ “

Biophysical Maximum temperature Overlay of plot  
location with LANDFIRE  
biophysical grid

LANDFIRE biophysical 
grid

Minimum temperature “ “
Relative humidity “ “
Precipitation “ “
Photosynthetically active radiation “ “
Vapor pressure deficit “ “

http://www.landfire.gov
http://www.landfire.gov
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the response variable should not be used also as 
a predictor variable for the target data, and our 
methodology meets this criterion, as the three 
response variables were derived using different 
data sources and methodologies than were used 
to derive the predictor variables for the target 
data: For the reference data, the response vari-
ables we call forest cover, forest height, and veg-
etation group were based on the characteristics 
of the trees in the FIA plots, and for the gridded 
target data, the predictor variables we call forest 
cover, forest height, and vegetation group were 
based on satellite imagery and land cover data, 
among other inputs. We expect that using sev-
eral of the predictor variables from the reference 
data as response variables will have the effect 
of increasing accuracy for these three variables 
over more traditional approaches, an innovation 
of our approach. It is also important to note that 
although the response variables are forest cover, 
forest height, and vegetation group, that is not 
what we are predicting: We are predicting the 
plot that is the best match for each pixel and out-
putting a map of plot IDs, which users can link to 
data in the FIA databases.

At the time of this study, the randomForest 
package in R had a maximum of 32 classes of data 

it could use, and there were more than 32 vege-
tation groups present in the plot data; therefore, 
we performed the imputation on one zone of 
LANDFIRE data at a time, which always  limited 
the number of classes to less than 32 (Fig. 3). 
From the list of 15,333 plots in the western United 
States, we created a subset consisting only of the 
plots with vegetation groups appearing in each 
zone. For example, when performing the imputa-
tion for zone 9, we limited the population of plots 
available for imputation to only those plots with 
vegetation groups that LANDFIRE had mapped 
in zone 9. Then, we formed the random for-
est model using the suite of predictor variables 
listed in Table 1. For each zone, we employed 
249 total decision trees, with these trees divided 
equally among the three response variables: In 
other words, there were 83 decision trees to pre-
dict forest height, 83 for forest cover, and 83 for 
vegetation group. We decided on 249 trees after 
finding that the error rates barely differed from 
those of parameterizing the model using 500 
trees, but saved a significant amount of computa-
tional time. A short description of how each deci-
sion tree is constructed follows, based on Cutler 
et al. (2007). Each decision tree is formed using 
a random sample of 66% of the plots, and the 
remainder (referred to as the out- of- bag observa-
tions) are set aside to assess the accuracy. Then, 
the bootstrap sample is divided into two groups 
in a process called binary partitioning. In order 
to determine how to partition the data, a small 
number of randomly selected variables (in this 
case, the square root of the number of predictor 
variables) are examined to see which best mini-
mizes the variance in the response variable. That 
variable is chosen, at a point called a “node,” 
and the bootstrap sample is divided into two 
groups, or “buckets.” Binary partitioning contin-
ues until the variance in each bucket cannot be 
reduced significantly, or until further divisions 
cannot be made without reducing the number 
of observations in a bucket to less than 5. Each 
“fully grown” decision tree is used to predict the 
out- of- bag observations, in order to assess the 
model’s accuracy. To better illustrate this process, 
we show a simplified schematic of two trees in 
Fig. 4. In random forests, the decision trees can-
not be viewed, so we cannot show one here, but 
Fig. 4 is provided as an illustration of how the 
method works.

Fig. 3. The 27 LANDFIRE zones in the western 
United States.
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Once the “forest” of decision trees has been 
grown using the plot data, they are used to pre-
dict the best- matching plot for each pixel of the 
gridded target data. For a chosen pixel, its suite 
of predictor variables are used to determine its 
terminal bucket for each decision tree. The plots 
that appear in the same terminal bucket with the 
pixel observation are recorded for each of the 249 
trees (recall that there are 83 decision trees to pre-
dict forest height, 83 for forest cover, and 83 for 
vegetation group). The plot that most frequently 
co- occurs with the pixel observation across all 
249 trees (and thus all three response variables) 
is chosen as the best match for that pixel, with 
ties split randomly. In this project, we used ran-
dom forests to find the best- matching FIA plot 
for each forested 30- m pixel of LANDFIRE data, 
imputing an FIA plot number to each pixel, and 
generating a raster grid of the best- matching plot 
numbers. The plot numbers can be linked back 
to the database of plot characteristics, so for any 
pixel on the landscape, maps can then be made of 
any number of plot characteristics, ranging from 
the response variables (cover, height, and vegeta-
tion group) to other plot characteristics that were 
neither predictor nor response variables (such as 

terrestrial carbon, basal area, or the number of 
trees).

We obtained an overall accuracy of the model 
by taking the out- of- bag misclassification for each 
tree and considering them in aggregate to assess 
the overall quality of the random forests model. 
We report the error rates for four randomly chosen 
zones in Table 2. Error rates were similar across 
the four zones for the three response variables. 
The low error rates indicate high model accuracy.

FIA data security restrictions did not allow the 
distribution of the tree list if any plot with its cen-
ter located in a pixel was imputed to that pixel, 
which occurred at 3679 of the 15,333 plot loca-
tions. For these plots, we normalized each of the 
predictor variables to a scale of 0–1, then found 

Fig. 4. A “forest” of decision trees was constructed from the forest plot observations. This figure shows a 
simplified schematic example of how two of the trees might look. Once the forest of trees is constructed, 
observations from each cell of the target data are passed down the trees, and the plots that end up in the terminal 
bucket (lowest) with the observation are recorded. The plot assigned to that pixel is the one that appears most 
frequently in the terminal bucket with it.

Table 2. Out- of- bag error rates for each response 
variable in four randomly chosen LANDFIRE zones.

Zones
Forest 

cover (%)
Forest height 

(%)
Existing vegetation 

group (%)

7 7.79 2.77 1.13
9 6.99 1.79 0.897
12 7.98 2.29 1.08
21 9.85 3.02 1.87
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the second best- matching plot, and imputed that 
plot ID instead. In the research (nondistributed) 
version of the tree list, we retained the original 
plot ID values.

Fidelity Compared to LANDFIRE Attributes and 
random chance

Another measure of the performance of this 
modified random forests method was to com-
pare the characteristics of the imputed plots to 
the gridded target data. Specifically, we compa-
red the forest cover, forest height, and vegeta-
tion group of the imputed plot data with those of 
the gridded target data and report the percent-
age agreement for each LANDFIRE zone and the 
US West as a whole. For the US West, we also 
calculated and reported Cohen’s kappa statistic 
to account for agreement by random chance in 
forest cover, forest height, and vegetation group, 
with complete agreement being ĸ = 1 and agree-
ment only by random chance being ĸ = 0 (Cohen 
1960). Bar plots were used to compare the pro-
portion of the data in each cover, height, and 
vegetation class across the three data sources 
(FIA plots, target LANDFIRE data, and imputed 
data). In addition, we calculated the physical 
distance from each pixel center to the center of 
the plot that was imputed, to assess whether 
random forests preferentially imputed plots 
from nearby.

RESULTS

Plot identification numbers were imputed at 
30 × 30 m resolution to 997,153,322 forested pix-
els in the US West. We found that plots tend to 
impute to a cluster of pixels, due to similarities in 
the topographic and biophysical predictor vari-
ables, as clustering is not imposed by the random 
forests method (Fig. 5).

During fidelity assessment, we compared the 
values of the response variables (forest cover, 
forest height, and vegetation group) in the 
imputed plot data to the LANDFIRE target ras-
ter grids in order to obtain the estimated levels 
of agreement for the tree list. For all forested 
pixels in the US West, within- class agreement 
was 79% for forest cover, 96% for forest height, 
and 92% for vegetation type. In addition, agree-
ment for these variables is high in most zones 
(Table 3).

Forest height
LANDFIRE maps forest height in five classes: 

0–5 m, 5–10 m, 10–25 m, 25–50 m, and greater 
than 50 m. The LANDFIRE organization also 
computes the height of FIA forest plots in its 
LFRDB to tenths of a meter. We compared the 
height of each imputed plot to the height class 
mapped by LANDFIRE for the corresponding 
pixel. Overall within- class agreement for height 
varied between 82% and 100% across the 27 com-
pleted zones (Table 3). For the western United 
States as a whole, the overall percentage agree-
ment was 96% and Cohen’s kappa was 0.93. The 
imputation reproduced the patterns in the grid-
ded LANDFIRE data (Fig. 6).

The proportion of the landscape in each height 
class was similar across the LANDFIRE data, the 
imputed data, and the FIA plots (Fig. 7). However, 
the distribution of height classes was more sim-
ilar between the LANDFIRE and imputed data 
than in the FIA data, with the LANDFIRE and 
imputed data somewhat underrepresenting the 
lowest height class (0–5 m) and overrepresenting 
the 5-  to 10- m height class compared with the 
FIA plot data. As the FIA data constitute a ran-
dom sample of forested points on the landscape, 
they likely represent the proportion of height 
classes present on the landscape quite well. It is 
not surprising that the imputed data would bet-
ter match the LANDFIRE data, however, because 
the LANDFIRE gridded data were used as tar-
get data in this project. The close correspondence 
between the three distributions indicates that 
LANDFIRE data accurately capture the distribu-
tion of height classes present in a random sample 
of the landscape (as conveyed by the FIA data) 
and that the imputed data correspond closely 
with the LANDFIRE target data, an indication 
of high model accuracy. Within- class agreement 
was related to the number of plots in a height 
class, with rarer classes having lower agreement 
rates (Fig. 8).

Forest cover
Forest cover is mapped in nine classes by 

LANDFIRE: 10–19%, 20–29%, 30–39%, 40–49%, 
50–59%, 60–69%, 70–79%, 80–89%, and 90–100%, 
with areas of tree cover less than 10% not consid-
ered forested. For FIA plots, forest cover is esti-
mated to the nearest percentage in the LFRDB. In 
the 27 LANDFIRE zones in the western United 
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States, overall within- class agreement for cover 
varied between 40% and 95% (Table 3). For the 
western United States as a whole, percentage 
agreement was 79% and Cohen’s kappa was 0.75. 
In general, landscape patterns of forest cover in 
the target data were well reproduced by the 
imputed data (Fig. 9). The proportion of the land-
scape in each cover class was similar for the 
LANDFIRE target data, the imputed data, and 
the FIA plots (Fig. 10). The imputed data, how-
ever, underrepresented the lowest cover class 
(10–19%) compared with the FIA and LANDFIRE 

data. The number of plots in a cover class affected 
the within- class agreement rates, with rarer cover 
classes having lower rates of agreement (Fig. 11).

Vegetation group
The third response variable, vegetation group, 

is mapped to the gridded target data by 
LANDFIRE, and assigned to FIA forest plots in 
the LFRDB. Note that all vegetation groups 
appear in the LANDFIRE and imputed data 
appear in the FIA plots (n = 36), but not all vege-
tation groups represented by FIA plots appear in 

Fig. 5. A subset of the landscape in zone 19, the Swan Valley of Montana. The top panel is NAIP 1- m imagery 
provided by the US Forest Service image server. The lower panel shows the plot IDs for the plots most frequently 
assigned to each pixel, with each color representing a unique plot imputed to the same subset of the landscape 
as in the top panel (white signifies nonforested pixels). In the left half of the imagery, it is apparent that the 
landscape is dominated by a checkerboard pattern, the legacy of extensive timber harvest on private lands, and 
less extensive harvest on public lands. On the right side of the imagery, vegetation is dominated by topographic 
gradients in a mountainous landscape. The imputation was able to pick up these patterns, with the outline of the 
checkerboard visible in the left half of the lower panel and the topographic gradients visible in the clustering of 
the plots on the right half of the lower panel.
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the LANDFIRE (n = 31) or imputed (n = 30) data. 
In other words, FIA plots could be keyed to a 
vegetation group that did not appear in the grid-
ded LANDFIRE data (details are given in 
Table 4). Vegetation group 701 (introduced ripar-
ian vegetation) appeared in the gridded 
LANDFIRE data, but only one FIA plot keyed to 
this vegetation group, and it was never used in 
the imputation, as it was presumably not a good 
match for the pixels where it appeared in the 
LANDFIRE data in terms of the other predictors 
(cover, height, x, y, and biophysical variables).

Overall agreement for vegetation group var-
ied between 48% and 97% across the 27 zones 
(Table 3). For the western United States, within- 
class agreement was 92% and Cohen’s kappa was 
0.92. In general, the random forests imputation 
accurately reproduced the patterns in vegetation 

group in the LANDFIRE data (Fig. 12), but the 
rates of agreement for the Western Riparian 
Woodland and Shrubland category (group 635) 
were low in many zones. This category had few 
plots (n = 135), and most of these plots were 
located in mesic coastal areas of Washington and 
Oregon. Hence, random forests rarely imputed 
them in the drier colder continental sections of 
the US West and instead tended to impute the 
plots with other vegetation types common to 
the area. Even with this limitation, the propor-
tion of the landscape in each vegetation group 
was similar across the FIA plots, LANDFIRE, 
and imputed data (Fig. 13). Vegetation group 
615 (Douglas- fir–Western Hemlock Forest and 
Woodland) was somewhat overrepresented in 
both the LANDFIRE and imputed data, while 
622 (Lodgepole Pine Forest and Woodland) 
was somewhat underrepresented in both the 
LANDFIRE and imputed data compared with 
the FIA plots. Interestingly, the LANDFIRE 
data overrepresented 635 (Western Riparian 
Woodland and Shrubland) compared with the 
FIA data, while the proportion imputed by ran-
dom forests was similar to that of the FIA plots.

Similar to the results for height and cover, 
agreement was lower in rarer classes of vege-
tation group, although there were exceptions 
(Fig. 14). This result makes sense, because it is 
unlikely in rare types that random forests can 
match all three of the response variables (for-
est cover, height, and vegetation group) when 
choosing from a limited pool of candidate forest 
plots, and must in essence choose which of these 
response variables is most important to match.

Distance
In most cases, random forests chose nearby 

plots for imputation to a pixel. In some cases, 
likely when a rare plot was required, the plots 
were imputed from over 1500 km away (Fig. 15). 
Distance from the pixel center to the imputed 
plot center is shown for a subset of the landscape 
in Fig. 16. Nearby plots are preferred for imputa-
tion not only because of similarity in the x and y 
coordinates, but because of the similarity in bio-
physical variables, which indicate the similarity 
in site descriptors including species composition, 
site productivity, disturbance history and regime, 
and climatic characteristics that were not directly 
included in the imputation.

Table 3. Within- class agreement in percentage bet-
ween LANDFIRE target data and imputed plot data, 
summarized by LANDFIRE zones in the US West.

Zones
Forest 
cover

Forest 
height

Vegetation 
group

No. of 
pixels

z01 68 90 92 78,355,830
z02 73 82 91 39,468,642
z03 60 91 94 35,678,822
z04 57 94 82 19,058,444
z05 65 95 88 4,431,257
z06 70 95 92 59,959,878
z07 73 96 92 73,522,690
z08 40 93 87 3,897,792
z09 86 97 84 44,138,635
z10 80 96 97 113,675,398
z12 92 99 94 32,167,916
z13 90 85 96 2,311,150
z14 92 100 97 695,799
z15 85 98 93 58,799,790
z16 84 100 93 42,812,230
z17 95 99 95 23,553,327
z18 86 92 63 7,734,012
z19 87 99 96 57,959,737
z20 59 96 83 11,108,613
z21 81 96 92 45,645,598
z22 88 98 48 5,777,871
z23 92 100 96 38,898,791
z24 91 98 97 36,193,270
z25 70 98 91 18,027,523
z27 85 97 95 12,839,794
z28 78 98 93 103,288,833
z29 77 97 91 27,151,679
Overall 79 96 92 997,153,322

Note: Results are reported for the three response variables: 
forest cover, forest height, and vegetation group.
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Fig. 8. Within- class agreement vs. the number of 
plots in each height class.

Fig. 6. Forest height class is shown below for (a) the imputed tree- list data and (b) the LANDFIRE data. High 
within- class agreement is evident, as is the checkerboard pattern that also appeared in the NAIP imagery at left 
and the topographic gradients at right.

Fig. 7. The proportion of the plots or pixels in each 
height class for the LANDFIRE target data, the 
imputed data, and the FIA plots in the western United 
States.
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Fig. 9. Forest cover for the same subset of the landscape as in Fig. 7: (a) the imputed data and (b) the target 
LANDFIRE data. Here also, the checkerboard pattern of timber harvest is evident in the left half of the image, 
with the topographic gradients visible in the right half of the image.

Fig. 10. The proportion of the plots or pixels in each cover class for the LANDFIRE target data, the imputed 
data, and the FIA plots in the western United States.
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Frequency of imputation
Plots tended to impute to a number of pixels, 

with counts between 10,000 and 100,000 being 
the most frequently occurring (Fig. 17). It was 
rare that a plot imputed to fewer than 10 pixels, 
with the number of times this occurred being 
around 1500.

As mentioned above, of the 15,333 plots 
used in this imputation, 3679 (24%) of the plots 
imputed to the actual pixel where their cen-
troid was located. There are many reasons why 
a plot might not impute to the same pixel as 
its centroid location. The footprint of a single 
plot covers approximately 13 pixels of a 30- m 
grid, due to the splayed four- subplot design 
seen in Fig. 1, even though the combined area 
of a single plot is less than that of a single 30- m 
grid cell. We found that the characteristics of a 
pixel of LANDFIRE data often do not match the 
characteristics recorded by FIA for a plot cen-
tered on that pixel. This may result because the 
characteristics of the plot as a whole (includ-
ing the cover, height, and vegetation type) will 
be driven more by the three subplots that are 
not located at the center pixel than by the one 
subplot located at the center pixel. Thus, the 
summary characteristics of a plot would not 
necessarily be expected to be a good represen-
tation of the characteristics of the center pixel, 
especially where landscape variability is high. 
In addition, LANDFIRE gridded data contain 
some level of error, as do the measurements 

taken at FIA plots. There may also be discrep-
ancies between the plot characteristics and 
LANDFIRE data due to temporal mismatches 
between when the plot was measured and the 
year the LANDFIRE data were mapped. Two 
examples of this are as follows: (1) The forest 
at the pixel grew between the time the plot was 
measured and the year LANDFIRE data were 
mapped, resulting in higher cover values and a 
higher number of shade- tolerant species, caus-
ing the vegetation group to change, and (2) the 
forest burned, resulting in changes in cover, 
height, and vegetation group. Changes in either 
type could cause the plot centered on that pixel 
to no longer be the best match for the pixel, and 
a different plot to be chosen by random forests. 
Temporal mismatches are not important to our 
analysis, because we wanted to choose the plot 
that best represented the characteristics of each 
pixel circa 2008, regardless of when the plot 
itself was measured.

Case study in zone 22: When random forests  
is wrong. Or is it?

In a departure from most other LANDFIRE 
zones, zone 22 had low agreement (48%) 
between the imputed data and target data for 
vegetation group. Examination of the confusion 
matrix for vegetation group for this zone sug-
gests that misclassification for vegetation group 
number 621 (Limber Pine Woodland) is driving 
the low accuracies for the zone (Table 5). Zone 
22 comprises the Wyoming Basin, a high- 
elevation inland cold plateau with few trees 
(Fig. 3). Many, if not most, of the forested pixels 
in zone 22 were located in riparian areas, which 
LANDFIRE had generally classified as Western 
Riparian Woodland and Shrubland (shown in 
the table as vegetation group number 635). As 
noted above, most of the FIA plots available for 
imputation in this vegetation group were 
located in the milder mesic climate of coastal 
Oregon and Washington, and were not suitable 
matches in this environment, based on the bio-
physical predictor variables. Because there were 
no biophysically appropriate Western Riparian 
Woodland and Shrubland plots available for 
imputation, random forests tended to choose 
plots with a vegetation group of Limber Pine 
Woodland (621) for imputation in zone 22 
instead (Fig. 18). We checked the FIA plots in 

Fig. 11. Within- class agreement vs. the number of 
plots in each cover class.
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the area and found that the most frequent vege-
tation group in this area was in fact limber pine 
rather than riparian, as suggested by the impu-
tation. In this case, where the imputation 
appeared to be “wrong” based on comparison 
with the LANDFIRE data, it in fact accurately 
reflected the attributes of FIA plots in the vicin-
ity. Random forests was able to discern that in 
this case, the biophysical and location predictor 
variables were more important than the vegeta-
tion group predictor variable, and assign the 
appropriate plots from a limited population.

DISCUSSION

Where the sparseness of forest inventory data 
limits direct estimates of forest biomass (Blackard 
et al. 2008), a method such as imputation can fill 
in the interstitial data values. Our effort to employ 
a random forests imputation suggests that it 
holds advantages over other methods because it 
allows both categorical and continuous predictor 
variables and the fidelity of predicted multivari-
ate response variables can be easily quantified. 
The technique is also repeatable when revisions 

Table 4. Existing vegetation group names and codes that were assigned to FIA plots in the western United 
States in the LANDFIRE Reference Database.

Name Code
Present in LANDFIRE 

gridded target data
Present in 

imputed data set

Unclassified Forest and Woodland 201
Unclassified Savanna 204
Aspen Forest, Woodland, and Parkland 602 x x
Aspen–Mixed Conifer Forest and Woodland 603 x x
Bigtooth Maple Woodland 605 x x
Chaparral 607 x x
Conifer–Oak Forest and Woodland 610 x x
Deciduous Shrubland 612
Desert Scrub 613
Douglas- fir Forest and Woodland 614 x x
Douglas- fir–Western Hemlock Forest and Woodland 615 x x
Grassland and Steppe 618
Juniper Woodland and Savanna 620 x x
Limber Pine Woodland 621 x x
Lodgepole Pine Forest and Woodland 622 x x
Douglas- fir–Ponderosa Pine–Lodgepole Pine Forest and Woodland 625 x x
California Mixed Evergreen Forest and Woodland 626 x x
Mountain Hemlock Forest and Woodland 627 x x
Mountain Mahogany Woodland and Shrubland 628 x x
Western Oak Woodland and Savanna 629 x x
Pinyon–Juniper Woodland 630 x x
Ponderosa Pine Forest and Woodland and Savanna 631 x x
Red Alder Forest and Woodland 632 x x
Red Fir Forest and Woodland 633 x x
Redwood Forest and Woodland 634 x x
Western Riparian Woodland and Shrubland 635 x x
Sitka Spruce Forest 638 x x
Spruce- Fir Forest and Woodland 639 x x
Subalpine Woodland and Parkland 640 x x
Western Hemlock–Silver Fir Forest 642 x x
Douglas- fir–Grand Fir–White Fir Forest and Woodland 643 x x
Western Larch Forest and Woodland 644 x x
Western Red- cedar–Western Hemlock Forest 645 x x
Bur Oak Woodland and Savanna 659
Juniper–Oak 696 x x
Introduced Riparian Vegetation 701 x

Note: Note that not all vegetation groups assigned to FIA plots are present in the forested pixels of the LANDFIRE gridded 
target data for the same region, or in the imputed tree- list data set.
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or updates of target data or reference data become 
available.

While not new here, the use of multivariate 
response variables is relatively recent (Crookston 
and Finley 2008) and constitutes one of the 
strengths of the modified random forests method 
used here. In order to optimize the output for 
predicting risk to carbon from wildfire, we chose 
three response variables: forest cover, forest 
height, and vegetation group. We allocated the 

number of decision trees predicting each equally 
(83 for forest cover, 83 for forest height, and 83 
for vegetation group). However, for other appli-
cations, if one of the response variables was con-
sidered more critical than the others, it could be 
weighted more heavily (by allocating more of the 
decision trees to it).

While we found strong agreement between the 
gridded target LANDFIRE data and the imputed 
data, agreement could be improved in the future 

Fig. 12. Vegetation group for the same subset of the landscape shown in the figures above: (a) the imputed 
data and (b) the LANDFIRE data. While the agreement between the two data sources is generally high, the 
Western Riparian Woodland and Shrubland category is assigned less often in the imputed data than in the 
LANDFIRE data.
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by including more forest plots, especially those 
in rare types. For the purposes of this project, a 
“type” can be considered the combination of for-
est cover, forest height, and vegetation group for 
a plot. We were restricted in the number of plots 
by both the FIA and LFRDB databases. However, 
we considered the reliability of the data in the 
FIA plots to be paramount and superior to 
other sources. The population of possible pre-
dictor variables was severely restricted because 
the variables must appear in both the reference 
(plot) and target (gridded) data sets, and of this 
population, we deemed that forest cover, forest 
height, and vegetation type were necessary to 
our study. It was possible to obtain these vari-
ables for the FIA plots only in the LFRDB, so 

we were thus restricted in the number of plots 
available for imputation. Nonetheless, the 15,333 
plots in our data set represent a large amount 
of the variability present in the western United 
States.

The data set described here will enable future 
research in a number of directions. Because 
the imputation in essence assigns the best sta-
tistically matching FIA plot to each 30 × 30 m 
pixel, the resulting gridded map of plot IDs 
can be linked back to the FIA databases, from 
which many characteristics of the plot can be 
extracted. Thus, the map of plot IDs can be 
used to generate maps of basal area, or lists of 
the trees present at any pixel or group of pix-
els, among many other applications. Because 
each pixel is linked to a tree list, this data set 
provides the necessary information for ini-
tializing models such as the Forest Vegetation 
Simulator, including tree number, species, size, 
and status (Dixon 2002). Although the tree list 
was designed for this type of use, we have 
recently become aware of a number of other 
potential uses, including initializing wind 
fields in WindNinja and initializing forest 
stands in FireBGC.

The original purpose of this research effort was 
to predict the carbon risk from wildfire. To this 
end, the tree list can be intersected with mod-
eled burn probability and fire intensity distri-
butions from the western United States (Finney 
et al. 2011) to estimate risk to terrestrial carbon 
resources from wildfire. In this process, mortal-
ity and carbon storage for each plot are modeled 
at each fire intensity class; summaries by vege-
tation type or geographic area are obtained by 

Fig. 13. The proportion of the plots or pixels in each existing vegetation group for the LANDFIRE target data, 
the imputed data, and the FIA plots in the western United States. The codes can be used to look up the name of 
the vegetation group in Table 4.

Fig. 14. The number of plots in each vegetation 
group and the corresponding agreement (as a pro-
portion).
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weighting the plot results by probabilities of each 
intensity. Stand and landscape effects of earlier 
wildfires and intentional fuel treatments on car-
bon or forest structure can be estimated by intro-
ducing changes to the landscape and re- running 
the fire simulations (which changes the fireline 
intensity probability distributions). Thus, the 
implications of fuel treatments on risk to carbon 
from wildfire can be illuminated.

The imputations are also useful for examining 
the potential thinning volume associated with 
fuel treatments and alternative fire risk reduction 
activities. Thinning is a critical part of restoration 
treatments prior to the introduction of prescribed 

burning in many low-  to mid- elevation forests of 
ponderosa pine and mixed conifer in the west-
ern United States (Graham et al. 2004, Agee and 
Skinner 2005, Martinson and Omi 2013). Because 
this data set can be linked back to the number, 
size, and species of trees modeled for each pixel, 
the data set can be used to apply treatment pre-
scriptions and estimate the characteristics of 
trees that would thus be removed. Estimating the 
potential volume of merchantable and nonmer-
chantable forest products available from treat-
ment activities is helpful for treatment planning 
for national forests, as well as economic cost- 
benefit analyses.

Fig. 15. Histogram of distances from imputed plot center to pixel center for the US West.

Fig. 16. Distance from the pixel center to the center of the plot that imputed to that pixel, for the same subset 
of the landscape as in previous figures.
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CONCLUSIONS

The modified random forest approach presen-
ted here produced high within- class agreement 
with gridded landscape data for the western 
United States for our three response variables. 
Within- class agreement for forest cover was 
79%, agreement for forest height was 92%, and 

agreement for vegetation group was 96%. The 
methodology presented here is novel in that the 
three response variables served also as predictor 
variables for the reference data, with the expected 
result of producing high rates of agreement 
between the gridded target landscape data and 
the imputed data for these three variables. We 
chose this methodology in order to optimize the 
imputed data for the prediction of risk to carbon 
resources from wildland fire and for biomass cal-
culations. In that sense, this tree list might not be 
the optimal data set for all applications (e.g., 
mapping of tree species envelopes). However, 
the methodology presented here is flexible and 
allows users to select predictor and response 
variables best suited to their research goals.

Because the spatial data set presented here 
can be linked to the extensive list of attributes 
recorded by FIA for each plot, a number of forest 
characteristics can be estimated directly from the 
data set. In addition, the data set can be used to 
initialize a number of forest simulation models. 
Because the data set in essence provides a tree- 
level model of the forests in the western United 
States, it greatly augments the information avail-
able to researchers and managers who previ-
ously relied on data from sparse forest plots or 
stand inventories.

Table 5. Confusion matrix for vegetation group in zone 22.

Imputed plot vegetation group

602 603 614 620 621 622 625 628 630 631 635 639 640 Accuracy

LANDFIRE  
(target)  
vegetation  
group

602 283,552 1976 16,957 1080 214,371 3699 28,111 109 2149 38,398 22,699 1033 117 0.46
603 173 10,911 4425 0 1592 9083 4744 1 0 2678 0 4523 2 0.29
614 1989 965 26,626 3 7640 213 1163 715 729 1128 1419 145 0 0.62
620 13 4 239 2025 70,455 37 222 14 7570 982 910 20 8 0.02
621 1307 566 5746 628 1,228,828 2708 3350 154 1902 18,686 11,871 1963 2363 0.96
622 6 0 358 0 12 52,342 2 0 0 0 0 67 16 0.99
625 560 155 10,448 0 1246 1636 18,505 75 61 122 115 3654 95 0.50
628 637 131 12,741 340 234,846 14,103 9454 116,512 29,603 47,933 24,971 33,397 1414 0.22
630 42 3 176 92 4061 59 65 13 643,964 1107 1217 247 87 0.99
631 37 15 27 0 36,888 1211 31 397 1296 78,507 69 46 17 0.66
635 11,069 5062 42,199 3809 1,700,003 49,878 47,304 24,667 106,053 31,430 255,595 6292 700 0.11
639 57 18 961 0 2305 2018 726 21 111 585 227 31,434 0 0.82
640 170 132 526 0 1430 3970 1927 27 108 820 0 122 3195 0.26
Accuracy 0.95 0.55 0.22 0.25 0.35 0.37 0.16 0.82 0.81 0.35 0.80 0.38 0.40 0.48

Notes: Overall, agreement for this zone was the lowest for any zone in the western United States at 48%. The most plentiful 
vegetation group in this zone was 621, Limber Pine Woodland. The low agreement in that vegetation group is one of the major 
drivers of the low agreement for the zone as a whole, due to the large proportion of pixels mapped as 621. Italics denote the 
instances where the model predicted a given vegetation group correctly. (Note that the codes can be looked up in Table 4 to 
yield the name of the vegetation group.)

Fig. 17. A histogram of the number of pixels to 
which an individual plot imputed.
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